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Abstract

Employing the Lax pairs of the noncommutative discrete potential Korteweg–de Vries (KdV) and Hirota’s
KdV equations, we derive differential–difference equations that are consistent with these systems and serve as
their generalised symmetries. Miura transformations mapping these equations to a noncommutative modified
Volterra equation and its master symmetry are constructed. We demonstrate the use of these symmetries to
reduce the potential KdV equation, leading to a noncommutative discrete Painlevé equation and to a system
of partial differential equations that generalises the Ernst equation and the Neugebauer–Kramer involution.
Additionally, we present a Darboux transformation and an auto-Bäcklund transformation for the Hirota’s KdV
equation, and establish their connection with the noncommutative Yang–Baxter map FIII .
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1 Introduction

The notion of integrability for (systems of) differential, differential–difference, and difference equations is well
established and incorporates various aspects, such as Lax representations, Miura and Bäcklund transformations,
soliton solutions, and infinite hierarchies of symmetries and conservation laws, to name a few. Connections among
different types of integrable systems are also well known; for example, evolutionary differential–difference equations
serve as symmetries of difference equations, while difference equations may express the superposition principle for
Bäcklund transformations of differential equations. Interrelations among different aspects of integrability are also
well established. For instance, a Lax pair can be used to construct symmetries and auto-Bäcklund transformations
for the corresponding integrable system, whereas symmetries may provide a link between continuous and discrete
integrable systems.

Various methods and approaches exist for establishing the integrability of systems with commutative variables.
In the case of the discrete systems, it is well known that multidimensional consistency provides a powerful tool
for constructing both a Lax pair and an auto-Bäcklund transformation; see, for example, [11] and references
therein. Symmetries can be derived systematically either from first principles (see [10, 21]) or through the theory
of integrability conditions (see [3, 13, 14, 15, 23]). Many of these structures and methods naturally extend to
the noncommutative setting. In some cases, this extension is straightforward; in others, it requires more intricate
constructions and computations.

In this paper, we derive generalised symmetries of noncommutative difference equations defined on an elementary
quadrilateral of the Z

2 lattice. Our approach follows that of [10], which systematically derives symmetries using
the Lax pair of the underlying discrete system. This method extends naturally to noncommutative settings and
offers a broadly applicable framework. To demonstrate its effectiveness, we consider two illustrative examples. We
begin with the discrete potential KdV equation [8, 5]

(u0,0 − u1,1) (u1,0 − u0,1) = α− β,

∗Email: xenitip@hope.ac.uk

1



where α, β are commuting parameters, and its corresponding Lax pair, from which we derive the lowest order
generalised symmetries. These symmetries are non-polynomial differential–difference equations,

du0,0

dt1
= (u1,0 − u−1,0)

−1
,

du0,0

dx
= n (u1,0 − u−1,0)

−1
,

dα

dx
= −1,

that generalise those of the commutative case [21].
We employ these symmetries in two distinct settings to reduce the discrete potential KdV equation. The first

reduction yields a three-dimensional map related to the difference equation

rfn+1 (Y n+1Y n − r)
−1

+ rfn (Y n−1Y n − r)
−1

+ rλn+mY
−1
n + λn+m+1Y n + gm + fn+1 = 0,

which can be viewed as a noncommutative discrete Painlevé II equation.
In the second context, we establish a correspondence between a class of solutions of the discrete equation and

solutions of the integrable system of partial differential equations

∂u1

∂β
=

1

α− β
(u1 − u2)

(

m−
∂u

∂β
(u1 − u2)

)

,

∂u2

∂α
=

1

α− β
(u1 − u2)

(

n+
∂u

∂α
(u1 − u2)

)

,

∂2u

∂α∂β
=

1

α− β

(

∂u

∂α
(u1 − u2)

∂u

∂β
+

∂u

∂β
(u1 − u2)

∂u

∂α
+ n

∂u

∂β
−m

∂u

∂α

)

.

The integrability of this noncommutative system is established by the existence of a Lax pair and an auto-Bäcklund
transformation. Moreover, it incorporates and generalises well-known systems from Mathematical Physics, includ-
ing the Ernst equation and the Neugebauer–Kramer involution.

Our second illustrative example is Hirota’s KdV equation [5],

u0,0 + αu−1
1,0 − αu−1

0,1 − u1,1 = 0.

Using its associated Lax pair, we derive the corresponding generalised symmetries.

du0,0

dt1
= u0,0f1,0 − f0,0u0,0,

du0,0

dx
= nu0,0f1,0 − (n− 1)f0,0u0,0,

dα

dx
= 1, with f0,0 = (u0,0u−1,0 + α)−1.

We show how these symmetries can be used to reduce the equation to a six-dimensional map, a consequence of both
the equation’s scaling symmetry and the non-commutativity of the variables. Furthermore, we construct an auto-
Bäcklund transformation via a Darboux transformation that leaves the Lax pair covariant. This transformation
involves an auxiliary function, and its superposition principle yields the noncommutative Yang–Baxter map FIII [7].
Moreover, we employ the Bäcklund transformation and its superposition principle in the construction of solutions
of the Hirota’s KdV equation.

We also show that the symmetries of both equations can be mapped, via Miura transformations (see (11) and
(50) below), to the modified Volterra equation [6] and its master symmetry,

dv0
dt1

= v0 (v1 − v−1)v0 and
dv0
dx

= v0 ((n+ 1)v1 − (n− 1)v−1)v0,

respectively.
The paper is organised as follows. The next section sets the framework, providing key definitions and establishing

our notation. Section 3 deals with the symmetries and reductions of the discrete potential KdV equation, while
Section 4 discusses the symmetries and the auto-Bäcklund transformation of Hirota’s KdV equation. The concluding
section summarises our main results, presents additional examples (such as the noncommutative discrete nonlinear
Schrödinger system [12]), and outlines possible directions for future research. Finally, the appendix contains detailed
derivations and proofs of various statements made in the main body of the paper.
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2 Noncommutative setting and notation

In this short section, we present all the necessary definitions to make our presentation self-contained, and introduce
our notation.

In the following sections, we consider difference and differential–difference equations with noncommutative
variables taking values in a division ring U over a field of constants F of characteristic zero. The elements of U do
not necessarily commute, and the field F lies in the centre Z(U) of U. We denote elements of Z(U) by italic letters,
and all other elements of U by bold letters. In particular, we use the symbol 1 to denote both the unit of the field
and the unit of the ring, trusting that this will not lead to confusion.

The equations we are interested in involve functions depending on the two discrete variables n,m ∈ Z, and
their dependence on these variables is denoted with indices, i.e., u(n + i,m + j) = ui,j , i, j ∈ Z. There are two
automorphisms (shift operators) S and T acting on ui,j as SrT s(ui,j) = T sSr(ui,j) = ui+r,j+s. We also have an
involution on U defined in the following way.

Definition 1. An F-linear map τ : U → U satisfying τ(α) = α, for any α ∈ F, τ(u) = u for any generator u of

U, and τ(xy) = τ(y)τ(x), for any x,y ∈ U, is called a transposition.

In order to define symmetries, we need the notion of derivation.

Definition 2. An F-linear map ∂ : U → U satisfying ∂(α) = 0, for any α ∈ F, and the Leibnitz rule, i.e.,

∂(xy) = ∂(x)y + x∂(y) for any x,y ∈ U, is called a derivation of U.

Derivations ∂F of algebra U, commuting with the automorphisms S and T , are called evolutionary. It is
sufficient to define an evolutionary derivation on u0,0 as ∂F (u0,0) = F 0,0 ∈ U. The evolutionary derivation ∂F is
in one-to-one correspondence with the system of differential-difference equations

dui,j

dt
= SiT j (F 0,0) = F i,j , i, j ∈ Z.

By a symmetry of a difference equation we understand an evolutionary derivation ∂F which is compatible with the
equation, or, equivalently, the evolutionary differential-difference system of equations ∂tu0,0 = F 0,0 is consistent
with the difference equation. Symmetries ∂F and ∂G are called commuting, if [∂F , ∂G] = 0. Symmetry ∂M is
called a master symmetry if [∂M , ∂F ] 6= 0 and [∂F , [∂M , ∂F ]] = 0, where [·, ·] denotes the standard commutator.

3 The noncommutative discrete potential KdV equation

The noncommutative discrete potential KdV equation

(u0,0 − u1,1) (u1,0 − u0,1) = α− β (1)

was first introduced in [8], where its initial value problem was also analysed. Additionally, it was derived as a
reduction of the noncommutative discrete Toda chain in [5].

It can be readily verified that equation (1) is invariant under the following transformations,

ui,j → ui,j + ǫ1, ui,j → ui,j + ǫ2(−1)n+m+i+j , ǫi ∈ F, (2)

as well as the conjugation ui,j → xui,jx
−1. We are interested in finding the lowest order generalised symmetries

of (1), and for this purpose we employ its Lax pair, given by

Ψ1,0 = L0,0Ψ0,0 =

(

u0,0 α− λ− u0,0u1,0

1 −u1,0

)

Ψ0,0, (3a)

Ψ0,1 =M 0,0Ψ0,0 =

(

u0,0 β − λ− u0,0u0,1

1 −u0,1

)

Ψ0,0. (3b)
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To construct generalised symmetries of (1), we seek an evolutionary derivation of the form

d
dtΨ0,0 = A0,0Ψ0,0,

which is compatible with (3a). This leads to the compatibility condition

d

dt
L0,0 +L0,0A0,0 = A1,0L0,0,

where the derivative acts on u0,0 and its shifts, as well as on α, all of which appear in the elements of matrix L.
Assuming that A0,0 = L−1

0,0Q0,0, where L
−1
0,0 is the inverse of L0,0 and Q0,0 is independent of λ,

L−1
0,0 =

1

α− λ

(

u1,0 α− λ− u1,0u0,0

1 −u0,0

)

and Q0,0 =

(

a0,0 b0,0
c0,0 d0,0

)

,

the compatibility condition becomes

L1,0
dL0,0

dt
+L1,0Q0,0 = Q1,0L0,0. (4)

The λ-independence of matrix Q and the (1, 1) entry of (4) yield that c0,0 = 0. In view of this, entries (2, 1) and
(1, 1) of (4) lead to

du0,0

dt
= d1,0 − a0,0 and b0,0 = u0,0d0,0 − a0,0u−1,0. (5)

The (1, 2) element of (4) is linear in λ. Requiring the coefficient of λ to be zero and taking into account the
first equation in (5) we find that d2,0 = d0,0 which implies that d is periodic with period 2. Since this function
corresponds to the translation symmetries (2) of (1), we choose d0,0 = 0 without loss of generality. The λ
independent part of the (1, 2) element and relations (5) lead to

a0,0(u1,0 − u−1,0)− (u2,0 − u0,0)a1,0 + ξ = 0, where ξ =
dα

dt
,

which imply that1

a0,0 = −(µ1 + µ2n)(u1,0 − u−1,0)
−1 and ξ = −µ2, µi ∈ F. (6)

In view of these, equations (5) become

du0,0

dt
= (µ1 + µ2n)(u1,0 − u−1,0)

−1,
dα

dt
= −µ2, (7a)

and
b0,0 = (µ1 + µ2n)(u1,0 − u−1,0)

−1u−1,0, (7b)

respectively. This means that there are two evolutionary derivations compatible with (3a) corresponding to the
two parameters appearing in (7). Summarising,

Proposition 1. The systems

Ψ1,0 = L0,0Ψ0,0,
dΨ0,0

dt1
= A0,0Ψ0,0,

dΨ0,0

dx
= nA0,0Ψ0,0, (8)

where L0,0 is given in (3a) and

A0,0 =
1

α− λ

(

−u1,0a0,0 u1,0a0,0u−1,0

−a0,0 a0,0u−1,0

)

with a0,0 = (u1,0 − u−1,0)
−1, (9)

are Lax pairs of the differential-difference equations

du0,0

dt1
= a0,0 and

du0,0

dx
= na0,0,

dα

dx
= −1, (10)

respectively.

1The choice of the negative sign is for convenience.
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Lattices (10) are related to the noncommutative modified Volterra chain via a Miura transformation. More
precisely,

Proposition 2. The Miura transformation

v0,0 = (u1,0 − u−1,0)
−1

, (11)

together with the change of variables t1 → −t1 and x → −x, maps lattices (10) to

dv0,0
dt1

= v0,0 (v1,0 − v−1,0)v0,0 (12)

and
dv0,0
dx

= v0,0 ((n+ 1)v1,0 − (n− 1)v−1,0)v0,0, (13)

respectively. Moreover, this transformation maps matrix Lax pairs (8) to the scalar Lax pair

φ2,0 + v
−1
1,0φ1,0 = λφ0,0,

dφ0,0

dt1
=
v0,0φ1,0 + φ0,0

λ
(14)

for equation (12), and to the scalar Lax pair

φ2,0 + v
−1
1,0φ1,0 = λφ0,0,

dφ0,0

dx
= n

v0,0φ1,0 + φ0,0

λ
,

dλ

dx
= 1 (15)

for equation (13).

Proof. If we rewrite the Miura transformation (11) in the form v−1
0,0 = u1,0−u−1,0, and differentiate it with respect

to t1 or x, while taking into account that the lattices (10) can be expressed as
du0,0

dt1
= v0,0 and

du0,0

dx = nv0,0,
respectively, then the lattices (12) and (13) follow.

For the Lax pairs, we consider the discrete part of (8) with Ψ0,0 =
(

ψ0,0 φ0,0

)T
, i.e.,

ψ1,0 = u0,0ψ0,0 + (α − λ− u0,0u1,0)φ0,0, φ1,0 = ψ0,0 − u1,0φ0,0. (16)

The second equation readily leads to ψ0,0 = φ1,0 + u1,0φ0,0, in view of which, the first equation in (16) becomes

φ2,0 + (u2,0 − u0,0)φ1,0 = (α− λ)φ0,0. (17)

Moreover, we consider the second component of the differential equations in (8), i.e.,

dφ0,0

dt1
=

1

α− λ

(

−a0,0ψ0,0 + a0,0u−1,0φ0,0

)

,
dφ0,0

dx
=

n

α− λ

(

−a0,0ψ0,0 + a0,0u−1,0φ0,0

)

.

Substituting ψ0,0 = φ1,0 + u1,0φ0,0, the above relations become

dφ0,0

dt1
=

1

α− λ

(

−a0,0φ1,0 − φ0,0

)

,
dφ0,0

dx
=

n

α− λ

(

−a0,0φ1,0 − φ0,0

)

. (18)

Finally, we use transformation (11) along with t1 → −t1 and x → −x, as well as we change α− λ to λ. In view of
all these changes, (17) and (18) lead to the Lax pairs (14) and (15), respectively.

Remark 1. Lattice (13) is the master symmetry for the modified Volterra equation (12). Indeed, their commutators
yields

dv0,0
dt2

= v0,0v1,0 (v2,0 + v0,0)v1,0v0,0 − v0,0v−1,0 (v0,0 + v−2,0)v−1,0v0,0, (19)

which is the second member of the modified Volterra hierarchy and commutes with (12). It is worth noting that
the Volterra lattice (12) was first introduced in [6], and corresponds to the equation denoted by mVL2 in [1] with
α = 0; see also [17].
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Moreover, differential-difference equations (10) are compatible with the discrete potential KdV equation (1)
and we refer to the former as generalised symmetries of the latter.

Proposition 3. The lowest order generalised symmetries of equation (1) in the first direction are generated by

du0,0

dt1
= (u1,0 − u−1,0)

−1 , (20)

and
du0,0

dx
= n (u1,0 − u−1,0)

−1 ,
dα

dx
= −1, (21)

respectively.

Proof. Differentiating (1) with respect to t1 and using (20), we arrive at

(

(u1,0 − u−1,0)
−1

− (u2,1 − u0,1)
−1
)

(u1,0 − u0,1) +

(u0,0 − u1,1)
(

(u2,0 − u0,0)
−1 − (u1,1 − u−1,1)

−1
)

= 0. (22)

We can replace u2,1 using the forward shift of equation (1). Indeed, the latter can be written as

u2,1 = u1,0 − (α − β) (u2,0 − u1,1)
−1 ⇒ u2,1 − u0,1 = u1,0 − u0,1 − (α− β) (u2,0 − u1,1)

−1 .

Using (1) to replace u1,0 − u0,1, we arrive at

u2,1 − u0,1 = (α− β)
(

(u0,0 − u1,1)
−1

− (u2,0 − u1,1)
−1
)

= (α− β) (u0,0 − u1,1)
−1

(u2,0 − u0,0) (u2,0 − u1,1)
−1

.

Hence,
(u2,1 − u0,1)

−1
= (α− β)−1 (u2,0 − u1,1) (u2,0 − u0,0)

−1
(u0,0 − u1,1) . (23a)

Shifting the latter relation backward in n we get that

(u1,1 − u−1,1)
−1

= (α− β)−1 (u1,0 − u0,1) (u1,0 − u−1,0)
−1

(u−1,0 − u0,1) . (23b)

Substituting (23) into (22) and taking into account (1), equation (22) becomes an identity.
To show that (21) is a symmetry of (1), first we rewrite it as

du0,0

dx
= n

du0,0

dt1
,

dα

dx
= −1. (24)

Then we differentiate the potential KdV equation with respect to x which leads to

n
dQ

dt1
− (u2,1 − u0,1)

−1
(u1,0 − u0,1) + (u0,0 − u1,1) (u2,0 − u0,0)

−1
+ 1 = 0,

where Q denotes the left hand side of (1). Taking into account that the first term vanishes modulo (1), relations
(23) and the potential KdV equation (1) turn the above relation into an identity.

Remark 2. Another symmetry of the potential KdV is generated by

du0,0

dǫ
= n (u1,0 − u−1,0)

−1
+

1

2(α− β)
u0,0. (25)

This symmetry, however, cannot be derived using Lax pair (3).

Working in the same way or using the invariance of (1) under the interchanges ui,j ↔ uj,i, α ↔ β, we can find
symmetries in the other direction. More precisely, we can prove the following.
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Proposition 4. Equation (1) admits three generalised symmetries in the second direction given by

du0,0

ds1
= (u0,1 − u0,−1)

−1
, (26)

du0,0

dy
= m (u0,1 − u0,−1)

−1
,

dβ

dy
= −1, (27)

and
du0,0

dε
= m (u0,1 − u0,−1)

−1
−

1

2 (α− β)
u0,0, (28)

respectively.

In what follows, we employ these symmetries to reduce equation (1) to a noncommutative discrete Painlevé
equation and to relate some of its solutions to a system of partial differential equations..

3.1 Symmetry reduction and noncommutative maps

Equation (1) admits the five-point generalised symmetry

F 0,0 = (n+ µ1) (u1,0 − u−1,0)
−1 + (m+ µ2) (u0,1 − u0,−1)

−1 + λ1 + λ2(−1)n+m.

To find solutions of (1) satisfying the constraint F 0,0 = 0, we introduce the functions

x0,0 = u1,0 − u0,0, y0,0 = u0,1 − u0,0, (29)

which satisfy the compatibility condition

x0,1 + y0,0 = y1,0 + x0,0. (30)

Using (29), their shifts, and the relation (30), we can rewrite equation (1) as a system for the functions x and y in
either of the following equivalent forms,

x0,1 = −y0,0 − r
(

x0,0 − y0,0
)

−1
, y1,0 = −x0,0 − r

(

x0,0 − y0,0
)

−1
, (31a)

or
x0,0 = y0,0 − r

(

x0,1 + y0,0
)

−1
, y1,0 = x0,1 + r

(

x0,1 + y0,0
)

−1
, (31b)

where r := α− β. In the same fashion, the symmetry constraint F 0,0 = 0 becomes

(n+ µ1)(x0,0 + x−1,0)
−1 + (m+ µ2)(y0,0 + y0,−1)

−1 + λ1 + λ2(−1)n+m = 0. (31c)

If the values of x−1,0, y0,0, and x0,0 are known, then the corresponding shifts in the first direction can be
determined. Defining xn := x−1,0, yn := y0,0, and zn := x0,0 (see Figure 1), we can compute the updated
variables xn+1, yn+1, and zn+1 by using the relations (31) and their shifts.

In particular, from the identification xn+1 = zn and the second equation in (31a), we obtain

xn+1 = zn, yn+1 = −zn − r(zn − yn)
−1. (32)

To determine zn+1, we first rewrite the symmetry constraint (31c) as

(n+ µ1)(zn + xn)
−1 + (m+ µ2)(yn + y0,−1)

−1 + λ1 + λ2(−1)n+m = 0, (33)

and then consider its forward shift in n,

(n+ 1 + µ1)(zn+1 + zn)
−1 + (m+ µ2)(yn+1 + y1,−1)

−1 + λ1 − λ2(−1)n+m = 0. (34)
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u
−1,0 u0,0

u0,−1

u1,0

u1,−1

u2,0

u0,1 u1,1

xn

yn
yn+1

zn zn+1

xn+1 = zn

Figure 1: Variables xn = u0,0 − u−1,0, yn = u0,1 − u0,0, zn = u1,0 − u0,0 on the Z
2 lattice

The term yn+1 + y1,−1 can be expressed using the backward shift in m of the second equation in (31b), i.e.

y1,−1 = zn + r
(

zn + y0,−1

)

−1
, combined with the second equation of (32). This yields the identity

(

yn+1 + y1,−1

)

−1
= r−1(zn + y0,−1)(yn + y0,−1)

−1(yn − zn).

Substituting into (34), and using (33) to eliminate y0,−1, we derive

r(n + 1+ µ1)(zn+1 + zn)
−1 + (zn − yn)A(zn − yn)− (m+ µ2)(zn − yn) + r(λ1 − λ2(−1)n+m) = 0, (35)

where A = (n+µ1)(zn+xn)
−1+λ1+λ2(−1)n+m. Rearranging this equation for zn+1, together with (32), defines

a three-dimensional map for the variables xn, yn, and zn.
This map is related to a discrete Painlevé-type equation for the function Y n := yn+1 + zn. In particular, the

quantity zn − yn can be expressed in terms of Y n via the second equation in (32). Moreover, from (32) we obtain

(zn+1 + zn)
−1 = (Y n+1Y n − r)

−1
Y n+1, (zn + xn)

−1 = Y n (Y n−1Y n − r)
−1

.

Substituting these expressions into (35) and simplifying yields the following noncommutative difference equation

rfn+1 (Y n+1Y n − r)
−1

+ rfn (Y n−1Y n − r)
−1

+ rλn+mY
−1
n + λn+m+1Y n + gm + fn+1 = 0, (36)

where fn = n + µ1, gm = m + µ2, and λk = λ1 + λ2(−1)k. We refer to this equation as the noncommutative
asymmetric alternate discrete Painlevé II equation, as it reduces to the asymmetric alternate discrete Painlevé II
equation [9, 21] when the variable Y n is assumed to be a commuting variable. In this context, our results generalise
to the noncommutative setting the corresponding results obtained for the commutative discrete KdV equation in
[21]. For a recent study of noncommutative discrete Painlevé equations one may refer to [4].

3.2 Continuous symmetric reductions and a system of differential equations

Solutions of the discrete potential KdV equation generally depend on the parameters α and β. In this section,
we focus on a special class of solutions of (1) that depends on these parameters and remain invariant under both
master symmetries given in (21) and (27). We refer to such solutions as continuously symmetric solutions, as they
satisfy the following symmetry constraints in addition to equation (1).

∂u0,0

∂α
= −n (u1,0 − u−1,0)

−1 ,
∂u0,0

∂β
= −m (u0,1 − u0,−1)

−1 (37)
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Since this system involves six shifts of the field u, we may eliminate three of them to obtain a closed system for the
remaining variables. In what follows, we choose to eliminate u1,1, u−1,0, and u0,−1, thereby reducing the system
to one involving only u0,0, u1,0, and u0,1. The elimination can be carried out systematically and the full derivation
is given in the Appendix.

To simplify notation, we denote the remaining variables by u := u0,0, u1 := u1,0, and u2 := u0,1. In terms of
these variables, we now state the following proposition.

Proposition 5. System

∂u1

∂β
=

1

α− β
(u1 − u2)

(

m−
∂u

∂β
(u1 − u2)

)

, (38a)

∂u2

∂α
=

1

α− β
(u1 − u2)

(

n+
∂u

∂α
(u1 − u2)

)

, (38b)

∂2u

∂α∂β
=

1

α− β

(

∂u

∂α
(u1 − u2)

∂u

∂β
+

∂u

∂β
(u1 − u2)

∂u

∂α
+ n

∂u

∂β
−m

∂u

∂α

)

, (38c)

determines the continuously symmetric solutions of (1).

This is an integrable system in the sense that it admits a Lax pair and an auto-Bäcklund transformation.

Proposition 6. A Lax pair for system (38) is given by

∂Ψ

∂α
=

1

α− λ

(

−u1
∂u
∂α

u1
∂u
∂α
u1 + nu1

−∂u
∂α

∂u
∂α
u1 + n

)

Ψ,
∂Ψ

∂β
=

1

β − λ

(

−u2
∂u
∂β

u2
∂u
∂β
u2 +mu2

−∂u
∂β

∂u
∂β
u2 +m

)

Ψ. (39)

Moreover, system

∂ũ

∂α
=

1

α− λ
(u1 − ũ)

(

n+
∂u

∂α
(u1 − ũ)

)

(40a)

∂ũ

∂β
=

1

β − λ
(u2 − ũ)

(

m+
∂u

∂β
(u2 − ũ)

)

(40b)

(u− ũ1) (u1 − ũ) = α− λ, (40c)

(u− ũ2) (u2 − ũ) = β − λ, (40d)

is an auto-Bäcklund transformation of system (38) and is invariant under the interchange of variables (u,u1,u2) ↔
(ũ, ũ1, ũ2).

Proof. The first equation of the Lax pair follows from (8) by employing (37) to replace the negative shifts of u.
The second equation follows from the first equation and the invariance of (38) under the interchanges u1 ↔ u2,
α ↔ β, and n ↔ m. The compatibility condition of (39) splits into two equations, namely

∂βA = ∂αB, β∂βA− α∂αB + [A,B] = 0,

where A and B are the matrices of the first and second equation, respectively, in (39). The (2, 1) entry of the
second equation yields (38c), in view of which equation ∂βA = ∂αB leads to the other two equation of (38).
Finally, in view of (38), the remaining equations of the compatibility condition hold identically.

Regarding the auto-Bäcklund transformation, we employ the corresponding transformation of the discrete po-
tential KdV equation,

(u0,0 − ũ1,0) (u1,0 − ũ0,0) = α− λ, (u0,0 − ũ1,0) (u0,1 − ũ0,0) = β − λ, (41)

which follows from the multidimensionally consistency of (1). To do this, let us first consider the equations following
from (37) after replacing u with ũ, i.e.,

∂ũ0,0

∂α
= −n (ũ1,0 − ũ−1,0)

−1 ,
∂ũ0,0

∂β
= −m (ũ0,1 − ũ0,−1)

−1 . (42)
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Clearly system (41) is consistent with (37) and (42), as this is another manifestation of the invariance of the discrete
potential KdV under symmetries (21) and (27). Moreover, it follows from (41) and their backward shifts that

u1,0 − u−1,0 =
1

α− λ
(u0,0 − ũ1,0)

−1(ũ1,0 − ũ−1,0)(u0,0 − ũ−1,0)
−1,

and

u0,1 − u0,−1 =
1

β − λ
(u0,0 − ũ0,1)

−1(ũ0,1 − ũ0,−1)(u0,0 − ũ0,−1)
−1.

In view of these relations, we can rewrite (37) as

∂u0,0

∂α
=

1

α− λ
(u0,0 − ũ−1,0)

∂ũ0,0

∂α
(u0,0 − ũ1,0),

and
∂u0,0

∂β
=

1

β − λ
(u0,0 − ũ0,−1)

∂ũ0,0

∂β
(u0,0 − ũ0,1),

respectively. Finally, we eliminate the backward shifts of ũ using (42) and rename

(u0,0,u1,0,u0,1) −→ (u,u1,u2) and (ũ0,0, ũ1,0, ũ0,1) −→ (ũ, ũ1, ũ2).

These considerations lead to equations (40a) and (40b). The compatibility condition of these equations yields a
quadratic polynomial in ũ the coefficients of which yield system (38).

Remark 3. System (38) constitutes a noncommutative generalisation of the system originally introduced in [16],
further analysed in [19] and [20], and was derived in the context of ABS equations and their continuous symmetric
reductions in [22]. From system (38), three distinct subsystems can be extracted, each generalising a classical
system from Mathematical Physics. The first one is the Euler–Poisson–Darboux (EPD) equation,

∂2u

∂α∂β
=

1

α− β

(

n
∂u

∂β
−m

∂u

∂α

)

,

corresponding to the choices u1 = u2 = c ∈ F. The other system is the Ernst equation along with the Neugebauer–
Kramer involution. This corresponds to the choice u1 = φ+ iχ, u2 = −φ+ iχ, u = F + iω, and n = m = − 1

2 . In
view of these choices, equation (38c) becomes the Ernst equation,

∂2u

∂α∂β
=

1

2

(

∂u

∂α
F−1 ∂u

∂β
+

∂u

∂β
F−1 ∂u

∂α

)

+
1

2 (α− β)

(

∂u

∂α
−

∂u

∂β

)

, (43)

and the other two equations of (38) lead to the Neugebauer–Kramer involution,

Fφ =
α− β

4
,

∂χ

∂α
=

4

α− β
φ
∂ω

∂α
φ,

∂χ

∂β
=

−4

α− β
φ
∂ω

∂β
φ. (44)

It can be easily checked with direct computations that if u = F + iω satisfies (43) and u1 = φ+ iχ is related to u
via (44), then u1 satisfies

∂2u1

∂α∂β
=

1

2

(

∂u1

∂α
φ−1 ∂u1

∂β
+

∂u1

∂β
φ−1 ∂u1

∂α

)

+
1

2 (α− β)

(

∂u1

∂α
−

∂u1

∂β

)

,

and vice versa. It is worth noting that equation (43) was proposed as a matrix version of the Ernst equation in [2].
Finally, system (38) can also be decoupled to a system for u1 and u2. This can be done by rearranging equations

(38a) and (38b) for the first order derivatives of u and then consider their compatibility conditions with (38c).
This leads to

∂2u1

∂α∂β
=

∂u1

∂α
(u1 − u2)

−1 ∂u1

∂β
+

∂u1

∂β
(u1 − u2)

−1 ∂u1

∂α
−

m

α− β

∂u1

∂α
−

n+ 1

α− β

∂u1

∂β
,

∂2u2

∂α∂β
=

∂u2

∂α
(u2 − u1)

−1 ∂u2

∂β
+

∂u2

∂β
(u2 − u1)

−1 ∂u2

∂α
+

m+ 1

α− β

∂u2

∂α
+

n

α− β

∂u2

∂β
,

which may be viewed as a noncommutative generalisation of the stationary Loewner–Konopelchenko–Rogers sys-
tem, see [20, 18] and references therein.
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4 The noncommutative discrete KdV equation

In this section, we consider the noncommutative discrete Hirota’s KdV equation, or simply the KdV equation,

u0,0 + αu−1
1,0 − αu−1

0,1 − u1,1 = 0, (45)

and derive its lowest order generalised symmetries and an auto-Bäcklund transformation using its Lax pair. Equa-
tion (45) was derived as a reduction of the noncommutative Toda chain in [5] and its Lax pair is

Ψ1,0 = L0,0Ψ0,0 =

(

αu−1
0,0 λ
λ u0,0

)

Ψ0,0, Ψ0,1 =M0,0Ψ0,0 =

(

αu−1
0,0 − u0,1 λ

λ 0

)

Ψ0,0. (46)

It can be easily verified that (45) is invariant under the scaling generated by d
dtu0,0 = (−1)n+mu0,0, and the

conjugation ui,j → xui,jx
−1.

Starting from the KdV equation and its Lax pair, and proceeding analogously to the previous section, we can
determine the generalised symmetries of (45). This analysis can be summarised in the following statements.

Proposition 7. The systems

Ψ1,0 = L0,0Ψ0,0,
dΨ0,0

dt1
= A0,0Ψ0,0,

dΨ0,0

dx
= nA0,0Ψ0,0, (47)

where L0,0 is given in (46) and

A0,0 =
1

α− λ2

(

f0,0u0,0u−1,0 −λf0,0u0,0

−λu−1,0f0,0 αu−1
0,0f0,0u0,0

)

with f0,0 = (u0,0u−1,0 + α)−1, (48)

are Lax pairs of the differential-difference equations

du0,0

dt1
= u0,0f1,0 − f0,0u0,0 and

du0,0

dx
= nu0,0f1,0 − (n− 1)f0,0u0,0,

dα

dx
= 1, (49)

respectively.

Proof. It can be verified by direct calculations.

Proposition 8. The lowest order generalised symmetries of equation (45) in the first direction are generated by

differential-difference equations (49).

Proof. It is given in the Appendix.

The lattices in (49) are related to the Volterra lattice and its master symmetry via a Miura transformation.

Proposition 9. The Miura transformation

v0,0 = u0,0(u1,0u0,0 + α)−1, (50)

together with the change of variables t1 → −t1 and x → −x, maps lattices (49) to (12) and (13), respectively.

Proof. It is given in the Appendix.

Employing the invariance of (45) under the interchange of shifts, i.e., u1,0 ↔ u0,1, and the change of parameter
α to −α, we state the following result which can also be proven by straightforward calculations.

Proposition 10. The lowest order generalised symmetries of equation (45) in the second direction are given by

du0,0

ds1
= u0,0g0,1 − g0,0u0,0, g0,0 = (u0,0u0,−1 − α)−1 (51)

and
du0,0

dy
= mu0,0g0,1 − (m− 1)g0,0u0,0,

dα

dy
= −1, (52)

respectively.
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A consequence of Propositions 8 and 10 is the following statement.

Proposition 11. The lowest order five-point generalised symmetries of equation (45) is given by

du0,0

dǫ
= nu0,0f1,0 − (n− 1)f0,0u0,0 +mu0,0g0,1 − (m− 1)g0,0u0,0, (53)

where f0,0 = (u0,0u−1,0 + α)−1 and g0,0 = (u0,0u0,−1 − α)−1.

Using the generalised symmetries we found, we can reduce equation (45) to a map, following the procedure out-
lined in Section 3.1. Since the KdV equation admits only a scaling symmetry, generated by d

dtu0,0 = (−1)n+mu0,0,
the resulting reduced map will be expressed in terms of the invariants associated with this symmetry. These
invariants are given by

x0,0 = u1,0u0,0, X0,0 = u0,0u1,0, y0,0 = u0,1u0,0, Y 0,0 = u0,0u0,1, (54)

and are pairwise related by transposition, i.e., τ(x0,0) =X0,0 and τ(y0,0) = Y 0,0. Consequently, the reduced map
will be six-dimensional, with its defining equations similarly related by transposition.

Indeed, consider the reduction under the symmetry

du0,0

dǫ + λ(−1)n+mu0,0 = 0,

see (53). Following the approach of Section 3.1, we use invariants (54) and their compatibility conditions,

x0,1Y
−1
0,0 = y1,0X

−1
0,0, y−1

0,0X0,1 = x−1
0,0Y 1,0,

to express both the KdV equation and the symmetry constraint in terms of these invariants.
The KdV equation admits two equivalent invariant forms. The first one is given by

x0,1 = −α+X−1
0,0(X0,0 + α)Y 0,0, y1,0 = α+ Y −1

0,0(Y 0,0 − α)X0,0,

X0,1 = −α+ y0,0(x0,0 + α)x−1
0,0, Y 1,0 = α+ x0,0(y0,0 − α)y−1

0,0,

and the second invariant form is

x0,0 = α
(

X0,1 − y0,0 + α
)

−1
y0,0, y1,0 = αx0,1(x0,1 − Y 0,0 + α)−1,

X0,0 = αY 0,0(x0,1 − Y 0,0 + α)−1, Y 1,0 = α(X0,1 − y0,0 + α)−1X0,1.

Similarly, the invariant form of the symmetry constraint is

n(x0,0 + α)−1 − (n− 1)(X−1,0 + α)−1 +m(y0,0 − α)−1 − (m− 1)(Y 0,−1 − α)−1 + λ(−1)n+m = 0,

n(X0,0 + α)−1 − (n− 1)(x−1,0 + α)−1 +m(Y 0,0 − α)−1 − (m− 1)(y0,−1 − α)−1 + λ(−1)n+m = 0.

Proceeding as in Section 3.1, we introduce the variables

xn := x−1,0, yn := y0,0, zn := x0,0, Xn :=X−1,0, Y n := Y 0,0, Zn :=X0,0,

in terms of which we obtain a six-dimensional map. Its first four equations have the following form,

xn+1 = zn, yn+1 = α+ Y −1
n (Y n − α)Zn,

Xn+1 = Zn, Y n+1 = α+ zn(yn − α)y−1
n ,

whereas the equations for the other two variables, zn+1 and Zn+1, are determined by the following relations.

α(n+ 1)(zn+1 + α)−1 + (n− 1)(xn + α)−1Zn − λ(−1)n+m(Zn + α) +

m
(

αZ−1
n (Y n − α)−1Y n − (Y n − α)−1Zn

)

+m− n− 1 = 0,

α(n+ 1)(Zn+1 + α)−1 + (n− 1)zn(Xn + α)−1 − λ(−1)n+m(zn + α) +

m
(

αyn(yn − α)−1z−1
n − zn(yn − α)−1

)

+m− n− 1 = 0.

As anticipated, the map is six-dimensional and invariant under transposition. If variables were commutative, then
Xn = xn, Y n = yn, Zn = zn and the map reduces to a three-dimensional one. Moreover, the commutative map
could be decoupled to a third-order equation for either yn or zn which are omitted here because of their length.
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4.1 Auto-Bäcklund transformation and Yang–Baxter map

Using the Lax pair of an equation, one can derive an auto-Bäcklund transformation via a Darboux transformation
that leaves the Lax pair covariant. More precisely, consider the Lax pair associated with the equation Q(u) = 0,

Ψ1,0 = L0,0Ψ0,0, Ψ0,1 =M0,0Ψ0,0,

where the Lax matrices L and M depend on u and its shifts, and the spectral parameter λ. A Darboux transfor-
mation maps this Lax pair to a new one,

Ψ̃1,0 = L̃0,0Ψ̃0,0, Ψ̃0,1 = M̃0,0Ψ̃0,0,

where L̃ and M̃ are obtained from L and M by replacing the solution u with another solution ũ, satisfying
Q(ũ) = 0.

The fundamental solutions Ψ and Ψ̃ are related through a Darboux transformation of the form

Ψ̃0,0 =D0,0Ψ0,0,

where the Darboux matrix D generally depends on u, ũ, the spectral parameter λ, the Bäcklund parameter γ,
and possibly an auxiliary function (potential) v. As a consequence of this transformation, the Darboux matrix D
must satisfy the compatibility conditions

D1,0L0,,0 = L̃0,0D0,0, D0,1M 0,0 = M̃ 0,0D0,0,

which in turn yield an auto-Bäcklund transformation for the original equation.
For the KdV equation (45) and its Lax pair (46), the Darboux transformation is given by

Ψ̃0,0 = D(v0,0, γ)Ψ0,0 =

(

γv−1
0,0 λ
λ v0,0

)

Ψ0,0. (55)

The first row of the consistency condition D(v1,0, γ)L0,0 = L̃0,0D(v0,0, γ) implies that

ũ0,0 = v−1
0,0u0,0v1,0 and v1,0 = u−1

0,0(αv0,0 − γu0,0)(u0,0 − v0,0)
−1,

whereas the second row yields

ũ0,0 = v1,0u0,0v
−1
0,0 and v1,0 = (u0,0 − v0,0)

−1(αv0,0 − γu0,0)u
−1
0,0.

Taking into account the identity

x−1 (αx+ βy) (γx+ δy)−1 = (γx+ δy)−1 (αx+ βy)x−1, (56)

which holds for any x,y ∈ U, the two expressions for v1,0 are equivalent, and as a consequence the same is true
for the two expressions for ũ. In view of this, we have

ũ0,0 = v−1
0,0 (αv0,0 − γu0,0) (u0,0 − v0,0)

−1 = (u0,0 − v0,0)
−1 (αv0,0 − γu0,0)v

−1
0,0,

and the equation for v1,0 can be written as

v1,0 = (α− γ)(u0,0 − v0,0)
−1 − αu−1

0,0.

The second condition D(v0,1, γ)M0,0 = M̃0,0D(v0,0, γ) leads to an equation for v0,1. More precisely, its (2, 1)
entry gives

v0,1 = u0,1 − αu−1
0,0 + γv−1

0,0,

whereas its first row becomes an identity in view of the above relations and after some computations. We can
summarise this derivation in
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u ˜̂u = ˆ̃u

û

ũ

(v̂, γ2)

(ṽ, γ1)

(˜̂v, γ1)

(ˆ̃v, γ2)

Figure 2: Bianchi commuting diagram

Proposition 12. An auto-Bäcklund transformation for the KdV equation (45) is given by

ũ0,0 = v−1
0,0 (αv0,0 − γu0,0) (u0,0 − v0,0)

−1 = (u0,0 − v0,0)
−1 (αv0,0 − γu0,0)v

−1
0,0 (57a)

where the potential v is determined by the system

v1,0 = (α − γ)(u0,0 − v0,0)
−1 − αu−1

0,0, v0,1 = u0,1 − αu−1
0,0 + γv−1

0,0. (57b)

The superposition principle of the auto-Bäcklund transformation (57) follows by the permutation of four Dar-
boux matrices according to the Bianchi commuting diagram in Figure 2,

D(ˆ̃v, γ2)D(ṽ, γ1) = D(˜̂v, γ1)D(v̂, γ2), (58)

leading to
ˆ̃v = ṽ−1 (γ1v̂ − γ2ṽ) (ṽ − v̂)−1 , ˜̂v = v̂−1 (γ1v̂ − γ2ṽ) (ṽ − v̂)−1 . (59)

The new solution of (45) is given by

ˆ̃u = (ṽ − v̂) (γ1v̂ − γ2ṽ)
−1
ṽ(ṽ − v̂)−1v̂AuR−1 (ṽ − v̂) , (60a)

where

A := γ1(α − γ2)ṽ
−1 + γ2(γ1 − α)v̂−1 + α(γ2 − γ1)u

−1, (60b)

R := (α− γ2)ṽ + (γ1 − α)v̂ + (γ2 − γ1)u, (60c)

and its derivation is given in the Appendix. It can be readily verified that superposition principle formula (60) is
invariant under the interchanges ṽ ↔ v̂ and γ1 ↔ γ2. Assuming all variables commute, the transformation (57)
and its superposition (60) reduce to the auto-Bäcklund transformation of the commutative KdV equation and its
corresponding superposition principle, respectively.

Remark 4. Equation (58) is the Lax representation of a Yang–Baxter map. To make contact with the standard
notation of Yang–Baxter maps, let us set

y = ˆ̃v
−1

, x = ṽ−1, y′ = v̂−1, x′ = ˜̂v
−1

.

In this notation, equation (58) becomes

D(y−1, γ2)D(x−1, γ1) =D(x′−1
, γ1)D(y′−1

, γ2),
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and yields the map

x′ = y (1 + γ2xy) (1 + γ1xy)
−1

= (1 + γ2yx) (1 + γ1yx)
−1
y (61a)

y′ = (1 + γ1xy) (1 + γ2xy)
−1
x = x (1 + γ1yx) (1 + γ2yx)

−1
, (61b)

which is the non-commutative Yang–Baxter FIII map given in [7]. Finally, using the two equivalent forms of the
map, one can easily show that I = xy + yx is an invariant of the map.

Starting with the constant solution u0,0 = 1 and using the Bäcklund transformation (57), we can construct
new solutions of the KdV equation. Indeed, equations (57b) with u0,0 = 1, along with the convenient choice
γ = (κ2 − (α− 1)2)/4, yield

v0,0 =
κ− α+ 1

2
− κ x−1

0,0, x0,0 = 1 + fngmc = 1+

(

α− κ+ 1

α+ κ+ 1

)n(
α− κ− 1

α+ κ− 1

)m

c, (62)

where c ∈ U is the constant of integration. Applying formula (57a), we obtain a new solution of (45), given
explicitly by

ũ0,0 =

(

κ− α+ 1

2
x0,0 − κ

)

−1

x0,0

(

1− (α− κ)2

4
x0,0 − ακ

)(

α− κ+ 1

2
x0,0 + κ

)

−1

. (63)

The superposition principle (60) can then be employed to derive another solution of (45). In particular, the
potentials ṽ and v̂ follow from (62) by replacing κ with κ1 (for ṽ), and by replacing κ with κ2 and c with d (for
v̂), i.e.,

ṽ0,0 =
κ1 − α+ 1

2
− κ1x

−1
0,0, x0,0 = 1 + fngmc = 1 +

(

α− κ1 + 1

α+ κ1 + 1

)n(
α− κ1 − 1

α+ κ1 − 1

)m

c,

v̂0,0 =
κ2 − α+ 1

2
− κ2y

−1
0,0, y0,0 = 1 + hnℓmd = 1 +

(

α− κ2 + 1

α+ κ2 + 1

)n(
α− κ2 − 1

α+ κ2 − 1

)m

d.

Substituting these relations into (60), along with γi = (κ2
i − (α− 1)2)/4, i = 1, 2, we find the new solution ˆ̃u of the

KdV equation. This solution can be written as

ˆ̃u0,0 = x−1
0,0 F G−1

α−1 x0,0 ṽ0,0 x0,0 F̄
−1
H ṽ−1

0,0 Ḡ
−1
α+1 F̄ x−1

0,0, (64a)

where

F =
κ1 − κ2

2
x0,0y0,0 + κ2x0,0 − κ1y0,0, (64b)

Gǫ =
(ǫ− κ1)(ǫ − κ2)(κ1 − κ2)

8
x0,0y0,0 +

κ2(ǫ
2 − κ2

1)

4
x0,0 −

κ1(ǫ
2 − κ2

2)

4
y0,0, (64c)

H = (κ2−κ1)((α−κ1)
2
−1)((α−κ2)

2
−1)

32 y0,0x0,0 +
κ1((α − κ2)

2 − 1)(α2 + κ2
1 + 2ακ2 − 1)

16
y0,0

−
κ2((α − κ1)

2 − 1)(α2 + κ2
2 + 2ακ1 − 1)

16
x0,0 +

ακ1κ2(κ
2
1 − κ2

2)

4
, (64d)

and the quantities F̄ and Ḡ follow from F and G, respectively, under the interchanges x↔ y, κ1 ↔ κ2.
We may interpret (63) and (64) as the one-soliton and two-solitons solutions of the KdV equation (45), respec-

tively, since in both the commutative and matrix settings they yield the corresponding soliton solutions.
To demonstrate this, let us assume the dependent variables are matrices. For illustration, we focus on the case

of 2× 2 matrices,2 with α = 3, κ = 1, and

c =

(

2 1
3 2

)

.

2The same construction extends to higher-dimensional matrices.
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In this case using functions

a0,0 = 1 + (S − T )

(

p0,0
q0,0

)

, b0,0 =
12 · 5n · 3n+mr0,0

q1,0q0,1
,

the solution can be written as

u0,0 =

(

a0,0 b0,0
1
3b0,0 a0,0

)

,

where
p0,0 = 2 · 3m · 15n + 9n, q0,0 = 4 · 3m · 15n + 9n + 9m · 25n, r0,0 = 52n+1 · 9m − 9n.

This is an invertible matrix function, whose determinant is

det(u0,0) =
9q0,0(5q0,0 + 4r0,0)

q1,0q0,1
.

The graph of det(u0,0) is shown in Figure 3, clearly illustrating the soliton nature of the solution.
In the same setting, we consider solution (64) with the following choices for the parameters.

α = 3, κ1 = 1, κ2 = − 7
4 , c =

(

2 1
3 2

)

, d =

(

−1 −1
1 −2

)

.

The explicit formulae for the entries of u are omitted here, but Figure 3 presents the graph of the determinant of
this solution, justifying the term two-soliton solution.

Figure 3: The graphs of the determinants of the one- and two-soliton solutions of the 2× 2 matrix KdV equation.

Similar considerations hold for the scalar case. For instance, choosing α = 3, κ = 1, and c = 1 in (63), and
α = 3, κ1 = 1, κ2 = − 7

4 , c = 1, and d = −10 in (64) yields explicit expressions for the soliton solutions of the
scalar KdV equation.

5 Conclusions

We presented a method to find generalised symmetries of noncommutative difference equations by employing their
Lax pair using the discrete potential KdV equation (1) as an illustrative example. This approach was also used to
find the symmetries of the discrete KdV equation in Section 4, and can be readily applied to find symmetries for
other systems admitting a 2× 2 Lax pair, such as the noncommutative Schrödinger system [12]

u1,0 − u0,1 = (α− β)(u0,0v1,1 + 1)−1u0,0, v1,0 − v0,1 = (β − α)v1,1(u0,0v1,1 + 1)−1. (65)

Indeed, this system admits the Lax pair

Ψ1,0 =

(

λ+ α+ u0,0v1,0 u0,0

v1,0 1

)

Ψ0,0, Ψ0,1 =

(

λ+ β + u0,0v0,1 u0,0

v0,1 1

)

Ψ0,0, (66)
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and it can be shown that

dΨ0,0

dt1
= A0,0Ψ0,0,

dΨ0,0

dx
= nA0,0Ψ0,0,

dα

dx
= −1,

where

A0,0 =
1

α+ λ

(

f0,0 −f0,0u−1,0

−v1,0f0,0 v1,0f0,0u−1,0

)

with f0,0 = (u−1,0v1,0 + 1)−1,

are consistent with the first equation in (66) provided that

du0,0

dt1
= f0,0u−1,0,

dv0,0
dt1

= −v1,0f0,0,

and
du0,0

dx
= nf0,0u−1,0,

dv0,0
dx

= −nv1,0f0,0,
dα

dx
= −1,

respectively. The above two lattices generate the lowest order generalised symmetries of system (65) in the first
direction. Using arguments about the invariance of (65) under the interchange of indices and parameters, one could
find the symmetries of (65) in the other direction.

The Lax pair and Darboux transformation also provide a means to derive an auto-Bäcklund transformation for
the equation under consideration. Such a transformation may depend solely on the variables u and ũ, as is the case
for the discrete potential KdV equation and its transformation (41), as well as the corresponding transformation
of system (65) discussed in [12]. However, an auto-Bäcklund transformation may also depend on an auxiliary
potential as in (57). In such cases, its superposition principle leads to a Yang–Baxter map rather than a quad
system, as demonstrated in Section 4.

We also demonstrated how generalised symmetries can be employed to reduce a noncommutative difference
equation to a corresponding map, which may be related to a discrete Painlevé equation. A key distinction between
the commutative and noncommutative cases lies in the dimension of the reduced map: in the noncommutative
setting, this dimension may be higher due to the increased number of invariants that must be introduced as we
explained in Section 4. Additionally, we presented a systematic derivation of a system of noncommutative partial
differential equations arising from reductions of equation (1) which generalise very well-known systems such as the
Ernst equation and the Neugebauer–Kramer involution.

In this work, we have focused exclusively on systems admitting a 2 × 2 Lax pair. It would be of interest to
extend these considerations and derivations to equations that admit higher-order Lax pairs. One such equation is

u1,1 (u1,0 + u0,1)u0,0 + 1 = 0,

whose commutative counterpart was derived in [15] in the context of second-order integrability conditions. The
associated Lax pair involves 3× 3 matrices and is given by

Ψ1,0 =





0 u−1
1,0 λ

λ 0 u−1
0,0

−2u1,0u0,0 λ 0



Ψ0,0, Ψ0,1 =





0 −u−1
0,1 λ

λ 0 −u−1
0,0

2u0,1u0,0 λ 0



Ψ0,0.

Symmetries of a commutative system of difference equation can be derived systematically either from first
principles (see, for instance, [10, 21]) or via the theory of integrability conditions (see, for example, [3, 13, 14, 15, 23]).
The latter has recently been extended to the study of noncommutative differential-difference equations in [17],
where a related classification problem was also addressed. It would be of interest to further develop the theory of
integrability conditions for noncommutative difference equations, in analogy with the commutative case [14, 15].

Appendix

For completeness, we present in this appendix the derivation of system (38), given in the context of continuous
symmetric reductions discussed in Section 3.2; the proofs of two propositions stated in Section 4; and the derivation
of the superposition principle (60).
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Derivation of system (38)

We want to eliminate variables u1,1, u−1,0 and u0,−1, and derive a system for u0,0, u1,0 and u0,1, using equations
(1), (37) and their shifts. We start by shifting in m the first equation in (37) and using relation (23b).

∂u0,1

∂α
= −n (u1,1 − u−1,1)

−1
= −

n

α− β
(u1,0 − u0,1) (u1,0 − u−1,0)

−1
(u−1,0 − u0,1)

= −
n

α− β
(u1,0 − u0,1) (u1,0 − u−1,0)

−1
(u−1,0 − u1,0 + u1,0 − u0,1)

=
1

α− β
(u1,0 − u0,1)

(

n+
∂u0,0

∂α
(u1,0 − u0,1)

)

.

Working in a similar fashion, we shift in n the second equation in (37) to find that

∂u1,0

∂β
=

1

α− β
(u1,0 − u0,1)

(

m−
∂u0,0

∂β
(u1,0 − u0,1)

)

. (67)

Finally, we differentiate the first equation in (37) in β,

∂2u0,0

∂α∂β
= n (u1,0 − u−1,0)

−1

(

∂u1,0

∂β
−

∂u−1,0

∂β

)

(u1,0 − u−1,0)
−1

, (68)

and use (67) along with its backward shift,

∂u−1,0

∂β
=

1

α− β

(

m− (u−1,0 − u0,1)
∂u0,0

∂β

)

(u−1,0 − u0,1) ,

to replace the derivatives with respect to β. Setting ∆ := u1,0 − u0,1 and δ := u−1,0 − u0,1, we have that

∂u1,0

∂β
−

∂u−1,0

∂β
=

1

α− β

(

m (∆− δ)−∆
∂u0,0

∂β
∆+ δ

∂u0,0

∂β
δ

)

=
1

α− β

(

m (∆− δ)− (∆− δ)
∂u0,0

∂β
∆− δ

∂u0,0

∂β
(∆− δ)

)

=
1

α− β

(

m (∆− δ)− (∆− δ)
∂u0,0

∂β
∆− (u−1,0 − u1,0 +∆)

∂u0,0

∂β
(∆− δ)

)

.

Taking into account the above relation and that ∆− δ = u1,0 − u−1,0, equation (68) becomes

∂2u0,0

∂α∂β
=

1

α− β

(

∂u0,0

∂α
(u1,0 − u0,1)

∂u0,0

∂β
+

∂u0,0

∂β
(u1,0 − u0,1)

∂u0,0

∂α
+ n

∂u0,0

∂β
−m

∂u0,0

∂α

)

.

Proof of Proposition 8

Differentiating (45) with respect to t1, we get

F 0,0 − αu−1
1,0F 1,0u

−1
1,0 + αu−1

0,1F 0,1u
−1
0,1 − F 1,1 = 0,

where F 0,0 = u0,0f1,0 − f0,0u0,0 and f0,0 is given in (48). Replacing F and its shifts, we arrive at

(u0,0 + αu−1
1,0)f1,0 + f1,1(αu

−1
0,1 + u1,1) = f0,0u0,0 + αf2,0u

−1
1,0 + αu−1

0,1f0,1 + u1,1f2,1.

Since u0,0 + αu−1
1,0 = u−1

1,0f
−1
1,0 and αu−1

0,1 + u1,1 = f−1
1,1u

−1
0,1, the above relation becomes

u−1
1,0 + u

−1
0,1 = f0,0u0,0 + αf2,0u

−1
1,0 + αu−1

0,1f0,1 + u1,1f2,1. (69)
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From the forward and backward shifts of (45) we find that

u−1
2,0(u2,0u1,0 + α) = (α+ u2,1u1,1)u

−1
1,1 ⇒ f2,0u2,0 = u1,1f2,1, (70a)

and
u−1
0,0(u0,0u−1,0 + α) = (α+ u0,1u−1,1)u

−1
−1,1 ⇒ f0,0u0,0 = u−1,1f0,1, (70b)

respectively. In view of (70), equation (69) becomes

u−1
1,0 + u

−1
0,1 = u−1,1f0,1 + αf2,0u

−1
1,0 + αu−1

0,1f0,1 + f2,0u2,0

= f2,0(u2,0u1,0 + α)u−1
1,0 + u

−1
0,1(u0,1u−1,1 + α)f0,1

= u−1
1,0 + u

−1
0,1.

To show that the second equation in (49) is another symmetry of (45), first we rewrite the former as

du0,0

dx
= n

du0,0

dt1
+ f0,0u0,0,

dα

dx
= 1, (71)

and then differentiate the latter with respect to x. This leads to

n
dQ

dt1
+ f0,0u0,0 + u

−1
1,0 − αu−1

1,0

(

du1,0

dt1
+ f1,0u1,0

)

u−1
1,0 − u

−1
0,1 + αu−1

0,1f0,1 −
du1,1

dt1
− f1,1u1,1 = 0,

where Q denotes the left hand side of (45). After taking into account the KdV equation and that dQ
dt1

= 0, we end
up with

f0,0u0,0 + u
−1
1,0 − αf2,0u

−1
1,0 − u

−1
0,1 + αu−1

0,1f0,1 − u1,1f2,1 = 0.

Finally, we substitute f0,0 and f2,1 using relations (70) and the above relation becomes an identity.

Proof of Proposition 9

We rewrite (50) as v−1
0,0 = u1,0 + αu−1

0,0 and then we differentiate it in t1 using the first symmetry in (49) and its
shift.

−v−1
0,0

dv0,0
dt1

v−1
0,0 =

du1,0

dt1
− αu−1

0,0

du0,0

dt1
u−1
0,0

= u1,0f2,0 − f1,0u1,0 − αu−1
0,0

(

u0,0f1,0 − f0,0u0,0

)

u−1
0,0

= v1,0 − f1,0 (u1,0u0,0 + α)u−1
0,0 + αu−1

0,0f0,0

= v1,0 − u
−1
0,0 + αu−1

0,0f0,0

= v1,0 − u
−1
0,0

(

f−1
0,0 − α

)

f0,0

= v1,0 − u−1,0f0,0

= v1,0 − v−1,0,

where f0,0 = (u0,0u−1,0 + α)−1. This is modified Volterra lattice (12) up to the change of t1 to −t1.

Differentiating now v−1
0,0 = u1,0 + αu−1

0,0 in x and taking into account (71), we arrive at

−v−1
0,0

dv0,0
dx

v−1
0,0 = (n+ 1)

du1,0

dt1
+ f1,0u1,0 − αu−1

0,0

(

n
du0,0

dt1
+ f0,0u0,0

)

u−1
0,0 + u

−1
0,0

= n

(

du1,0

dt1
− αu−1

0,0

du0,0

dt1
u−1
0,0

)

+
du1,0

dt1
+ f1,0u1,0 − αu−1

0,0f0,0 + u
−1
0,0

= n(v1,0 − v−1,0) + u1,0f2,0 − f1,0u1,0 + f1,0u1,0 − αu−1
0,0f0,0 + u

−1
0,0

= n(v1,0 − v−1,0) + v1,0 − u
−1
0,0

(

α− f−1
0,0

)

f0,0

= n(v1,0 − v−1,0) + v1,0 + u−1,0f0,0

= n(v1,0 − v−1,0) + v1,0 + v−1,0

= (n+ 1)v1,0 − (n− 1)v−1,0,
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which is the non-autonomous modified Volterra lattice (13) up to the change of x to −x.

Derivation of superposition principle (60)

According to the Bianchi diagram in Figure 2, we begin with a solution u and apply the transformation (57) with
parameter γ1 to obtain

ũ = ṽ−1 (αṽ − γ1u) (u− ṽ)−1 . (72)

Next, using ũ as the seed and applying (57) with parameter γ2, as indicated in the Bianchi diagram, we derive

ˆ̃u = ˆ̃v−1
(

αˆ̃v − γ2ũ
)(

ũ− ˆ̃v
)

−1

, (73)

where ˆ̃v is defined by (59), and can also be expressed using identity (56) as

ˆ̃v = (ṽ − v̂)
−1

(γ1v̂ − γ2ṽ) ṽ
−1. (74)

To express ˆ̃u explicitly in terms of ṽ, v̂, and u, we substitute the inverse of (59) into the first term of (73), i.e.,

ˆ̃v−1 = (ṽ − v̂) (γ1v̂ − γ2ṽ)
−1
ṽ,

and use (74) to replace ˆ̃v in the remaining terms of (73). In particular, we compute

αˆ̃v − γ2ũ = (ṽ − v̂)
−1 {

α (γ1v̂ − γ2ṽ) ṽ
−1 (u− ṽ)− γ2 (ṽ − v̂) ṽ−1 (αṽ − γ1u)

}

(u− ṽ)
−1

= (ṽ − v̂)
−1 {

γ1(α− γ2)v̂ṽ
−1u− α(γ1 − γ2)v̂ + γ2(γ1 − α)u

}

(u− ṽ)
−1

= (ṽ − v̂)
−1
v̂
{

γ1(α− γ2)ṽ
−1 + γ2(γ1 − α)v̂−1 + α(γ2 − γ1)u

−1
}

u (u− ṽ)
−1

,

and

ũ− ˆ̃v = (ṽ − v̂)−1 {(ṽ − v̂) ṽ−1 (αṽ − γ1u)− (γ1v̂ − γ2ṽ) ṽ
−1 (u− ṽ)−

}

(u− ṽ)−1

= (ṽ − v̂)
−1

{(α − γ2)ṽ + (γ1 − α)v̂ + (γ2 − γ1)u} (u− ṽ)
−1

.

Substituting these expressions into (73), we recover the formula (60), thus completing the derivation.
If instead we follow the alternative path u→ û→ ˜̂u in the Bianchi diagram and apply the same procedure, we

again arrive at (60). This confirms that ˆ̃u = ˜̂u, and hence the commutativity of the Bianchi diagram.
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[1] V. E. Adler (2021) Painlevé type reductions for the non-Abelian Volterra lattices J. Phys. A: Math. Theor.

54 035204

[2] G.A. Alekseev (2005) Integrability of Generalized (Matrix) Ernst Equations in String Theory Theor. Math.

Phys. 144 1065–1074

[3] L. Brady, P. Xenitidis (2025) Systems of difference equations, symmetries and integrability conditions Theor.
Math. Phys. 224 1324–1339

[4] I. Bobrova (2024) Affine Weyl groups and non-Abelian discrete systems: an application to the -Painlevé
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