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Abstract

Neutrinoless double-beta (0νββ) decays provide an excellent probe for determining whether

neutrinos are Dirac or Majorana fermions. The short-range matrix elements associated with the

π− → π+ee process contribute at leading order in the 0νββ decay channel nn → ppee through

pion exchange between nucleons. However, current lattice calculations show notable discrepancies

in predicting these short-range contributions. To address this issue, we perform a lattice QCD

calculation of the π− → π+ee matrix elements using domain wall fermion ensembles at the phys-

ical pion mass generated by the RBC/UKQCD Collaboration. To mitigate contamination from

around-the-world effects, we develop a new method to reconstruct and subtract them directly from

lattice data. We then perform a nonperturbative renormalization using the RI/SMOM approach

in (γµ, γµ) and (/q, /q) schemes. Compared with previous studies, this work reduces the uncertain-

ties in the matrix elements and provides an independent cross-check that helps to reconcile the

discrepancies among previous lattice calculations.

I. INTRODUCTION

Neutrino oscillation experiments have confirmed that neutrinos have nonzero masses [1–5].

This phenomenon, which goes beyond the Standard Model, has made the nature of neutrino

masses a significant focus in particle physics research. A primary question is whether neutri-

nos are Dirac or Majorana fermions [6]. Neutrinoless double-beta (0νββ) decay experiments

[7–14] can distinguish between these two scenarios: observation of 0νββ decay would es-

tablish that neutrinos have a Majorana mass term and provide information on the neutrino

mass scale mββ. Moreover, 0νββ decay is a lepton-number-violating (LNV) process with

∆L = 2. Because lepton number violation can lead to baryon number violation [15, 16], it

can also help explain the matter-antimatter asymmetry of the universe.

According to the underlying LNV mechanism, 0νββ decay has long-range contributions

mediated by light Majorana neutrino exchange and short-range contributions arising from

other LNV mechanisms at higher energy scales. In the Standard Model Effective Field

Theory (SMEFT), the former stems from the dimension-five Weinberg operator [17], which

generates the Majorana mass term, while the latter arises from higher-dimensional effective
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operators [18–23]. These short-range contributions can also generate a Majorana mass term

for neutrinos [24]. The relative size of the short-range and long-range contributions depends

on specific BSM scenarios. For instance, if the energy scale Λ of new physics can be as

low as O(TeV) (e.g., from the mass mνR of right-handed sterile neutrinos), then the short-

range contributions are much less suppressed than for Λ ≫ 1 TeV, whereas the long-range

contribution is substantially suppressed by the neutrino mass scale mββ, making both con-

tributions potentially comparable in 0νββ decay. Thus, to probe LNV mechanisms in BSM

scenarios via 0νββ decay, it is crucial to accurately compute the matrix elements of these

short-range contributions.

In this work, we focus on the short-range contribution to π− → π+ee, which contributes

to the 0νββ decay channel nn → ppee through pion exchange between nucleons. This

contribution appears at leading order in the χEFT power counting [19]. In contrast, the

long-range contribution to π− → π+ee mediated by neutrino exchange enters at next-to-

next-to-leading order (NNLO) in χEFT [25]. (In addition to pion-exchange mechanisms,

four-nucleon contact interactions also appear at leading order through renormalization [26].)

For the short-range contribution, the heavy degrees of freedom can be integrated out to

obtain dimension-9 low-energy effective operators respecting the SU(3)c × U(1)em gauge

symmetries, whose hadronic parts are described by local four-quark operators [19, 22]:

O++
1+ =

(
q̄Lτ

+γµqL
) [
q̄Rτ

+γµqR
]

O++
2+ =

(
q̄Rτ

+qL
) [
q̄Rτ

+qL
]

+
(
q̄Lτ

+qR
) [
q̄Lτ

+qR
]

O++
3+ =

(
q̄Lτ

+γµqL
) [
q̄Lτ

+γµqL
]

+
(
q̄Rτ

+γµqR
) [
q̄Rτ

+γµqR
]

O′++
1+ =

(
q̄Lτ

+γµqL
] [
q̄Rτ

+γµqR
)

O′++
2+ =

(
q̄Rτ

+qL
] [
q̄Rτ

+qL
)

+
(
q̄Lτ

+qR
] [
q̄Lτ

+qR
)
,

(1)

where parentheses (· · · ) and brackets [· · · ] indicate color contractions for the quarks. τ+ =

( 0 1
0 0 ) is the isospin raising operator. Among these operators, O(′)++

1+ and O(′)++
2+ are related

to the LO contributions in χEFT, while O++
3+ appears at NNLO. We omit operators with

odd parity, which do not contribute to π− → π+ee, as well as vector operators that are

suppressed by the small electron mass.

To obtain reliable inputs for EFT calculations, the hadronic matrix elements relevant

to 0ν2β decays can be determined nonperturbatively using lattice QCD simulations. For

the process π− → π+ee, previous lattice QCD calculations have investigated both the long-
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range contribution [27–29] and the short-range contribution [30, 31]. However, the two

lattice studies in Refs. [30, 31] reported significantly different results for the short-range

contribution. For instance, the bag parameter BMS
π (µ) in the MS scheme with scale µ is

related to the operator O3 by BMS
π (µ) = 2⟨π+|O3(µ)|π−⟩MS/

(
8
3
m2

πf
2
π

)
, where fπ is normalized

according to the PDG convention with fπ ≈ 130 MeV [32]. At µ = 3 GeV, Ref. [30] quotes

BMS
π (µ) = 0.421(23), whereas converting the matrix element ⟨π+|O3(µ)|π−⟩MS reported in

Ref. [31] to the same definition gives BMS
π (µ) = 0.197(18). These two results disagree by

approximately a factor of two. Therefore, an independent lattice calculation is needed to

cross-check and clarify this discrepancy, ensuring consistent lattice QCD predictions for this

contribution.

Motivated by this, we perform a lattice calculation of the matrix elements ⟨π+|Oi(µ)|π−⟩MS

(i = {1, 2, 3, 1′, 2′}) in the MS scheme with µ = 3 GeV at the physical pion mass. We find

that the backward propagation of the light pion introduces substantial around-the-world

effects in the temporal direction, which spoil the plateau in the ratio of three-point to

two-point correlation functions. To resolve this, we propose a new subtraction method to

directly reconstruct and remove these effects from the lattice data, thereby restoring a stable

plateau. The lattice matrix elements are renormalized nonperturbatively using the Rome-

Southampton method with non-exceptional kinematics (RI/SMOM) [33]. The conversion to

MS is perturbative, with perturbative truncation effects estimated by applying two different

RI/SMOM schemes, denoted by (γµ, γµ) and (/q, /q) (see Section II B and Refs. [34, 35]). The

same renormalization coefficients were also used in the study of BSM kaon mixing [34].

The remainder of this paper is organized as follows: Section II provides a detailed de-

scription of the lattice methodology, including the subtraction of the around-the-world effect

and the RI/SMOM renormalization. In Section III, we present our numerical results and

compare them with the existing literature [30, 31]. Finally, we offer concluding remarks in

Section IV. Further details on the renormalization coefficients used in our calculation, as

well as additional discussions of the around-the-world effect, are given in the appendix.
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II. METHODOLOGY

A. Bare Matrix Elements and Subtraction of Around-the-World Effects

To compute the bare matrix elements (denoted as ⟨Oi⟩ = ⟨π+|Oi|π−⟩), we evaluate the

lattice two-point and three-point correlation functions:

C2(t) = ⟨ϕπ(t)ϕ†π(0)⟩,

Ci
3(t1, t2) = ⟨ϕ†π(t2)Oi(0)ϕ†π(−t1)⟩.

(2)

Here, the pion interpolating operator is defined as ϕπ = ūγ5d, and the time coordinates

t1, t2 ∈ [0, T ) denote the temporal locations of the interpolating fields. To illustrate the

necessity of addressing around-the-world effects in three-point functions, we first review two

commonly used methods for extracting matrix elements from the ratio of three-point to

two-point functions:

• Ratio Method 1 (denoted as R1): This method eliminates around-the-world effects

in the two-point function and is defined by

O
(R1)
i (t) =

Ci
3(t, t)

N2
π e
−2mπt

, (3)

where Nπ = |⟨0|ϕπ|π⟩|/(2mπ) and mπ are extracted from the two-point function

C2(t) = 2mπN
2
π(e−mπt + e−mπ(T−t)). An equivalent formulation, employed in Ref. [31],

is given by

O
(R1)
i (t) = 2mπ

Ci
3(t, t)

C2(2t) − 1
2
C2(T/2) emπ(2t−T/2)

, (4)

which directly cancels the around-the-world effects in C2(2t) by incorporating the data

at t = T/2.

• Ratio Method 2 (denoted as R2): This method is defined by

O
(R2)
i (t) = (2mπNπ)2

Ci
3(t, t)

C2(t)C2(T − t)
. (5)

It was employed in Ref. [30] to extract the π− → π+ee matrix elements.

Next, we analyze the around-the-world effects in these methods. Fig. 1 shows various

diagrams of pion backward propagation. In these diagrams, dashed lines represent the

temporal direction under the periodic boundary condition, with the forward time direction

oriented counter-clockwise. The solid lines denote π or ππ intermediate states.
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Figure 1. Illustration of around-the-world effects. Dashed lines indicate the periodic temporal

direction, oriented counter-clockwise, while solid lines represent intermediate π or ππ states. Di-

agram A is the contribution we aim to compute. In diagrams B and C, a single pion propagates

across the temporal boundary, thereby generating around-the-world effects. In diagram D, two

pions propagate across the temporal boundary, similarly producing around-the-world effects.

Taking into account the around-the-world effects from diagrams B, C, and D, the quantity

O
(R1)
i (t) can be expressed as

O
(R1)
i (t) = N−2π e2mπt

(
Ci

3,A(t, t) + Ci
3,B(t, t) + Ci

3,C(t, t) + Ci
3,D(t, t)

)
= NA,i + (NB,i + NC,i) e

−mπ(T−2t)−∆Eππ t + ND,i e
−(2mπ+∆Eππ) (T−2t).

(6)

In this equation and throughout the following discussion, we consider only the dominant

ground-state contribution and possible around-the-world effects from π and ππ states. All

higher excited-state contributions are neglected. NA,i = ⟨Oi⟩ = ⟨π|Oi|π⟩ represents the bare

matrix element to be computed. Time-reversal symmetry implies that the coefficients cor-

responding to diagrams B and C satisfy NB,i = NC,i =
⟨π|ϕ†π|ππ⟩
⟨π|ϕ†π|0⟩

⟨ππ|Oi|0⟩. The coefficient

associated with diagram D is given by ND,i =

∣∣⟨π|ϕ†π|ππ⟩∣∣2∣∣⟨π|ϕ†π|0⟩∣∣2 ⟨π|Oi|π⟩. We neglect normaliza-

tion differences between single-particle and two-particle states. ∆Eππ = Eππ − 2mπ denotes
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the difference between the ππ ground-state energy and 2mπ on the lattice. For the physical

pion mass ensembles used in this work, we find that ∆Eππ/(2mπ) ∼ 0.5%.

From this expression, it follows that as t → T/2, the around-the-world effects arising

from diagrams B, C, and D can introduce errors of O(100%). In Fig. 3, we demonstrate

that the around-the-world effects in the R1 method remain significant even for t≪ T/2, as

exemplified by the 32IH1 and 48I ensembles (see Table II for ensemble parameters). These

effects are sizable both in physical and unphysical pion mass ensembles. A more detailed

analysis of the contributions of the individual diagrams in Fig. 1 is presented in Appendix. B.

Similarly, we examine the around-the-world effects in O
(R2)
i (t) for the R2 method:

O
(R2)
i (t) =

NA,i + (NB,i + NC,i) e
−mπ(T−2t)−∆Eππ t + ND,i e

−(2mπ+∆Eππ)(T−2t)

1 + 2 e−mπ(T−2t) + e−2mπ(T−2t)
. (7)

Under the approximations ∆Eππ ≈ 0 and NA,i ≈ NB,i ≈ NC,i ≈ ND,i, the around-the-

world effects in the two-point and three-point functions cancel. However, the validity of this

approximation depends on the specific operator. In Appendix B, using actual lattice data,

we find that for the matrix elements with i ∈ {1, 2, 1′, 2′}, this approximation holds well.

By contrast, for i = 3, a more suitable approximation is NA,3 ≈ −NB,3 ≈ −NC,3 ≈ ND,3.

Consequently, as illustrated in Fig. 3, the R2 method achieves better suppression of around-

the-world effects for the matrix elements with i ∈ {1, 2, 1′, 2′}. In contrast, for the matrix

element with i = 3, the around-the-world effects are not suppressed. Therefore, the efficacy

of the R2 method in suppressing around-the-world effects depends on the specific matrix

element.

In this work, we propose a new method to subtract the around-the-world effects from

diagrams B and C. As illustrated in Fig. 2, when 0 ≪ t1 < (T − t2) ≪ T/2, diagram B

dominates over diagrams A, C, and D. Thus, for these time locations, we can directly extract

the information from diagram B. To do this, we choose (t1, t2) = (tππ, T − tππ− tπ), where tπ

and tππ are large enough to ensure that the pion and the two-pion ground state dominate,

respectively. When tπ + tππ ≪ T/2, the three-point function is dominated by diagram B:

Ci
3

(
tππ, T − tππ − tπ

)
≈ Ci

3,B

(
tππ, T − tππ − tπ

)
= N2

π NB,i e
−mπtπ−Eππ tππ . (8)

We can then define a quantity in which the around-the-world effects from diagrams B

and C are reconstructed from the data and then subtracted:

O
(sub)
i (t) = N−2π e2mπt

[
Ci

3(t, t) − 2Ci
3

(
tππ, T − tππ − tπ

)
e−mπ(T−tπ−2t) e−Eππ (t−tππ)

]
. (9)
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Figure 2. Extraction of the contribution from diagram B under the time setup (t1, t2) = (tππ, T −

tππ − tπ), for which the contribution from diagram B dominates those from diagrams A, C, and D.

The validity of neglecting the (A, C, D) diagrams in Ci
3

(
tππ, T−tππ−tπ

)
can be examined

using the 48I ensemble as an example. We take tπ = tππ = ∆T = 1.4 fm (corresponding to

a∆T = 12) and estimate the ratios of the (A, C, D) diagrams to the dominant B diagram

as
Ci

3,A(∆T, T − 2∆T )

Ci
3,B(∆T, T − 2∆T )

≈ e−mπ(T−∆T )

e−mπ∆T−Eππ∆T
≈ 2%,

Ci
3,C(∆T, T − 2∆T )

Ci
3,B(∆T, T − 2∆T )

≈ e−mπ∆T−Eππ(T−2∆T )

e−mπ∆T−Eππ∆T
≈ 0.006%,

Ci
3,D(∆T, T − 2∆T )

Ci
3,B(∆T, T − 2∆T )

≈ e−mπ(T−∆T )−Eππ∆T

e−mπ∆T−Eππ∆T
≈ 0.3%.

(10)

In the plateau region t ∈ [1.8, 3.0] fm used for the 48I ensemble (see Fig. 6), the around-

the-world effects remain ≲ 5%. Consequently, omitting this O(2%) contribution from the

(A,C,D) diagrams induces a systematic uncertainty ≲ 0.1%, well below the statistical

uncertainties of O(0.3–0.5%).

Moreover, since ∆Eππ/Eππ ∼ 0.5%, we can safely neglect this difference in correcting the

around-the-world effects. By setting Eππ = 2mπ, Eq. (9) reduces to:

O
(sub)
i (t) = N−2π e2mπt

[
Ci

3

(
t, t

)
− 2Ci

3

(
tππ, T − tππ − tπ

)
e−mπ(T−tπ−2tππ)

]
. (11)

Table I shows a comparison between setting ∆Eππ to zero (i.e., Eππ = 2mπ) and using

the exact value ∆Eππ = 1.445(55) MeV extracted from the two-point function Cππ(t) =

⟨ϕ†ππ,I=2(t)ϕππ,I=2(0)⟩ in ensemble 48I. The results indicate that the impact of treating ∆Eππ

as zero lies well below the level of statistical uncertainty and that this effect is therefore
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∆Eππ a4⟨O1⟩/10−3 a4⟨O2⟩/10−2 a4⟨O3⟩/10−5 a4⟨O′1⟩/10−2 a4⟨O′2⟩/10−3

∆Eππ = 0 −7.343(19) −1.2741(57) 4.248(15) −2.3481(59) 3.137(14)

exact ∆Eππ −7.344(19) −1.2744(57) 4.247(15) −2.3487(59) 3.137(14)

Table I. Comparison of using ∆Eππ = 0 (Eq. (11)) vs. exact ∆Eππ = 1.445(55)MeV (Eq. (9))

when subtracting around-the-world effects in ensemble 48I. The results indicate that treating ∆Eππ

as zero has an impact well below the current level of statistical uncertainty.

negligible. Eq. (11) provides a convenient method for subtracting around-the-world effects,

relying only on the three-point function and the pion mass as inputs.

In Fig. 3, we compare the subtraction method O
(sub)
i (t) (blue circles), with ratio methods

O
(R1)
i (t) (green squares) and O

(R2)
i (t) (red diamonds). The left and right panels present

results at unphysical and physical pion mass, respectively. From this comparison, we see

that subtracting the contributions of diagrams B and C greatly reduces the around-the-world

effects, leading to better plateaux. This subtraction method works well because the around-

the-world effects are dominated by diagrams B and C for t ≪ T/2, which is demonstrated

numerically in Appendix. B.

B. Renormalization

To obtain well-defined physical quantities in the continuum limit, the bare matrix ele-

ments computed on the lattice must be renormalized. In this work, we adopt the Rome-

Southampton method with non-exceptional kinematics (RI/SMOM) for renormalization [33].

To assess the systematic uncertainty associated with the perturbative truncation of the

matching from RI to MS, we apply two different RI/SMOM schemes: (γµ, γµ) and (/q, /q).

We use the NPR basis for the four-quark operators:

Q1 = (q̄ τ+γµ q) (q̄ τ+γµ q) + (q̄ τ+γ5γµ q) (q̄ τ+γ5γ
µ q),

Q2 = (q̄ τ+γµ q) (q̄ τ+γµ q) − (q̄ τ+γ5γµ q) (q̄ τ+γ5γ
µ q),

Q3 = (q̄ τ+q) (q̄ τ+q) − (q̄ τ+γ5 q) (q̄ τ+γ5 q),

Q4 = (q̄ τ+q) (q̄ τ+q) + (q̄ τ+γ5 q) (q̄ τ+γ5 q),

Q5 =
∑
µ<ν

(q̄ τ+γµγν q) (q̄ τ+γµγν q).

(12)
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Figure 3. Comparison between the effective bare matrix elements before subtraction of around-

the-world effects, O
(R1)
i (t) (green squares) and O

(R2)
i (t) (red diamonds), and after subtraction,

O
(sub)
i (tsep) (blue circles). The left and right panels present results at unphysical and physical pion

mass, respectively.

The relationship between this basis and the BSM basis in Eq. (1) is [31]:

Q1(x)

Q2(x)

Q3(x)

Q4(x)

Q5(x)


=



0 0 2 0 0

4 0 0 0 0

0 0 0 −2 0

0 2 0 0 0

0 2 0 0 4





O1(x)

O2(x)

O3(x)

O′1(x)

O′2(x)


(13)

In the RI/SMOM method, the renormalized matrix elements in the MS scheme are given

by

⟨Qn⟩MS(µ, a) = RMS←RI
ni (µ)ZRI

ij (µ, a) ⟨Qj⟩(a), (14)

where ⟨· · · ⟩ and ⟨· · · ⟩MS represent the bare and renormalized matrix elements, respectively.

The factor RMS←RI
ni (µ) is the one-loop matching coefficient from RI scheme to MS scheme,

for which we use results from Ref. [35]. The matrix ZRI
ij (µ, a) is the renormalization factor

10



in the RI/SMOM scheme, which is given by

Z
RI,(A,B)
ij (µ, a)

Z2
A(a)

× lim
mq→0

P
(A)
k

[
Πbare

j (a, p1, p2)
]

(
P

(B)
A

[
Πbare

A (a, p1, p2)
])2

∣∣∣∣∣∣∣
SMOM

=
F

(A)
ik(

F
(B)
A

)2 , (15)

where A and B are either γµ or /q, indicating the choice of RI/SMOM scheme. We compute

the renormalization factors for (A,B) = (γµ, γµ) and (/q, /q). The quantities Πbare
j (a, p1, p2)

represent the amputated vertex functions of the four-quark operators. The projectors P
(A/B)
k

are specific to each scheme, while F
(A)
ik and F

(B)
A are the tree-level projected values. For

further details on the computation of ZRI
ij (µ, a), including chiral extrapolation and step-

scaling studies, see Refs. [34, 35]. Numerical results for ZRI
ij (µ = 3 GeV, a) are presented in

Appendix A. Note that in Ref. [34], the renormalization coefficients ZRI
ij (µ, a) are quoted in

the SUSY basis, while we present them in the NPR basis.

III. NUMERICAL RESULTS

A. Lattice Setup

We use Nf = 2 + 1 domain wall fermion ensembles generated by the RBC/UKQCD col-

laboration [36, 37]. Table II summarizes the parameters of these ensembles. The ensembles

with physical pion masses (48I and 64I) have similar volumes but different lattice spacings,

thereby enabling a direct continuum extrapolation to physical results. For comparison with

the results in Ref. [31], we also compute the matrix elements in the same unphysical pion

mass ensembles. In computing the correlation functions, we use Coulomb-gauge-fixed wall

source propagators. We insert the operator Oi at every time slice and average over all the

slices, using time-translation invariance for Nconf → ∞ limit.

B. Numerical Results for Bare Matrix Elements

The results for Osub
i (t) are shown in Fig. 4 (for 24IH1 and 24IH2), Fig. 5 (for 32IH1 and

32IH2), and Fig. 6 (for 48I and 64I). The blue data points represent the values of Osub
i (t) at

different t, while the light blue bands indicate the bare matrix elements ⟨Oi⟩ extracted from

the plateau regions. In selecting the plateau region, we ensure that t is sufficiently large

to suppress excited-state contributions, yet remains well below the region where residual

11



Ensembles a−1[GeV] (L/a)3 × (T/a) aml mπ[MeV] Nconf

24IH1 1.7848(50) 243 × 64 0.005 341.0(8) 77

24IH2 1.7848(50) 243 × 64 0.01 431.1(7) 76

32IH1 2.3833(86) 323 × 64 0.004 301.9(1.1) 49

32IH2 2.3833(86) 323 × 64 0.006 359.9(1.1) 49

48I 1.7295(38) 483 × 96 0.00078 139.6(2) 110

64I 2.3586(70) 643 × 128 0.000678 139.2(3) 33

Table II. Parameters of the lattice ensembles used in this study. For each ensemble, we provide

the inverse lattice spacing a−1 (in GeV), the lattice volume (L/a)3 × (T/a), the light quark mass

aml, the pion mass mπ, and the number of configurations Nconf used in this work. The first four

ensembles correspond to unphysical pion masses [36], whereas the last two ensembles correspond

to physical pion masses [37].

a4⟨O1⟩/10−3 a4⟨O2⟩/10−3 a4⟨O3⟩/10−5 a4⟨O′1⟩/10−3 a4⟨O′2⟩/10−3

24IH1 −9.721(54) −16.50(16) 34.78(21) −30.44(17) 4.041(38)

24IH2 −11.644(59) −19.72(15) 68.70(34) −35.98(19) 4.808(36)

32IH1 −2.933(32) −4.624(66) 6.935(62) −9.24(10) 1.155(17)

32IH2 −3.286(28) −5.250(65) 11.408(82) −10.288(88) 1.309(16)

48I −7.343(19) −12.741(58) 4.247(15) −23.481(60) 3.137(15)

64I −2.2315(86) −3.561(26) 1.0615(42) −7.130(27) 0.8925(65)

Table III. Bare matrix elements fitted from the plateau regions shown in Fig. 4 (24IH1 and 24IH2),

Fig. 5 (32IH1 and 32IH2), and Fig. 6 (48I and 64I). The results are shown in lattice units.

around-the-world effects (originating from the D diagram in Fig. 1) become significant. A

suitable plateau region is found for all ensembles. In particular, for the physical pion mass

ensembles 48I and 64I, we adopt the plateau range t ∈ [1.8 fm, 3.0 fm]. Table III summarizes

the bare matrix elements obtained from these plateau regions.

The matrix element of O3 is directly related to the bag parameter associated with neutral

meson mixing in the Standard Model. Since lattice studies of the bag parameter are well

established, they provide a direct cross-check to our results. In Ref. [38], the same 24I and

32I ensembles were used to compute the bare bag parameter using various valence quark

12



Figure 4. Effective bare matrix elements in the 24IH1 and 24IH2 ensembles. The blue data points

represent the values of Osub
i (t) at different t, while the light blue bands indicate the bare matrix

elements ⟨Oi⟩ extracted from the plateau regions.

Figure 5. Same as Fig. 4, but with 32IH1 and 32IH2 ensembles.
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Figure 6. Same as Fig. 4, but with 48I and 64I ensembles.

masses for ml and ms. In particular, when both the light and heavy quark masses are set to

ml,sea, the resulting matrix elements can be directly compared with the bare matrix element

of O3. Specifically, Tables III and IV in Ref. [38] present the fitted bare matrix element

Blat(mx,my), extracted from the ratio

⟨P (t1)|OV V+AA(t)|P (t2)⟩
8
3
⟨P (t1)|A0(t)⟩⟨A0(t)|P (t2)⟩

, (16)

where P denotes a meson consisting of a light quark with mass mx and a heavy quark

with mass my, and A0 is the time component of the axial-vector current. The four-quark

operator associated with the bag parameter is defined as OV V+AA = (ψ̄yγµψx)(ψ̄yγµψx) +

(ψ̄yγµγ5ψx)(ψ̄yγµγ5ψx). When ψx = d and ψy = s (i.e., mx = ml and my = ms), the

expression above corresponds to the neutral K meson and its bare bag parameter Blat
K .

When ψx = d and ψy = u (i.e., mx = my = ml), the operator OV V+AA is related to the

operator defined in Eq. (1) and Eq. (13) by OV V+AA = Q1 = 2O3. Consequently, the results

in Ref. [38] can be directly compared with our calculation of the bare matrix elements:

Blat
π = Blat(mx,my)

∣∣∣
mx=my=ml

=
2a4⟨O3⟩

8
3
(afπ/ZA)2(amπ)2

, (17)

where fπ is normalized according to the PDG convention with fπ ≈ 130 MeV [32].
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Blat
π 24IH1 24IH2 32IH1 32IH2

This work 0.5072(30) 0.5433(26) 0.4691(42) 0.4963(36)

Ref. [38] 0.5075(31) 0.5439(18) 0.4721(26) 0.5004(22)

Ref. [31] 0.2544(21) 0.2705(13) 0.2299(27) 0.2445(18)

This work/Ref. [31] 1.994(20) 2.008(14) 2.041(30) 2.030(21)

Table IV. Computed values of the bare matrix element Blat
π in the 24IH1, 24IH2, 32IH1, and 32IH2

ensembles. The first row shows our results, the second row shows the values reported in Tables

III and IV of Ref. [38]. The third row presents the results computed from the matrix elements

⟨π+|O3|π−⟩ provided in Ref. [31], using their values of amπ, afπ, and ZA in Ref. [27]. The fourth

row shows the ratios of our results to those computed from Ref. [31].

In Table IV we present a comparison between our results of Blat
π and those reported in

Ref. [38]. In Ref. [38], around-the-world effects are removed by combining periodic and

antiperiodic temporal boundary conditions. Although our procedure differs, our results

agree with those of Ref. [38] within statistical uncertainties. We also list the values of Blat
π

converted from the bare matrix elements ⟨π+|O3|π−⟩ provided in Ref. [31], using their values

of amπ, afπ, and ZA in Ref. [27]. The corresponding ratios of our results to theirs are also

presented, which are approximately 2 within statistical errors. We also checked that all

five bare matrix elements have a similar discrepancy of a factor of 2, thus the most likely

source of this difference appears to be an overall normalization factor. Our normalization

convention agrees with that used in Ref. [38], which, in the case of ψy = s, yields a correct

BMS
K (µ) result that has been included in the FLAG review [39]. Thus, this provides support

for the correctness of the normalization used in our work.

C. Renormalization and Continuum Extrapolation

The renormalized matrix elements are obtained by multiplying the bare results by the

renormalization factors given in Eq. (14) and Appendix A. Tables V and VI summarize

the renormalized matrix elements computed using the (γµ, γµ) and (/q, /q) schemes, together

with the continuum extrapolation results from the physical pion mass ensembles. To avoid

uncertainties associated with the chiral extrapolation, we perform a direct continuum ex-
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Ensemble ⟨O1⟩MS /10−2 ⟨O2⟩MS /10−2 ⟨O3⟩MS /10−4 ⟨O′1⟩MS /10−2 ⟨O′2⟩MS /10−2

Unphysical mπ

24IH1 −3.051(18) −7.823(74) 16.51(10) −14.39(8) 2.796(27)

24IH2 −3.690(19) −9.349(69) 32.60(16) −17.00(9) 3.329(25)

32IH1 −3.189(35) −7.095(101) 11.69(11) −13.95(16) 2.396(35)

32IH2 −3.588(30) −8.055(101) 19.23(14) −15.54(14) 2.716(35)

Physical mπ

48I −1.993(6) −5.347(25) 1.765(7) −9.849(27) 1.935(9)

64I −2.310(10) −5.253(39) 1.715(7) −10.362(42) 1.778(14)

Cont. lim. −2.680(22) −5.143(89) 1.657(17) −10.960(95) 1.596(31)

Table V. Renormalized matrix elements ⟨Oi⟩MS(µ = 3 GeV) [GeV4] in the (γµ, γµ) scheme. The

upper panel shows results for ensembles with unphysical pion masses (24IH1, 24IH2, 32IH1, and

32IH2), whereas the lower panel presents results at the physical pion mass (48I and 64I). Addi-

tionally, the continuum-extrapolated results with only statistical errors are shown.

Ensemble ⟨O1⟩MS /10−2 ⟨O2⟩MS /10−2 ⟨O3⟩MS /10−4 ⟨O′1⟩MS /10−2 ⟨O′2⟩MS /10−2

Unphysical mπ

24IH1 −3.010(17) −8.294(83) 17.01(10) −15.33(9) 3.054(33)

24IH2 −3.642(19) −9.912(80) 33.59(17) −18.10(10) 3.636(32)

32IH1 −3.160(34) −7.467(106) 12.01(11) −14.78(16) 2.598(39)

32IH2 −3.556(30) −8.478(107) 19.76(15) −16.46(15) 2.945(38)

Physical mπ

48I −1.970(7) −5.665(27) 1.819(7) −10.483(32) 2.110(11)

64I −2.291(11) −5.511(41) 1.759(7) −10.941(45) 1.922(16)

Cont. lim. −2.666(25) −5.333(95) 1.690(17) −11.473(104) 1.704(36)

Table VI. Same as Table. V, but with (/q, /q) scheme.

trapolation using the physical pion mass ensembles 48I and 64I, as shown in Fig. 7.

Our final results are obtained in the (γµ, γµ) scheme and we treat the difference between

the (γµ, γµ) and (/q, /q) schemes as a systematic uncertainty arising from the perturbative

truncation of the matching from RI to MS (RMS←RI
ij (µ) in Eq. (14)). To estimate finite-

volume effects, we follow the approach described in Ref. [30], where tadpole integrals in

χEFT are replaced by discrete momentum sums in a finite volume. These effects are smaller

than the statistical uncertainties, so we incorporate them only in our error budget. The

16



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-2.50

-2.00

〈O
1
〉M

S
/1

0−
2

(γµ, γµ), (48I, 64I)

(γµ, γµ), cont. limit

(/q, /q), (48I, 64I)

(/q, /q), cont. limit

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-5.50

-5.25

〈O
2
〉M

S
/1

0−
2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1.70

1.80

〈O
3
〉M

S
/1

0−
4

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-11.00

-10.00

〈O
′ 1
〉M

S
/1

0−
2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

a2 [GeV−2]

1.75

2.00

〈O
′ 2
〉M

S
/1

0−
2

Figure 7. Renormalized matrix elements ⟨Oi⟩(µ = 3GeV) [GeV4] computed using both the (γµ, γµ)

and (/q, /q) schemes for the 48I and 64I ensembles, together with the corresponding continuum-

extrapolated results. The difference between results in (γµ, γµ) and (/q, /q) schemes can be viewed

as an estimate of perturbative truncation errors.

final results for the renormalized matrix elements ⟨Oi⟩MS and the bag parameter BMS
π (µ) =

2⟨O3⟩MS(µ)/(8
3
m2

πf
2
π) are presented in Table VII. The statistical correlation matrix for our

final results ⟨Oi⟩MS is presented in Table VIII.

For reference, we include the results from Refs. [30, 31] in Table VII; note that we also

present BMS
π (µ) converted from the matrix element ⟨π+|O3(µ)|π−⟩MS provided in Ref. [31].

Comparing with these previous works, the uncertainties are reduced in our results. This

improvement is due to the improved statistical precision and the avoidance of systematic un-

certainties introduced by the chiral extrapolation. Furthermore, we perform a more reliable

estimation of perturbative truncation effects by applying both (γµ, γµ) and (/q, /q) schemes.

The ratios of our results to those of Ref. [31] are consistent with 2 within errors, suggesting a
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Operators This work Ref. [30] Ref. [31] This work/Ref. [31]

⟨O1⟩MS /10−2 [GeV4] −2.680(22)stat(14)PT(20)L −1.89(13) −1.27(16) 2.11(27)

⟨O2⟩MS /10−2 [GeV4] −5.143(89)stat(190)PT(39)L −3.77(32) −2.45(22) 2.10(21)

⟨O3⟩MS /10−4 [GeV4] 1.657(17)stat(33)PT(0)L 1.86(10) 0.869(80) 1.91(18)

⟨O′1⟩MS /10−2 [GeV4] −10.96(10)stat(52)PT(8)L −7.81(54) −5.35(48) 2.05(21)

⟨O′2⟩MS /10−2 [GeV4] 1.596(31)stat(108)PT(12)L 1.23(11) 0.757(75) 2.11(26)

BMS
π 0.3769(24)stat(76)PT(1)L 0.421(23) 0.197(18) 1.91(18)

Table VII. Final results for the renormalized matrix elements ⟨Oi⟩MS(µ = 3GeV) and the bag

parameter BMS
π (µ = 3GeV). We include statistical, perturbative truncation and finite-volume un-

certainties in our error budget, denoted by the subscripts “stat”, “PT”, and “L”, respectively. The

perturbative truncation errors associated with the matching from RI to MS scheme are estimated

by taking the difference between the (γµ, γµ) and (/q, /q) schemes. Finite-volume effects are esti-

mated using the formula provided in Ref. [30]. For comparison, we list results from Refs. [30, 31].

We also show the ratios of our results to those from Refs. [31].

difference of an overall normalization factor. In comparison with Ref. [30], our results exhibit

discrepancies—approximately 1.8σ for ⟨O3⟩MS, and 3σ ∼ 6σ for the other matrix elements.

Since ⟨O3⟩MS does not mix with other operators under renormalization, we speculate that

these discrepancies may be related to the nonperturbative renormalization procedure. Ad-

ditionally, lattice artifacts may also play a role in these differences, as these matrix elements

have mass dimension four and are therefore sensitive to discretization effects.

IV. CONCLUSION

Short-range matrix elements associated with the π− → π+ee process arise at leading

order in the 0νββ decay channel nn→ ppee. However, previous lattice calculations [30, 31]

exhibit significant discrepancies in their numerical results, prompting the need for an inde-

pendent lattice calculation as a cross-check. We employed domain wall fermion ensembles

generated by the RBC/UKQCD Collaboration at the physical pion mass to calculate both

the bare and renormalized matrix elements. To address systematic uncertainties introduced

by around-the-world effects, we proposed a subtraction method that reconstructs and re-
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⟨O1⟩MS ⟨O2⟩MS ⟨O3⟩MS ⟨O′1⟩MS ⟨O′2⟩MS

⟨O1⟩MS 1.0 0.609 -0.517 0.907 -0.595

⟨O2⟩MS 0.609 1.0 -0.610 0.590 -0.987

⟨O3⟩MS -0.517 -0.610 1.0 -0.498 0.602

⟨O′1⟩MS 0.907 0.590 -0.498 1.0 -0.575

⟨O′2⟩MS -0.595 -0.987 0.602 -0.575 1.0

Table VIII. The statistical correlation matrix for the renormalized matrix elements ⟨Oi⟩MS(µ =

3GeV) in the (γµ, γµ) scheme, estimated using bootstrap samples. It reveals strong statistical

correlations within each chirally mixed operator pair: (O1, O′1) and (O2, O′2).

moves these effects directly from the lattice data, thereby achieving stable plateaus in the

ratio of three-point to two-point correlation functions. Next, we perform a nonperturba-

tive renormalization of the four-quark operators using the RI/SMOM method in (γµ, γµ)

and (/q, /q) schemes. We estimate the systematic error from perturbative truncation of the

matching from RI to MS scheme by examining the difference between these two renormaliza-

tion schemes. Finally, we perform a continuum extrapolation using two physical-pion-mass

ensembles with similar volume but different lattice spacings, obtaining the short-range ma-

trix elements.

Compared with previous work, our calculation is the first to determine these matrix ele-

ments directly at physical quark masses with a continuum extrapolation. The uncertainties

in our matrix element calculations are significantly reduced. For all five matrix elements,

we find that the ratios of our bare matrix elements to those in Ref. [31] are statistically con-

sistent with 2, suggesting a difference of an overall normalization factor but otherwise good

agreement on individual data points if this postulated factor of 2 is taken into account. The

correctness of the normalization used in our work is supported by agreement with Ref. [38],

which yields a reliable determination of BMS
K (µ) that is included in the FLAG review [39]

and consistent with the world average. Our results still differ from those of Ref. [30] by

2σ–6σ, depending on the matrix element.

Future improvements in precision may be achieved through finer lattice spacings, in-

creased statistics, and higher-order perturbative matching of nonperturbative lattice matrix

elements to the MS scheme, such as the one recently performed for the case of the kaon
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bag parameters [40]. Additionally, in χEFT, four-nucleon contact interactions can also

contribute at leading order through the renormalization procedure [26]. Hence, extending

lattice QCD methods to compute analogous short-range matrix elements involving nucle-

ons is an important future research direction. Such progress would reduce nonperturbative

QCD uncertainties in theoretical calculations and, through 0νββ experiments, shed light on

the nature of neutrino masses, the violation of lepton number, and the matter–antimatter

asymmetry of the universe.
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Appendix A: Renormalization Coefficients

In Tables IX and X, we present the renormalization coefficients ZRI
ij (µ, a)/Z2

A in the

NPR basis, evaluated at µ = 3.0 GeV, for both the
(
γµ, γµ

)
and

(
/q, /q

)
schemes. Chirally

forbidden elements are omitted. The four columns correspond to different lattice spacings

for the ensembles 48I, 24IH, 64I, and 32IH.

These renormalization coefficients were originally computed in Ref. [34]. Unlike Ref. [34],

which adopts the SUSY basis, here the renormalization coefficients are presented in the

NPR basis. As a result, ZRI
11 (µ, a)/Z2

A is identical to that in Ref. [34], whereas the remaining

coefficients are related to those in Ref. [34] by a basis rotation.
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a−1[GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86)

Z11/Z
2
A 0.91427(17) 0.91641(55) 0.94123(17) 0.94044(67)

Z22/Z
2
A 1.049689(94) 1.04914(48) 1.04603(12) 1.04624(22)

Z23/Z
2
A 0.27730(16) 0.27739(41) 0.27193(45) 0.27407(18)

Z32/Z
2
A 0.038071(83) 0.036670(72) 0.025393(59) 0.025256(37)

Z33/Z
2
A 0.88137(73) 0.87176(34) 0.80313(98) 0.79947(85)

Z44/Z
2
A 0.92584(70) 0.916862(98) 0.85458(82) 0.85113(68)

Z45/Z
2
A -0.037741(94) -0.036173(87) -0.022771(84) -0.022597(76)

Z54/Z
2
A -0.25049(21) -0.25088(33) -0.24830(46) -0.25083(23)

Z55/Z
2
A 1.03765(51) 1.0424(15) 1.08570(83) 1.0873(18)

Table IX. Renormalization coefficients ZRI
ij (µ = 3.0GeV, a)/Z2

A in the
(
γµ, γµ

)
scheme.

a−1[GeV] 1.7295(38) 1.7848(50) 2.3586(70) 2.3833(86)

Z11/Z
2
A 0.95466(16) 0.956518(75) 0.97828(27) 0.97895(22)

Z22/Z
2
A 1.04998(23) 1.05017(34) 1.04746(20) 1.04801(30)

Z23/Z
2
A 0.28138(75) 0.28278(34) 0.27553(95) 0.27822(14)

Z32/Z
2
A 0.06283(35) 0.061656(51) 0.04733(32) 0.047862(33)

Z33/Z
2
A 1.0001(16) 0.99033(46) 0.9041(13) 0.90350(88)

Z44/Z
2
A 1.0377(16) 1.0286(33) 0.9485(13) 0.94765(72)

Z45/Z
2
A -0.04224(29) -0.040792(46) -0.02524(18) -0.02522(10)

Z54/Z
2
A -0.28078(71) -0.280612(90) -0.2760(11) -0.27941(22)

Z55/Z
2
A 1.1632(11) 1.1668(23) 1.2060(16) 1.2108(33)

Table X. Renormalization coefficients ZRI
ij (µ = 3.0GeV, a)/Z2

A in the
(
/q, /q

)
scheme.

Appendix B: Contributions of Individual Diagrams in Around-the-world Effects

To further investigate the contributions of diagrams A, B, C, and D in Fig. 1 and to

explain why the R2 method effectively suppresses around-the-world effects for all matrix

elements except O3, we determine the coefficients NA,i, NB,i, NC,i, and ND,i in Eq. (6) by

directly fitting the lattice data.
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To extract the around-the-world effects (i.e., contributions from diagrams B, C, and D in

Fig. 1) from the data, we perform a direct fit to the three-point function Ci
3(t1, t2). We define

∆T = max{tπ, tππ} as the minimal time separation required for the pion and ππ ground

states to dominate. If the separations between ϕπ(t1), ϕπ(t2), and Oi are all greater than

∆T , the three-point function can be well described as a sum of contributions from diagrams

A, B, C, and D.

For clarity, we define the temporal separation between two operators A and B as d(A,B),

which is taken as the shortest time interval (under periodic boundary conditions) satisfying

d(A,B) ≤ T/2. We introduce the minimal separation among all three operators as:

dmin ≡ min{d(ϕπ,1, ϕπ,2), d(ϕπ,1,Oi), d(ϕπ,2,Oi)}. (B1)

Under the condition dmin ≥ ∆T , the three-point function Ci
3(t1, t2) can be approximated as

Ci
3(t1, t2)

∣∣∣
dmin≥∆T

= N2
πNA,ie

−mπ(t1+t2) +N2
πNB/C,ie

−mπ(T−t1−t2)(e−Eππt1 + e−Eππt2)

+N2
πND,ie

−mπ(t1+t2)−Eππ(T−t1−t2).

(B2)

We select all data points satisfying dmin ≥ ∆T to fit the four parameters NA,i, NB/C,i,

ND,i, and Eππ. Using the 48I ensemble as an example, the final fit results are summarized

in Table XI. We choose a sufficiently large separation ∆T = 1.8 fm to suppress excited-state

contamination. In Fig. 8, we check the consistency between the lattice data and the fit

results of these diagrams. The contribution from A + B + C + D is very consistent with

lattice data. For t ≪ T/2, the around-the-world effects are dominated by diagrams B and

C. Thus, to get a plateau for t≪ T/2 in the subtraction method, we only need to subtract

the contributions from B and C.

From the fit results, we observe that the assumptions NA,i ≈ ND,i and aEππ ≈ 2amπ =

0.16135(23) hold well. For all matrix elements except O3, we find NB/C,i ≈ NA,i, whereas

for O3, the relation NB/C,i ≈ −NA,i is satisfied. This explains why the R2 method effectively

suppresses the around-the-world effects for all matrix elements except O3. The coefficient

NA,i is the desired matrix element ⟨π|Oi|π⟩. The direct fit results for NA,i agree remark-

ably well with those obtained from the subtraction method using Eq. (11) (see Table III),

validating the subtraction approach. Since the subtraction method is much simpler, while
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Figure 8. Comparison between the effective bare matrix elements before subtraction of around-

the-world effects, O
(R1)
i (t) (green points) and contributions from diagrams A,B,C, and D in Fig. 1.

O1 × 103 O2 × 103 O3 × 105 O′1 × 103 O′2 × 103

a4NA,i −7.346(19) −12.743(58) 4.248(15) −23.493(59) 3.137(15)

a4NB/C,i −6.865(18) −12.008(54) −4.075(15) −22.097(58) 2.961(14)

a4ND,i −7.330(19) −12.710(58) 4.259(15) −23.441(59) 3.129(15)

aEππ 0.16141(23) 0.16143(23) 0.16130(23) 0.16141(23) 0.16143(23)

Table XI. Direct fit results for the matrix element coefficients corresponding to diagrams A, B,

C, and D in Fig. 1 on 48I, under the condition dmin ≥ ∆T . We take a∆T = 16, corresponding to

∆T = 1.8 fm. The fit assumes NB = NC .
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yielding results consistent with the fit, we adopt it in the main text.
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