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Abstract—The work presents a novel approach to assess the
scientific creative ability of subjects by analyzing their brain con-
nectivity patterns through functional Near-Infrared Spectroscopy
(fNIRS) during participation in an analogical reasoning test. The
proposed method involves three key stages: i) construction of
brain connectivity networks using Wavelet Transform Coher-
ence (WTC), ii) abstraction and analysis of three node-based
network features, and iii) classification of abstracted features
into five degrees of creative potential by a novel Enhanced
Graph Convolution Induced Type-2 Fuzzy Classifier (EGCIFC).
The novelty of the classifier lies in: i) design of an enhanced
graph convolution operation that encapsulates local and global
structural information from the input graph, ii) use of the
Smish activation function to improve performance, iii) inclusion
of a one-dimensional spatial convolution layer for preserving
relevant information within convolved embeddings, iv) design
of a novel mapping function to mitigate uncertainty among
the spatial convolved vectors in the type-2 fuzzy layer, and v)
application of Takagi-Sugeno-Kang (TSK)-based fuzzy reasoning
to reduce computational cost. Evaluation on three datasets, each
comprising over 45 individuals from different scientific back-
grounds, shows that EGCIFC improves classification accuracy
by 2.25% over the nearest competitor and by 22.72% over the
lowest-performing baseline. The proposed method also reduces
computational cost by 7.46% and 54.7% compared to the nearest
and worst competitors, respectively. Additionally, EGCIFC ex-
hibits a standard deviation of ±0.72% in classification accuracy,
reflecting its robustness. Hence, the proposed approach may
prove effective for recruiting individuals with varying degrees
of scientific creativity across different research sectors.

Index Terms—fNIRS, creativity, brain network, Capsule GNN,
deep fuzzy classifier

I. INTRODUCTION

Scientific creativity [1], [2] refers to the ability to transcend
conventional thinking and generate novel ideas that foster
progress in science, technology, industry, and/or society. It acts
as a driving force behind scientific breakthroughs that help
expand the frontiers of human insight. There exists several
cognitive factors that are responsible for shaping creative
outcomes in scientific realm which include spatial reasoning
[3], inductive learning [4], convergent thinking [5] and many
others [6], [7]. In addition to the aforementioned cognitive
factors, the ability to draw comparisons between two or more
distinct concepts based on their structural and/or functional
similarities, plays a crucial role in facilitating scientific cre-
ativity [8], [2], [9]. This ability, referred to as analogical
reasoning, has shown to be responsible for several major
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discoveries and innovation in science. For instance, Niels Bohr
drew an analogy between the structure of an atom and the
solar system that laid the foundation for quantum mechanics.
Similarly in biology, Louis Pasteur explained the working
principle of antibodies through an analogy of a lock and
key mechanism that helped in the development of vaccines.
Likewise, René Descartes revolutionized mathematics by in-
troducing the concept of coordinates by drawing similarities
between geometry and algebra. Thus, analogical reasoning,
as illustrated by the above examples, strongly influences the
genesis of novel outcomes in scientific domain. The present
work aims to assess the scientific creative skill of individuals
from their analogical reasoning ability using functional Near-
Infrared Spectroscopy (fNIRS).

The current research employs the Raven’s Advanced Pro-
gressive Matrices (RAPM) [10] test to examine the scientific
creative ability of individuals. In this test, individuals are re-
quired to identify patterns, relationships, and logical structures
among abstract visual elements to determine a missing piece
of a figure. This process thus mirrors analogical reasoning,
where recognizing similarities and correspondences between
different elements is essential for finding solutions. Although
RAPM test is widely used to examine the fluid intelligence
of subjects [11], which encompasses various logical reasoning
abilities [12] such as deductive reasoning, analogical reasoning
and the like, it primarily captures the analogical reasoning
component more prominently [13], [14], [15], [16]. Moreover,
research studies in [17], [18], [19] confirm the utilization of
the aforesaid test for assessing scientific creative potential.
Therefore, the use of the RAPM test constitutes an appropriate
choice for the present study.

Existing literature [20], [21] on the RAPM test focuses on
examining the cognitive strategies required to solve problems
associated with such tests. In a different vein, Friedman et al.
[22] utilized the Electroencephalography (EEG) technique for
evaluating the cognitive load experienced by subjects during
the Raven’s test. Alternatively, a recent study by Xu et al. [23]
employed an EEG based classification algorithm to distinguish
between confused and non-confused mental states of subjects
while solving the Raven’s test. Other research [24], [25], [26]
on the aforesaid test focuses on exploring the active brain
regions involved during the problem solving process utilizing
functional Magnetic Resonance Imaging (fMRI). In a similar
context, Amin et al. [27] and Jawed et al. [28] independently
employed EEG signal analysis to examine the active brain
regions and the dominant frequency bands involved in the
present cognitive task. On the contrary, Ociepka et al. [29]
focused solely on examining the influence of different fre-
quency bands of EEG signals on the Raven’s problem solving
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task. Additionally, Luo et al. [30] and Amin et al. [31] in-
dependently performed EEG based experiments to investigate
the participation of different Event related Potentials (ERPs)
while solving the Raven’s test.

Unfortunately, studies exploring the relationship between a
subject’s creative potential and their brain connectivity during
the RAPM task remain largely unexplored. This study aims to
fill this void by examining the fNIRS based brain connectivity
associated with analogical reasoning in RAPM tasks to assess
the subject’s creative potential. In a very recent study, Ghosh
et al. [32] examined the creative ability of subjects during the
Raven’s test by utilizing EEG signal analysis. Though EEG is
a widely used brain signal acquisition technique due to its high
temporal resolution [33], [34], it is less effective at localizing
neural activity due to volume conduction [35], which in turn
leads to a reduction in spatial accuracy of recorded signals.
On the contrary, fNIRS captures the changes in cerebral blood
flow by providing moderately high spatial resolution, thereby
enabling more reliable acquisition of brain activation patterns.
Furthermore, advanced brain imaging techniques offering high
spatial resolution like fMRI, are often impractical for experi-
mental use due to its high price and limited accessibility. Thus,
fNIRS provides a cost effective and computationally efficient
alternative, making it a suitable modality for the present study.

The objective of the current research is to evaluate indi-
vidual differences in creative ability through the RAPM task.
The above evaluation is carried out in three phases. In the
first phase, the fNIRS signals recorded from the scalp of
participants engaged in the RAPM task are pre-processed
and converted into a brain connectivity network using the
Wavelet Transform Coherence (WTC) [36] method. In the
second phase, three node based features are extracted from
the acquired brain networks which include node strength (NS),
node efficiency (NE) and node betweenness (NB) [37]. The
rationale behind the feature extraction process is to examine
the Brodmann Areas (BAs) of the brain that serve as primary
controllers of the entire network during the processing of
the RAPM task. In the third phase, the extracted features
pertaining to each node is utilized to classify the creative
ability of participants into five distinct levels: Extremely Cre-
ative Thinker (ECT), Superbly Creative Thinker (SCT), Fairly
Creative Thinker (FCT), Mildly Creative Thinker (MCT) and
Conventional Thinker (CVT).

The prime contribution of the present work involves the
development of a classifier model that is specifically designed
to handle the above classification problem. As the present
work deals with brain connectivity networks, the classifier
model is constructed on the framework of a Graph Convolution
Network (GCN) [38], [39], a popular deep learning approach
for classifying graph based data [40], [41]. A classical GCN
model consists of two main modules. The first module ab-
stracts the features form the input graph via graph convolution
and pooling while the second module classifies the abstracted
features using fully connected layers [39]. However, fNIRS
signals collected from a given source are susceptible to fluctua-
tions both within and across sessions due to parallel thoughts,
extrinsic and/or intrinsic artifacts [42], [43] that introduces
uncertainty within the abstracted features [44], [45], [46]. To

combat the aforesaid issue, the present classifier architecture
incorporates an Interval Type-2 Fuzzy (IT2F) layer within the
GCN model.

In this paper, a novel classifier model, referred to as En-
hanced Graph Convolution Induced Type-2 Fuzzy Classifier
(EGCIFC) has been designed to classify the fNIRS signals of
individuals into five distinct levels of creative potential (i.e.,
ECT, SCT, FCT, MCT and CVT). The original contributions
of the EGCIFC model includes:

1) Formulation of an enhanced graph convolution opera-
tion, capable of capturing both local and global struc-
tural information from the input graph that enables the
classifier to learn diverse patterns from the same graph.

2) Utilization of the Smish [47] activation function after the
enhanced graph convolution operation, due its capability
to generate non-zero responses for small negative inputs,
in order to improve classification accuracy.

3) Introduction of a one-dimensional (1D) spatial convolu-
tion layer after the enhanced graph convolution, instead
of pooling, to retain the most significant information
within the convolved embeddings.

4) Design of a novel mapping function in the IT2F layer
that captures the most promising region in the Footprint
of Uncertainty (FOU) [48] in order to minimize the
uncertainty among the spatially convolved vectors.

5) Employment of Takagi-Sugeno-Kang (TSK) [49]-based
fuzzy reasoning for handling the present classification
task in order to reduce computational cost by elimi-
nating the additional need for defuzzification and type-
reduction.

Performance analysis undertaken against the state-of-the-
art (SOTA) algorithms demonstrates the proposed model’s
effectiveness in classifying the different degrees of creative
potential. Comprehensive comparative studies, including abla-
tion based analysis, further highlight the proficiency of the
proposed approach. Additionally, statistical validation also
confirms the model’s efficacy in performing the classification
task.

The rest of the paper is arranged as follows. Section II
discusses the steps required to perform the present classifi-
cation task. Section III delves into the formulation of the pro-
posed classifier model. Section IV outlines the experimental
paradigm and discusses the results of the cognitive experiment.
Section V portrays the comparative studies conducted to
demonstrate the efficacy of the proposed model, while Section
VI provides the conclusions drawn from the paper.

II. PROBLEM FORMULATION AND APPROACH

This section presents a brief summary of the cognitive ex-
periment undertaken for the present research. Fig. 1 represents
the block diagram of the proposed experimental paradigm. The
experiment begins by acquiring the brain signal of participants
using the fNIRS device who have volunteered for the RAPM
task. The RAPM task utilized for the current experiment
consists of 4 sets of problems with variation in difficulty
levels [11], [50]: 1) easy, 2) medium, 3) hard and 4) extremely
hard. An exemplar problem used for the present experiment
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Fig. 1. Block diagram of the proposed experimental framework illustrating the main modules utilized for classifying different degrees of creative potential
of subjects.

for medium difficulty level is portrayed in Fig. 2. Each
difficulty level consists of 5 problems. A single session of
the experiment pertaining to each difficulty level consists of 5
trials. The structure of the visual stimuli used for the current
cognitive activity for a single session is depicted by Fig. 3. The
stimulus begins with a fixation cross of 3 seconds followed by
a time-frame of 15 seconds where the RAPM problem needs
to be solved mentally by the participant. After this, a time-
frame of 10 seconds is provided where the participant verbally
informs the experimenter about the answer to the RAPM task.
The aforesaid process is repeated for four more number of
problems. Thus, for 10 experimental days and 5 sessions in a
day, 5 problems/trial × 5 trials/session × 5 sessions/day × 10
days produces 1250 experimental instances corresponding to
each participant.

After the brain signal acquisition phase is over, the signals
are normalized, pre-processed and converted into a brain con-
nectivity network using the WTC technique. The nodes in the
aforesaid network represent the BAs corresponding to a given
montage while the edges represent the connections between
the nodes. Subsequently, three node based features (strength,
efficiency and betweenness) are abstracted from the formulated
brain networks and analyzed to identify the BAs acting as
prime controllers for the present cognitive task. The abstracted
nodal features from each experimental instance are utilized by
the proposed EGCIFC model to categorize subjects into one of
five grades of creative ability: 0) Non-Creative/Conventional
Thinker (CVT), 1) Mildly Creative Thinker (MCT), 2) Fairly
Creative Thinker (FCT), 3) Superbly Creative Thinker (SCT),
and 4) Extremely Creative Thinker (ECT).

As mentioned above, the RAPM test includes 4 sets of

problems, where each set comprises 5 problems. The problem
sets have correspondence to grades 1 to 4. The test begins
with grade 1 problem-set. A subject who is able to correctly
answer at least 4 out of 5 questions (i.e., ≥ 80%) in the grade-
1 problem set qualifies to attempt the grade-2 problem set.
In general, a person appearing at grade j test-problems, will
be qualified to appear at grade j + 1 test-problems with the
condition that he/she has to correctly answer at least 4 out of
5 questions of grade j problem-set, where j varies in [1, 3].
However, if a subject fails to answer at least 4 questions of
a selected grade, he/she is considered to belong to the next
lower grade. For example, a subject eligible to appear for
grade-4 test, unfortunately answers ≤ 3 questions of grade-
4 correctly, then he/she is declared to have a grade-3, i.e.,
Superbly Creative Thinker. It is obvious that a subject failing
to win grade-1 test is declared to lie in grade-0, i.e., CVT.

It is important to note that the threshold for passing the
screening test in a given category is subjective and so, in
general, can take any value in [0, 100]%. A higher threshold
obviously provides greater precision in determining a subject’s
highest creativity grade. In this study, the 80% threshold
selected requires a subject to correctly answer at least 4 out of
5 questions. As the present setup does not allow any threshold
between 80% and 100%, and the choice of 100% threshold is
too restrictive, leaving the 80% threshold as the option for the
current experimental setup.

Unfortunately, there are no standard scientific creativity
validity indices, as appears in different problem-domains (e.g.,
cluster validity indices to test the quality of a new clustering
algorithm). However, as discussed in Section I analogical rea-
soning acts as one of the fundamental modalities for assessing
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Fig. 2. An exemplar RAPM problem of medium difficulty level

Fig. 3. Structure of visual stimuli used for the RAPM task for a given
difficulty level pertaining to a single session

scientific creative ability. The rationale behind the proposed
labels for scientific creativity is grounded in the assumption
that a subject’s ability to solve difficult analogical reasoning
problems reflects a higher level of creative potential [51], [52],
[53], [54]. The RAPM-based analogical reasoning task is sup-
ported by existing literature [17], [18], [19] as a valid approach
for assessing scientific creativity. Therefore, assigning the label
ECT to a subject, capable of correctly solving extremely hard
problems, and assigning relatively lower grades SCT, FCT,
and MCT for correctly answering problems of lower difficulty
levels hence makes sense. Thus, the proposed labeling scheme
has a logical basis in assigning a grade of creativity to distinct
subjects based on their performance in RAPM test.

The main steps of the current experiment, as discussed
above, are summarized in Algorithm A.I, provided in the
Appendix [55], under Section A.I. The details of the afore-
mentioned phases are discussed below.

A. EVALUATION OF NORMALIZED CEREBRAL OXYGEN
EXCHANGE

The first step in analyzing the acquired raw fNIRS signals
is to assess the net oxygen consumption in the brain’s cortical
region, quantified by the metric known as cerebral oxygen
exchange (COE) [56], [57]. The steps required for computing
the aforementioned metric are elaborated below.

The fNIRS data collected from the scalp of participants
captures two key blood concentration measurements: oxy-
hemoglobin (O2Hb) and deoxy-hemoglobin (HHb), both ex-
pressed in mmol/L. Let ∆O2Hb(t) and ∆HHb(t) represent
the changes in concentrations of O2Hb and HHb respectively,
corresponding to a channel of the given montage at time t dur-
ing an experimental instance. Since, ∆O2Hb(t) > ∆HHb(t),
∀t [44], [45], [46] COE at any time t is evaluated by (1).

C0 = ∆O2Hb(t)−∆HHb(t) (1)

The normalized value of COE within the range [0,1] is
computed by (2).

Ĉ0 =
∆O2Hb(t)−∆HHb(t)

max(∆O2Hb(t))−min(∆HHb(t))
(2)

where,max(∆O2Hb(t)) indicates the maximum value of
∆O2Hb(t) at time t while min(∆HHb(t)) signifies the
minimum value of ∆HHb(t) at time t.

B. ELIMINATION OF DIFFERENT ARTIFACTS FROM RAW
FNIRS SIGNALS

After normalizing the net oxygen consumption induced
fNIRS signals, the next step involves eliminating various
artifacts that may have been introduced into the raw signals
during the acquisition stage. The artifacts affecting the fNIRS
signals can be broadly classified into two categories [42],
[43]: i) extrinsic artifacts and ii) intrinsic artifacts. Extrin-
sic artifacts originate from external factors unrelated to the
subject’s physiological state. Extrinsic artifacts can be of two
types: a) Technical: these involve instrumental noise, which
may result from variations in the equipment’s sensitivity,
calibration issues, or inconsistencies in optode placement on
the scalp, leading to differences in signal detection across
trials or participants, and b) Environmental: these refer to
external conditions that can impact fNIRS signal readings,
such as ambient light interference, temperature fluctuations,
and other similar factors. Intrinsic artifacts in fNIRS signals
are primarily physiological noises and fluctuations that disrupt
the accurate measurement of cerebral hemodynamics. These
include cardiac pulsation, respiration, blood pressure varia-
tions, Mayer waves (low-frequency blood pressure oscillations
linked to vasomotor activity that impact blood oxygenation),
and motion artifacts (disturbances in fNIRS signals caused by
physical movement).

A comprehensive signal processing approach is imple-
mented to eliminate the aforementioned artifacts from the
fNIRS signal. Initially, the normalized values of COE for
all channels are filtered using a Chebyshev band-pass filter
of order 6, with a passband range set at 0.01 to 3.5 Hz.
The selection of the Chebyshev band-pass filter is made
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Fig. 4. Overview of the architectural framework of the proposed Enhanced Graph Convolution Induced Fuzzy Classifier (EGCIFC) model

due to its ability to achieve a sharper roll-off, enhancing
the separation of frequency components while maintaining
a manageable level of ripple within the pass-band [58]. A
detailed analysis justifying the optimal choice of the above
filter is provided in the Appendix [55] under Section A.II due
to space economy. Following the filtering stage, Independent
Component Analysis (ICA) is performed on the filtered signals
using the FastICA algorithm [59]. The number of indepen-
dent components is set equal to the number of measurement
channels (here, 14). Artifact components are identified using a
kurtosis-based method [60], [61], where kurtosis is defined as a
measure of the “peakedness” of the probability distribution of
the time course of each independent component. Independent
components whose probability distributions sharply peaked at
the center (i.e., kurtosis ¿ 10) are considered artifact-dominated
and are removed. Next, the denoised signals are reconstructed
by back-projecting the remaining components.

C. FORMATION OF BRAIN CONNECTIVITY NETWORKS

The filtered fNIRS signals are processed using wavelet
transform coherence (WTC) to explore their behavior across
time and frequency domains. This approach quantifies the
cross-correlation between two time-series signals over varying
time and frequency scales [36], [62]. The WTC between two
fNIRS channels, X and Y , at the time instance n (denoted as
Xn and Yn) is mathematically defined by (3).

Vn(s) =
|⟨s−1V XY

n (s)⟩|2

|⟨s−1V X
n (s)⟩|2 |⟨s−1V Y

n (s)⟩|2
(3)

where, s represents the wavelet scale, n denotes the time
instance, V X

n (s) and V Y
n (s) indicates the continuous wavelet

transform of Xn and Yn respectively, | · | denotes the absolute
value and ⟨·⟩ represents the smoothing operation [62]. For the
present application, the Daubechies wavelet [63] is utilized as
the mother wavelet for evaluating the WTC among the pair of
FNIRS channels.

Using the operation in (3), a P × P matrix is generated,
representing the wavelet coherence between pairs of fNIRS
channels. These coherence values are subsequently employed

to build an undirected, weighted connectivity network using
the following approach in (4).

aij =

{
Vij , if Vij ≥ ξ

0, otherwise
(4)

where, aij denotes the adjacency matrix values of the con-
nectivity network, Vij indicates the wavelet coherence val-
ues while ξ indicates a predefined threshold. The predefined
threshold is chosen in such a way that all classes of networks
have the same number of edges, ensuring a fair comparison
among them [64].

D. FEATURE ABSTRACTION OF THE CONNECTIVITY
NETWORKS

To identify the hub regions of the brain that govern the entire
network, the brain connectivity networks derived from the
WTC technique needs to be analyzed through various network
topological features. This analysis is carried out by extracting
three key features: node strength (NS), node efficiency (NE),
and node betweenness (BC) [37].

The extracted features are ultimately categorized into five
distinct classes using the EGCIFC classifier, with its detailed
architecture explained in Section III.

E. Classification Metrics utilized to analyze the performance
of the EGCIFC

The performance metrics utilized to prove the efficacy of the
proposed EGCIFC algorithm in comparison to conventional
approaches include: classification accuracy (CA), F1-score,
True Positive Rate (TPR), False Positive Rate (FPR) and
run-time complexity. The mathematical expressions for CA,
F1-score, TPR and FPR are defined by (5), (6), (7), (8)
respectively.

CA =
TP + TN

TP + TN + FP + FN
(5)

F1 =
2TP

2TP + FP + FN
(6)
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Fig. 5. The spatial convolved features obtained from each problem of a trial in a session pertaining to a given difficulty level for every experimental participant

(a) (b)

(c) (d)
Fig. 6. Construction of IT2FS with refined FOU: (a) Type-1 MFs for 10 days,
(b) Curvilinear-top based IT2FS formulated by taking union of Type-1 MFs,
(c) Curvilinear-top based IT2FS with refined FOU, (d) Flat-top approximated
IT2FS.

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

where, TP , TN , FP and FN denotes the number of true
positives, true negatives, false positives and false negatives
respectively.

III. ARCHITECTURE OF THE PROPOSED
ENHANCED GRAPH CONVOLUTION INDUCED

TYPE-2 FUZZY CLASSIFIER

This section provides a detailed explanation of the proposed
EGCIFC model, whose architecture is depicted in Fig. 4.
The description and functions of each layer of the proposed
classifier model are discussed below.

A. FIRST ENHANCED GRAPH CONVOLUTION LAYER
WITH SMISH ACTIVATION FUNCTION

The first layer of the proposed classifier includes the em-
ployment of an enhanced graph convolution operation and
Smish activation function. The elaboration of the above op-
erations is provided below.

1) ENHANCED GRAPH CONVOLUTION: A given input
graph G ∈ RP×M is transformed into its graph embeddings
using the traditional graph convolution operation [38] which
can be mathematically expressed by (9).

Zk+1
j = σ(

∑
i

D̃−1/2ÃD̃−1/2Zk
i W

k
ij) (9)

where, Zk ∈ RP×M represents the input graph in the kth

layer of size P×M and Z0 = G. W k
ij ∈ RM×M ′

signifies the
matrix of trainable weights of size M×M ′ while σ(·) indicates
an activation function. Ã = A+I denotes the adjacency matrix
A consisting of self-loops, I ∈ RP×P represents the identity
matrix of size P ×P , and D̃ signifies the degree matrix of Ã.

However, the traditional graph convolution operation relies
solely on the adjacency matrix A, which captures only the
local structure of the graph. As a result, it aggregates infor-
mation exclusively from the immediate neighbors of a node,
neglecting the influence of distant neighbors. This reduces the
classifier’s performance, as it cannot effectively learn diverse
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patterns within the same graph from multiple perspectives due
to its confinement to local structural information.

To address the aforementioned limitation, the present work
modifies the adjacency matrix to incorporate both local and
global structural information of the graph using (10).

E = exp(A) ≈ I +A+
A2

2!
+

A3

3!
(10)

The computation in (10) describes the series expansion of
the exponential operation applied to A, approximated up to
the third order. In (10), the matrix I incorporates self-loops,
A captures the local structural information of the graph, and
the higher-order terms of A represent the global structural
information of the graph, extending up to the third-distant
neighbor. It may be noted that the truncation of the expansion
in (10) to the third order is determined by the random search
algorithm [65] discussed in Section IV.

Thus, the computation in (9) is now modified using the
new adjacency matrix E in (11), ensuring that the convolved
features from the input graph capture both local and global
structural information.

Zk+1
j = σ(

∑
i

D̃−1/2ED̃−1/2Zk
i W

k
ij) (11)

where, E denotes the modified adjacency matrix and D̃ now
represents the degree matrix of E. The convolution operation
in (11), hereafter referred to as the enhanced graph convolu-
tion, thus enables the classifier to learn diverse patterns from
a single graph, ultimately improving its performance.

2) EMPLOYMENT OF SMISH ACTIVATION FUNCTION:
A new activation function referred to as Smish [47] is utilized
for the current work instead of traditional ones. The mathe-
matical equation for this function is denoted by (12).

σ(x) = Smish(x) = x · tanh(ln(1 + ρ(x))) (12)

where, ρ(x) denotes the sigmoid activation function. The
motivation behind the utilization of Smish involves the fol-
lowing points: i) it has enhanced regularization capability as
it maintains negative output regularization and partial sparsity,
thereby preventing over-fitting, ii) it ensures smooth and stable
gradient flow through the application of the tanh operator
on a logarithmic transformation and iii) it has shown to be
highly robust across various hyper-parameters [47], ensuring
consistent performance for different experimental settings.

B. SECOND ENHANCED GRAPH CONVOLUTION LAYER
WITH SMISH ACTIVATION FUNCTION

An additional enhanced graph convolution with Smish
activation function is performed upon the graph convolved
output from the first layer using (11) and (12). This additional
operation ensures that the higher level features are abstracted
from the previously convolved output so that classifier model
can effectively capture intricate patterns from the input data.
The output of the present operation yields J ∈ R(P×1)×R

where P × 1 denotes the dimension of each convolved vector
and R represents the number of channels (see Fig. 4).

C. 1D SPATIAL CONVOLUTION LAYER

The objective of the present layer involves reducing the
dimension of the graph convolved features as well as re-
taining the most significant feature information that will be
utilized for classification. The traditional GCNs usually rely
on pooling operations to accomplish the aforesaid objective
[39]. However, pooling comes with two main limitations.
First, unlike convolution, pooling does not utilize kernel based
operations having weights that are learned during training,
thereby failing to capture relevant features from the input data.
Second, popular pooling techniques either ignore finer details
by only retaining the most prominent features (max-pooling)
or over-smoothes the feature set by blending all information
(mean-pooling).

Thus, to overcome these limitations, the current work uti-
lizes a 1D spatial convolution on the second graph convolved
output. The 1D spatial convolution operation is denoted by
(13).

hj = σ((gi ∗ wij) + βj) (13)

where, hj ∈ R1×1 represent the 1D spatial convolved
output, gi ∈ RP×1 denotes the second graph convolved output
for a single channel of size P × 1, σ(·) signifies the Smish
activation function, wij ∈ RP×1 indicates the weight matrix
of size P × 1, βj is the bias term and “∗” represents the
spatial convolution operator. The operation in (13) is repeated
for all the R channels which thereby produce R number of
scalar values. These R scalars are stacked into an R × 1
dimensional vector which represents the output of present
spatial convolution layer to be used later for classification.
Thus, the R × 1 vector contains the most relevant abstracted
features from J using spatial convolution that will guide the
classifier to distinguish the desired class labels.

D. TSK INDUCED INTERVAL TYPE-2 FUZZY LAYER

The 1D spatial convolution layer generates a feature vector
of size R × 1 (where R=32) for every RAPM problem
as denoted by Fig. 5. To handle the uncertainty arising in
these convolved feature vectors due to sessional variations, a
TSK-induced Interval Type-2 Fuzzy Set (IT2FS) classifier is
employed. The aforementioned approach is detailed below.

1) FORMULATION OF ANTECEDENT PART OF IT2FS
CLASSIFIER: Let, v1, v2, ...., vN be N features obtained at
the output of the 1D spatial convolution layer. Let B̃i =
[µB̃i

(vi), µB̃i
(vi)], i = 1 to N , represent an IT2FS with

Upper Membership Function (UMF) = µB̃i
(vi) and Lower

Membership Function (LMF) = µ
B̃i
(vi). The construction of

B̃i is accomplished by the following steps. First, the within-
session variations of measurements of feature i is represented
by a Gaussian type-1 Membership Function (MF) [66], [67]
with mean mi and variance σ2

i . The Gaussian type-1 MFs
acquired from 10 experimental days (i.e., representing within-
session variations) is depicted by Fig. 6(a). Next, the across-
session variations for feature i is the union of the MFs defined
by the within-session variations. In IT2FS nomenclature, the
UMF of feature i is obtained by taking the maximum of the
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Fig. 7. Design of the proposed TSK induced Interval Type-2 fuzzy classifier

Gaussian MFs representing the within-session variations of the
same feature. Similarly, the LMF is obtained by taking the
minimum of the within-session variations of the ith feature.
Expressions (14) and (15) are obtained following the above
formulation.

UMF = µB̃i
(vi) =

N
Max
j=1

(µBj
(vi)) (14)

LMF = µ
B̃i
(vi) =

N

Min
j=1

(µBj
(vi)) (15)

where, µBj
(vi) denotes the type-1 Gaussian MF of the jth

session for feature vi. The above IT2FS construction is repre-
sented by Fig. 6(b).

In IT2FS nomenclature, the measure of uncertainty is often
expressed by the area under the Footprint of Uncertainty
(FOU) [48]. The FOU is measured by the area lying between
the UMF and the LMF. One approach to reduce the uncertainty
in IT2FS is to shift up the LMF towards UMF [46], [68]
thereby causing a reduction in the area under the FOU. This
paper employs dilation [67], [69], [70] of the LMF for its
possible lifting towards the UMF by a heuristically chosen
transformation given by (16).

LMFnew = µ
B̃

′
i

(vi) = µB̃i
(vi)× (µ

B̃i
(vi))

µ
B̃i

(vi) (16)

The transformation (16) transforms the LMF µ
B̃i
(vi) into

µ
B̃

′
i

(vi) to level up the LMF (see Fig. 6(c)). Theorem 1
provides a formal proof to indicate that µ

B̃
′
i

(vi) ≥ µ
B̃i
(vi),

for all vi, but µ
B̃

′
i

(vi) never crosses µB̃i
(vi). It is important

to mention that the UMF of the newly adjusted FOU remains
unchanged i.e., µB̃

′
i
(vi) = µB̃i

(vi).

Theorem 1: The transformation (16) elevates µ
B̃

′
i

(vi) so as
to satisfy µ

B̃
′
i

(vi) ≥ µ
B̃i
(vi), maintaining µ

B̃
′
i

(vi) ≤ µB̃i
(vi)

for all vi.

The proof of Theorem 1 is presented under Section A.III of
the Appendix [55] to avoid loss in continuity of the context.

The updated IT2FS given by B̃
′

i appears to have a non-
convexity due to its curvilinear top that has been acquired

by considering maximum of the 10 type-1 MFs (shown in
Fig. 6(c)). Thus, to retain the convexity of the designed
type-2 fuzzy sets, a flat-top approximation is employed upon
the acquired IT2FS. Such an approximation is achieved by
connecting the peaks of the individual type-1 MFs with a
straight line of zero slope [44], [45], [46]. The final flat-top
approximated IT2FS is portrayed in Fig. 6(d).

2) FORMULATION OF CLASSIFIER RULE: The pro-
posed TSK model utilizes Type-2 fuzzy rule where the jth

rule is given by,
If v1 is B̃

′

1,j , v2 is B̃
′

2,j ,.....,vN is B̃
′

N,j , Then
yj =

∑N
i=1 ϕi,j × vi + λj .

Here, yj represents the power of the signal pertaining to a
given montage architecture which is utilized to categorize dif-
ferent class labels. The coefficients ϕi,j and λj are determined
utilizing the classical least min-square approach [71].

E. IMPLEMENTATION OF THE TSK-BASED IT2FS CLAS-
SIFIER

The design of the proposed fuzzy induced classifier is
illustrated in Fig. 7. Let the measurements points be denoted
as v1 = v

′

1, v2 = v
′

2, ....., vN = v
′

N . The upper firing strength
(UFs) and lower firing strength (LFs) for the jth rule is
computed utilizing (17) and (18) respectively.

UFsj = min[µB̃
′
1
(v

′

1), µB̃
′
2
(v

′

2), ..., µB̃
′
N
(v

′

N )] (17)

LFsj = min[µ
B̃

′
1

(v
′

1), µB̃
′
2

(v
′

2), ..., µB̃
′
N

(v
′

N )] (18)

After this, the firing strength (Fs) pertaining to rule j is
computed using (19).

Fsj = ωj · UFsj + (1− ωj) · LFsj (19)

where, ωj denotes a weight lying in [0, 1] and is determined
by the random search algorithm. The final output of the TSK
induced type-2 fuzzy classifier is evaluated using (20).

y0 =

∑
∀j Fsj × yj∑

∀j Fsj

(20)

In order to categorize the five desired class labels from the
computation of y0, the interval [0, ymax

0 ] is divided into five
non-overlapping regions. So, for five regions, four different
region boundaries are required which include η1, η2, η3 and



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 20XX 9

Fig. 8. Architecture of the montage designed for the RAPM task

η4. The aforementioned region boundaries are determined by
the random search algorithm satisfying: ymax

0 > η4 > η3 >
η2 > η1 > 0.

IV. EXPERIMENTS AND RESULTS

A. FNIRS DATA ACQUISITION

The current experimental framework was carried out in the
Artificial Intelligence Laboratory (AI Lab) of Jadavpur Uni-
versity situated in Kolkata, India. The hemodynamic response
of participants during the RAPM task was acquired using the
whole-brain fNIRS device (NIRScout TM) developed by NIRx
Medical Technologies, LLC. This device comprises 8 infrared
sources and 8 detectors and operates at 7.81 Hz sampling rate.
The source-detector pairs referred to as optodes were places on
the scalp of participants according to the 10-10 international
optode placement system. Although the NIRScout device
provided 64 channels, only 14 were selected for analysis.
This selection was based on the nearest-neighbor source-
detector configuration as well as the anatomical relevance of
the regions to cognitive functions of interest. The selected
channels primarily overlay the prefrontal and parietal lobes,
which are well-documented in the literature [24], [32], [72]
as key regions involved in analogical reasoning and higher-
order cognitive tasks, justifying their inclusion in the present
cognitive experiment. The montage architecture used in the
experiment is shown in Fig. 8.

B. PARTICIPANTS

A priori power analysis was conducted using the G*Power
3.1.9.4 software [73] to determine the required sample size for
the present cognitive experiment. The analysis indicated that a
total sample size of 144 participants was needed to achieve a
statistical power of 0.9, using Analysis of Variance (ANOVA)
with a medium effect size (f = 0.3) and an error probability

α = 0.05. To account for potential dropouts or errors during
the experiment, three datasets were prepared with total 149
participants. The three datasets are as follows:
i) West Bengal Creativity Dataset (WBCDS) [74]: This dataset
comprises 52 participants (23 males and 29 females), including
18 from engineering, 12 from mathematics, and 22 from
general science backgrounds, aged between 18 and 36 years.
ii) Southwest Indian Creativity Dataset (SWICDS) [75]: This
dataset comprises 47 participants (24 males and 23 females),
including 14 from engineering, 16 from mathematics, and 17
from general science backgrounds, aged between 23 and 45
years.
iii) North Indian Creativity Dataset (NICDS) [76]: This dataset
comprises 50 participants (29 males and 21 females), including
16 from engineering, 16 from mathematics, and 18 from
general science backgrounds, aged between 21 and 40 years.

All participants included in the experiment had normal or
corrected-to-normal vision with no prior history of neuropsy-
chiatric or motor disorders. Moreover, the participants must
have attended undergraduate courses in science/engineering.
This restriction was made mandatory, as the present ex-
periment focused on the assessment of scientific creativity
[77], [78]. Additionally, participants were selected to ensure
diversity in age groups, genders, cultures, education levels,
and regional backgrounds, in order to minimize potential
demographic and/or cognitive biases.

The data of two participants (I21 and I44) from WBCDS
were excluded from the study due to data inconsistencies, and
the data of one participant from NICDS (I26) was excluded
because the subject was unable to complete the experiment
due to sudden illness.

Fig. 9 portrays the experimental setup using one represen-
tative subject solely for demonstration purposes, while the
experiments were conducted on 52, 47, and 50 subjects for
the WBCDS, SWICDS, and NICDS datasets, respectively. The
experiment strictly adhered to ethical guidelines and safety
protocols, in accordance with the Declaration of Helsinki
(1970), as revised in 2004 [79]. Ethical approval for the
study was obtained from the Ethics Committee of Jadavpur
University, and the corresponding report is provided in [80].

C. COGNITIVE INSIGHTS INTO BRAIN NETWORK FEA-
TURE ANALYSIS

The brain connectivity networks of participants belonging to
each class label have been acquired using the WTC technique
as discussed in Section II. The different connectivity networks
pertaining to the five class labels obtained from a single
experimental instance are depicted in Fig. 10. The nodes in
each network represent the BAs covered by the channels in
the montage shown in Fig. 8, while the edges signify the
connections among the BAs. However, in order to identify the
active engagement of the BAs for the current cognitive task,
three node based features are abstracted form the acquired
brain networks. The analysis of these features is presented in
detail below.
(a) NS Analysis: Fig. 11(a) illustrates the radar plot of NS
values for five classes of subjects. It is observed from this
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Fig. 9. Experimental setup for the RAPM task

figure that NS values for nodes 1, 8 and 14 are high for
participant I27 who belongs to the ECT class. Moreover,
the same nodes exhibit quite high NS values for participants
I11, I09 and I32 belonging to SCT, FCT and MCT classes
respectively. Such an observation signifies that bilateral an-
terior prefrontal cortex (BA 10) pertaining to nodes 1 and 8
and right posterior supramarginal gyrus (BA 40) pertaining
to node 14 possess high degree for participants who could
correctly solve the RAPM task. Additionally, the NS values
are also high for nodes 2 and 9 for the participant belonging
to ECT class. However, these values start declining slowly
for the participants from the SCT to MCT class. The former
observation implies that the bilateral region of dorsolateral
prefrontal cortex (BA 46) pertaining to nodes 2 and 9 also
possess high degree for the RAPM task. The later observation
indicates that BA 46 controls the level of difficulty of the
RAPM task. In other words, higher the NS value for nodes
pertaining to BA 46, higher is the difficulty level of the
given task. It is also important to note that the NS values
of node 4 for subject I09 and node 6 for subject I32 exhibit
moderately high values. Thus, a further analysis of additional
node based features is necessary to derive concrete conclusions
about the most engaged nodes in the brain network of creative
individuals.
(b) NE Analysis: Fig. 11(b) illustrates the radar plot of NE val-
ues for the same set of subjects discussed earlier. Notably, for
a subject in the ECT class, elevated NE values are evident over
the bilateral part of anterior prefrontal cortex (nodes 1 and 8)
and right posterior supramarginal gyrus (node 14). Similarly,
the NE values for subjects in the SCT, FCT and MCT classes
also show heightened NE values for the aforesaid regions.
Additionally, the bilateral part of dorsolateral prefrontal cortex
(nodes 2 and 9) shows high NE values, with a clear decreasing
trend from the ECT to MCT classes. Furthermore, the NE
analysis indicates that the highlighted BAs for creative class
individuals do not exhibit significant activation in a person
who could not solve the RAPM task (i.e., belonging to the

CVT class). These findings suggest that the bilateral part of
anterior prefrontal cortex and right posterior supramarginal
gyrus helps in integrating neural activity across different brain
areas via shortest paths to ensure effective communication
with minimal delay [81]. Moreover, the findings related to
the dorsolateral prefrontal cortex suggest that its engagement
increases with increase in difficulty level of the task.
(c) NB Analysis: The results of the NB values as depicted
by the radar plot in Fig. 11(c) portray the same BAs for each
creative class label as indicated by the NE based evaluation.
The high NB values for the specified BAs signify that they
serve as key intermediaries in the flow of information between
other brain lobes. In other words, high NB nodes act as bridges
or hubs that connect different brain regions, ensuring efficient
communication across the entire network [37].

Hence, the node based feature analysis discussed above
supports the proposition that, for analogical reasoning, the BAs
that act as prime controllers of the entire brain network include
the bilateral anterior prefrontal cortex (BA 10 corresponding
to nodes 1 and 8) and right posterior supramarginal gyrus
(BA 40 corresponding to node 14). The observed findings
are in agreement with prior research in [24], [25], [32],
[72]. Additionally, the analysis reveals that the engagement
of the bilateral region of dorsolateral prefrontal cortex (BA
46, corresponding to nodes 2 and 9) varies with the difficulty
level of the problem, with higher activation indicating greater
difficulty and vice versa [82], [83].

D. OPTIMIZATION OF CLASSIFIER PARAMETERS

Hyper-parameter optimization of the proposed EGCIFC
model involves fine-tuning its parameters to ensure optimal
performance in categorizing the target class labels. In the
present context, the optimal settings for the hyper-parameters
were determined using the random search algorithm [65]. The
rationale for choosing this algorithm lies in its efficiency in
exploring the search space with low computational time [65],
[84]. The model’s performance was assessed using the 10-fold
cross-validation across different parameter configurations. In
this method, the dataset for each subject was divided into 10
separate folds. For each parameter configuration, the model
was trained using 9 folds and tested on the remaining fold.
This process was repeated over 10 runs, with the test fold
changing each time. As a result, the training and testing sets
for each subject contained data from the same individual but
remained distinct in each run. Random search was conducted
for a total of 100 iterations. The classifier performance did
not exhibit appreciable improvements beyond 60 iterations,
indicating convergence. Therefore, only 60 iterations were
considered for the classification task. Once the highest accu-
racy was achieved across all candidate settings, the best config-
uration was applied to the test set. The first hyper-parameter of
EGCIFC involves the truncation of exp(A) till the third order,
ensuring an optimal balance between computational efficiency
and classification accuracy. The rest of the optimal hyper-
parameter values of the model are: Q = 2, L = 64, R = 32,
η1 = 19.27, η2 = 34.96, η3 = 56.11, η4 = 81.23.
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(a) (b) (c) (d) (e)
Fig. 10. The brain connectivity networks obtained for each class of subject in WBCDS: (a) subject ID: I27 who could correctly solve the RAPM task of
very high difficulty level, (b) subject ID: I11 who could correctly solve the RAPM task of high difficulty level, (c) subject ID: I09 who could correctly solve
the RAPM task of medium difficulty level, (d) subject ID: I32 who could correctly solve the RAPM task of easy level, and (e) subject ID: I05 who could
not solve the RAPM task of any difficulty level.

(a) (b) (c)
Fig. 11. The radar plots for analyzing node-based brain connectivity features: (a) radar plot for node strength pertaining to 5 classes of subjects, (b) radar
plot for node efficiency pertaining to 5 classes of subjects, and (c) radar plot for node betweenness pertaining to 5 classes of subjects.

V. PERFORMANCE ANALYSIS AND STATISTICAL
VALIDATION OF THE PROPOSED MODEL

This section analyzes the performance of the proposed
classifier by conducting five main steps: i) a comparative
study with respect to its competitors, ii) an ablation study
to understand the potential of individual components, iii) an
analysis of the effect of reducing the FOU on performance, iv)
a comparative study to understand the impact of different brain
connectivity formulations on performance, and v) statistical
validation of the results. The detailed analysis is presented
below.

A. PERFORMANCE ANALYSIS OF THE PROPOSED
EGCIFC WITH RESPECT TO SOTA TECHNIQUES

The performance of the proposed EGCIFC is analyzed in
three distinct phases. First, the performance of the proposed
model is compared with respect to the SOTA techniques
utilizing the metrics discussed in Section II for the WBCDS,
and the results are portrayed in Table I. It is apparent
from this table that the proposed classifier achieved a CA
of 98.77%, representing an improvement of 2.25% over its
nearest competitor and 22.72% over the lowest performing-
baseline. Similarly, the F1-score improved to 98.61%, sur-
passing the nearest and worst SOTA methods by 2.27% and

22.13% respectively. Furthermore, the TPR is significantly
higher, and the FPR is notably lower than those achieved by
existing techniques, underscoring the robustness and reliability
of the proposed approach. The low standard deviations across
all four metrics (i.e., ±0.72% in CA, ±0.83% in F1-score,
±0.011 in TPR and ±0.021 in FPR) further highlight the
model’s robust performance. Additionally, the results in Table
I demonstrate that the runtime complexity of the proposed
classifier is 92.23 ms, representing a reduction in run-time
by 7.46% and 54.7% with respect to its nearest and lowest-
performing SOTA methods.

Second, the performance of the proposed classifier is eval-
uated across three datasets, i.e., WBCDS, SWICDS, and
NICDS. The results of this comparative analysis are presented
in Table II. It is evident from the table that the proposed model
consistently achieves high precision in classifying the target
class labels across all datasets. This analysis highlights the
model’s strong generalization capability across diverse data
distributions.

Third, a confusion matrix analysis is conducted to further
demonstrate the robustness of the proposed model. The con-
fusion matrices for each dataset are presented in Fig. 12. The
results indicate that the model consistently achieves high preci-
sion in classifying the desired class labels across all datasets.
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TABLE I
COMPARATIVE STUDY OF PROPOSED CLASSIFIER PERFORMANCE FOR WBCDS WITH RESPECT TO SOTA METHODS (CA, F1, TPR, AND FPR ARE

REPORTED AS MEAN ± STANDARD DEVIATION; RUN-TIME COMPLEXITY IS REPORTED AS A SINGLE VALUE).

Classifiers with optimal parameter
settings

CA (%) F1 (%) TPR FPR Run-time
complexity
(ms)

DCNN [85] 76.05 ± 7.88 76.48 ± 7.51 0.76 ± 0.137 0.56 ± 0.088 203.45
Chebnet [86] 77.48 ± 7.12 77.90 ± 6.36 0.78 ± 0.124 0.52 ± 0.096 162.72
DGCN [87] 84.35 ± 6.33 83.70 ± 6.87 0.85 ± 0.127 0.23 ± 0.091 116.34
ASGCNN [88] 88.96 ± 5.49 88.55 ± 6.94 0.87 ± 0.102 0.12 ± 0.115 368.61
AEGCN [89] 93.03 ± 3.66 92.81 ± 4.02 0.92 ± 0.074 0.08 ± 0.086 238.25
CNN-AE with IT2FR-GWO [90] 95.27 ± 3.02 95.03 ± 2.56 0.95 ± 0.063 0.01 ± 0.058 130.70
GC-IT2FN [46] 96.52 ± 1.34 96.34 ± 1.96 0.96 ± 0.045 0.009 ± 0.050 99.67
Proposed EGCIFC 98.77 ± 0.72 98.61 ± 0.83 0.98 ± 0.011 0.003 ± 0.021 92.23

TABLE II
AVERAGE PERFORMANCE OF THE PROPOSED CLASSIFIER ACROSS THREE

DATASETS

Classifier
Metrics

Datasets Average
Metric Value

WBCDS SWICDS NICDS
CA (%) 98.77 98.42 98.84 98.68
F1 (%) 98.61 98.37 98.81 98.60
TPR 0.986 0.983 0.988 0.986
FPR 0.003 0.002 0.002 0.002

Although a very few misclassified instances were observed,
the overall classification trend remained stable. Misclassifica-
tions (with error rate computed as 1-CA) primarily occurred
between adjacent creativity classes, such as FCT (error rate =
0.0388) and MCT (error rate = 0.0278) in WBCDS, FCT (error
rate = 0.0308) and MCT (error rate = 0.0338) in SWICDS,
and SCT (error rate = 0.0149) and FCT (error rate = 0.0196)
in NICDS, possibly due to overlapping cognitive and neural
characteristics. Although these misclassifications exist, they
are minimal and do not compromise the classifier’s robustness;
instead, they further reinforce its accuracy and generalizability
across datasets.

B. ABLATION STUDY OF THE PROPOSED EGCIFC
MODEL

An extensive ablation study has been performed on the
proposed EGCIFC model to analyze the contribution of its
individual components on overall classification performance.
Such an analysis is undertaken by systematically removing
specific modules from the original architecture of the EGCIFC
and then examining the corresponding effects on the classifica-
tion results. Table III demonstrates the results of the aforesaid
study.

It is observed from Table III that moderate CA and F1-score
values are obtained when IT2FS classifier is utilized indepen-
dently as it can tackle uncertainty but cannot effectively deal
with graph based data. Similarly, a comparable trend in CA
and F1-score is observed when the traditional GCN is used
without (w/o) Smish (i.e., the traditional Logish [91] function
is used instead) and without 1D spatial convolution (i.e., mean-
pooling is used instead). The aforesaid result occurs due to
GCN’s capability to process graph-structured data but inability
to address uncertainty. However, a slight improvement in CA

and F1-score is observed when Smish is employed, underscor-
ing the effectiveness of the activation function. Furthermore,
GCN with Smish and 1D spatial convolution shows better CA
and F1-score compared to the previous classifier configura-
tions. Notably, EGCN with 1D spatial convolution achieves
a significant improvement over its counterparts, highlighting
its importance. Additionally, the inclusion of Smish further
enhances the performance of EGCN.

There is a considerable increase in classifier performance
when the IT2FS module is integrated with the GCN. It is
important to note that both Smish and 1D spatial convolution
play a critical role in enhancing performance for the above
classifier architecture. Moreover, EGCN combined with IT2FS
further improves classifier performance, with the second-best
combination being EGCN w/o Smish + 1D spatial convolution
+ IT2FS, due to the absence of the Smish function. The best re-
sults are obtained from the proposed combination, i.e., EGCN
+ Smish + 1D spatial convolution + IT2FS, highlighting the
contribution of each module within the proposed approach.

C. IMPACT OF MODIFICATION IN FOU ON CLASSIFIER
PERFORMANCE

The impact of FOU reduction using the proposed LMF
formulation (as discussed in Section III) is compared against
the traditional FOU design, which is derived by taking the
union of 10 Type-1 MFs obtained over 10 experimental days.
The results of the aforesaid comparison are portrayed in Table
IV. It is apparent from this table that the proposed FOU
reduction technique leads to a significant improvement in both
CA and F1-score values compared to the conventional method.

D. COMPARATIVE STUDY OF DIFFERENT APPROACHES
OF BRAIN CONNECTIVITY NETWORK FORMATION

A comparative study with respect to CA and F1-score is
conducted to examine the impact of the proposed model’s
performance by utilizing different formulations of brain con-
nectivity networks. The comparison includes several widely
used methods for constructing brain networks from fNIRS
signals, such as Phase Locking Value (PLV) [92], [93], Phase
Lag Index (PLI) [94], Mutual Information (MI) [95], [96], and
Pearson’s Correlation (PC) [97], [98]. All connectivity metrics
mentioned above were computed on the same fNIRS signals,
which were pre-processed using a 6th-order Chebyshev band-
pass filter and ICA. These pre-processing steps minimized
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(a) (b) (c)
Fig. 12. The confusion matrix for three datasets (a) WBCDS (b) SWICDS (c) NICDS

TABLE III
ABLATION STUDY OF THE PROPOSED CLASSIFIER MODEL ACROSS THREE DATASETS

Variation in classifier modules Datasets
WBCDS SWICDS NICDS

CA (%) F1 (%) CA (%) F1 (%) CA (%) F1 (%)
IT2FS 87.95 87.34 88.20 88.65 87.69 87.62
GCN w/o Smish w/o 1D spatial convolution 88.97 88.72 89.02 88.84 88.36 88.21
GCN + Smish w/o 1D spatial convolution 89.46 89.32 89.66 89.61 89.54 89.50
GCN w/o Smish + 1D spatial convolution 89.85 89.72 89.78 89.71 89.96 89.88
GCN + Smish + 1D spatial convolution 89.97 90.02 90.21 90.18 90.11 90.03
EGCN w/o Smish w/o 1D spatial convolution 90.56 90.35 90.47 90.42 90.51 90.48
EGCN + Smish w/o 1D spatial convolution 90.78 90.70 90.81 90.86 90.94 90.90
EGCN w/o Smish + 1D spatial convolution 91.25 91.16 91.12 91.08 91.30 91.27
EGCN + Smish + 1D spatial convolution 91.73 91.68 91.45 91.52 91.92 91.86
GCN w/o Smish w/o 1D spatial convolution + IT2FS 93.54 93.61 93.03 93.11 93.43 93.37
GCN + Smish w/o 1D spatial convolution + IT2FS 93.72 93.68 93.27 93.30 93.62 93.55
GCN w/o Smish + 1D spatial convolution + IT2FS 94.56 94.63 94.40 94.51 94.60 94.57
GCN + Smish + 1D spatial convolution + IT2FS 94.80 94.77 94.64 94.66 94.85 94.81
EGCN w/o Smish w/o 1D spatial convolution + IT2FS 96.21 96.17 96.34 96.38 96.27 96.32
EGCN + Smish w/o 1D spatial convolution + IT2FS 96.60 96.52 96.68 96.71 96.76 96.81
EGCN w/o Smish + 1D spatial convolution + IT2FS 97.54 97.48 97.40 97.33 97.72 97.69
EGCN + Smish + 1D spatial convolution + IT2FS (i.e., EGCIFC) 98.77 98.61 98.42 98.37 98.84 98.81

TABLE IV
EFFECT OF RECTIFYING THE FOU ON CLASSIFIER PERFORMANCE

Dataset Modification in Classifier Architecture
EGCIFC + original FOU EGCIFC + rectified FOU
CA (%) F1 (%) CA (%) F1 (%)

WBCDS 94.85 94.78 98.77 98.61
SWICDS 95.03 94.96 98.42 98.37
NICDS 95.56 95.43 98.84 98.81

the impact of physiological and motion artifacts, ensuring
consistent and fair connectivity estimation across methods. A
detailed description of the adaptation of the above metrics to
fNIRS signals is provided in Section A.IV of the Appendix
[55]. The results of the current comparative study, as shown
in Table V, highlight a significant improvement in the per-
formance of the proposed classifier with WTC based network
construction in comparison to the traditional formulations.

E. STATISTICAL VALIDATION OF THE PROPOSED
MODEL

The statistical validation of the proposed EGCIFC model
has been carried out using the popular Friedman’s non-
parametric statistical test [99]. According to the Friedman test,
the algorithm with the best performance is assigned the lowest

TABLE V
IMPACT OF VARIOUS COMPUTATIONS OF BRAIN CONNECTIVITY

NETWORKS ON CLASSIFIER PERFORMANCE

Brain
network
formulations

Datasets

WBCDS SWICDS NICDS
CA
(%)

F1
(%)

CA
(%)

F1
(%)

CA
(%)

F1
(%)

PLV 93.27 93.23 93.54 93.50 93.72 93.76
PLI 93.20 93.18 93.56 93.61 94.02 93.94
MI 95.60 95.52 95.88 95.83 95.65 95.59
PC 97.11 97.06 96.78 96.72 97.01 96.97
WTC 98.77 98.61 98.42 98.37 98.84 98.81

rank. The Friedman static χ2
F corresponding to (g−1) degrees

of freedom is computed using (21).

χ2
F =

12D

g(g + 1)

[
g∑

v=1

R2
v −

g(g + 1)2

4

]
(21)

where, D signifies the number of datasets (here, 3), g depicts
the number of classifier algorithms (here, 8), and Rv represents
the average rank of the yth algorithm to the zth dataset. The
results of the above statistical test is depicted by Table VI. It is
apparent from this table that the Friedman’s static χ2

F =19.95
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TABLE VI
FRIEDMAN’S TEST TO VALIDATE THE PROPOSED MODEL

Classifier Algorithms Rv χ2
F

DCNN 7.83

19.95
(Null Hypothesis

Rejected)

Chebnet 6.92
DGCN 6.17
ASGCNN 5
AEGCN 3.75
CNN-AE+IT2FR-GWO 3.25
GC-IT2FN 2
EGCIFC 1

¿ χ2
7,0.95=14.07, which represents the chi-square value at 95%

confidence level with 7 degrees of freedom. The statistical test
results indicate that the null hypothesis, which posits that all
classifier algorithms are equivalent in terms of performance,
is rejected. Thus, it is crucial to conduct further analysis and
comparison of the algorithms based on their respective ranks.

VI. CONCLUSION

Understanding the cognitive underpinnings of scientific cre-
ative skill in individuals is still an open-ended problem in
neuroscience. The present study offers a valuable contribution
to the above problem by leveraging fNIRS data to assess the
levels of creative ability in subjects through brain connectivity
analysis. The aforementioned analysis conducted using three
node based connectivity features (strength, efficiency and
betweeness) infers the active participation of bilateral anterior
prefrontal cortex (BA 10) and right posterior supramarginal
gyrus (BA 40) while solving the RAPM task. Additionally,
the bilateral regions of dorsolateral prefrontal cortex (BA 46)
become highly engaged whenever the difficulty level of the
problems rises. Furthermore, the node based features are clas-
sified by a novel EGCIFC model that can efficiently identify
different levels of subjective creative potential in comparison
to SOTA methods.

Thus, the proposed scheme has the potential to be utilized
as a recruitment strategy for placing individuals in various
industrial departments based on their respective creative ability
grades. For instance, an extremely creative thinker could be
appointed as a research and development lead, a superbly cre-
ative thinker as an innovation manager, a medium-level/fairly
creative thinker as a product design specialist, while a low-
level/mildly creative thinker as a quality assurance analyst.
This strategic placement would ensure optimal utilization of
each individual’s creative potential, fostering innovation and
efficiency within industrial sectors.

A limitation of the proposed study lies in the analysis
of brain responses within a fixed 15-second problem-solving
window. This duration was experimentally validated, as all
participants were able to complete the problems within 15
seconds, and additional time did not significantly improve
their performance. However, the possibility that some individ-
uals might succeed with more time cannot be entirely ruled
out. Another limitation is that RAPM test primarily assesses
analogical reasoning and does not capture other cognitive
traits that contribute to scientific creativity, such as divergent
thinking, deductive reasoning, and the like. Future work could

focus on developing a unified framework to assess multiple
cognitive dimensions of scientific creativity. Additionally, this
study opens avenues for developing computational models of
scientific creativity inspired by underlying biological mecha-
nisms.
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ability and personality variables on the improvement and creativity of
tactical decisions in basketball,” Frontiers in Psychology, vol. 15, p.
1450084, 2024.

[16] K. McGreggor, M. Kunda, and A. Goel, “Fractals and ravens,” Artificial
Intelligence, vol. 215, pp. 1–23, 2014.

[17] D. A. Joyner, D. Bedwell, C. Graham, W. Lemmon, O. Martinez, and
A. K. Goel, “Using human computation to acquire novel methods for
addressing visual analogy problems on intelligence tests.” in ICCC,
2015, pp. 23–30.

[18] S. W. Kwon, “Differences in neural current sources of science gifted and
normal children in creative reasoning,” Journal of Korean Elementary
Science Education, vol. 34, no. 1, pp. 131–141, 2015.

[19] K. McGreggor, M. Kunda, and A. K. Goel, “Fractal analogies: Prelim-
inary results from the raven’s test of intelligence.” in ICCC, 2011, pp.
69–71.

[20] Y. Liu, K. He, K. Man, and P. Zhan, “Exploring critical eye-tracking met-
rics for identifying cognitive strategies in raven’s advanced progressive
matrices: A data-driven perspective,” Journal of Intelligence, vol. 13,
no. 2, p. 14, 2025.

[21] A. Chuderski, J. Jastrzebski, B. Kroczek, H. Kucwaj, and M. Ociepka,
“Metacognitive experience on raven’s matrices versus insight problems,”
Metacognition and Learning, vol. 16, pp. 15–35, 2021.

[22] N. Friedman, T. Fekete, K. Gal, and O. Shriki, “Eeg-based prediction of
cognitive load in intelligence tests,” Frontiers in human neuroscience,
vol. 13, p. 191, 2019.

[23] T. Xu, J. Wang, G. Zhang, L. Zhang, and Y. Zhou, “Confused or not:
decoding brain activity and recognizing confusion in reasoning learning
using eeg,” Journal of Neural Engineering, vol. 20, no. 2, p. 026018,
2023.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 20XX 15

[24] T. M. Morin, K. N. Moore, K. Isenburg, W. Ma, and C. E. Stern,
“Functional reconfiguration of task-active frontoparietal control network
facilitates abstract reasoning,” Cerebral Cortex, vol. 33, no. 10, pp.
5761–5773, 2023.

[25] L. Anat, R. Reut, I. Nofar, T. Niv, S. Maayan, T. Galia, and L. Abigail,
“The role of the cerebellum in fluid intelligence: An fmri study,”
Cognitive Systems Research, vol. 83, p. 101178, 2024.

[26] Z. Chen, A. De Beuckelaer, X. Wang, and J. Liu, “Distinct neural
substrates of visuospatial and verbal-analytic reasoning as assessed by
raven’s advanced progressive matrices,” Scientific reports, vol. 7, no. 1,
p. 16230, 2017.

[27] H. U. Amin, A. S. Malik, M. Hussain, N. Kamel, and W.-T. Chooi,
“Brain behavior during reasoning and problem solving task: an eeg
study,” in 2014 5th International Conference on Intelligent and Ad-
vanced Systems (ICIAS). IEEE, 2014, pp. 1–4.

[28] S. Jawed, H. U. Amin, A. S. Malik, and I. Faye, “Hemispheric
asymmetries in electroencephalogram oscillations for long-term memory
retrieval in healthy individuals,” Brain Sciences, vol. 10, no. 12, p. 937,
2020.

[29] M. Ociepka, P. Kałamała, and A. Chuderski, “Take your time: Slow brain
rhythms predict fluid intelligence,” Intelligence, vol. 100, p. 101780,
2023.

[30] W. Luo and R. Zhou, “Can working memory task-related eeg biomarkers
measure fluid intelligence and predict academic achievement in healthy
children?” Frontiers in Behavioral Neuroscience, vol. 14, p. 2, 2020.

[31] H. U. Amin, A. S. Malik, N. Kamel, W.-T. Chooi, and M. Hussain,
“P300 correlates with learning & memory abilities and fluid intelli-
gence,” Journal of neuroengineering and rehabilitation, vol. 12, pp. 1–
14, 2015.

[32] S. Ghosh, A. Konar, and A. K. Nagar, “Analyzing the creative potential
of subjects using eeg-induced capsule graph neural network,” in 2024
International Joint Conference on Neural Networks (IJCNN). IEEE,
2024, pp. 1–8.

[33] N. Babu, U. Satija, J. Mathew, and A. Vinod, “Emotion recognition
in virtual and non-virtual environments using eeg signals: Dataset and
evaluation,” Biomedical Signal Processing and Control, vol. 106, p.
107674, 2025.

[34] Y. Zhang, J. Qu, Q. Zhang, and C. Cheng, “Eeg-based emotion
recognition based on 4d feature representations and multiple attention
mechanisms,” Biomedical Signal Processing and Control, vol. 103, p.
107432, 2025.

[35] C. Brunner, M. Billinger, M. Seeber, T. R. Mullen, and S. Makeig, “Vol-
ume conduction influences scalp-based connectivity estimates,” Frontiers
in computational neuroscience, vol. 10, p. 121, 2016.

[36] J. Park, J. Shin, and J. Jeong, “Inter-brain synchrony levels according
to task execution modes and difficulty levels: an fnirs/gsr study,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 30,
pp. 194–204, 2022.

[37] A. Fornito, A. Zalesky, and E. Bullmore, Fundamentals of brain network
analysis. Academic press, 2016.

[38] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[39] K. Qin, D. Lei, W. H. Pinaya, N. Pan, W. Li, Z. Zhu, J. A. Sweeney,
A. Mechelli, and Q. Gong, “Using graph convolutional network to
characterize individuals with major depressive disorder across multiple
imaging sites,” EBioMedicine, vol. 78, 2022.

[40] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: a comprehensive review,” Computational Social Networks,
vol. 6, no. 1, pp. 1–23, 2019.

[41] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[42] S. Anwer, H. Li, M. F. Antwi-Afari, A. M. Mirza, M. A. Rahman,
I. Mehmood, R. Guo, and A. Y. L. Wong, “Evaluation of data processing
and artifact removal approaches used for physiological signals captured
using wearable sensing devices during construction tasks,” Journal
of Construction Engineering and Management, vol. 150, no. 1, p.
03123008, 2024.

[43] R. Huang, K.-S. Hong, D. Yang, and G. Huang, “Motion artifacts
removal and evaluation techniques for functional near-infrared spec-
troscopy signals: a review,” Frontiers in Neuroscience, vol. 16, p.
878750, 2022.

[44] M. Laha, A. Konar, P. Rakshit, and A. K. Nagar, “Hemodynamic analysis
for olfactory perceptual degradation assessment using generalized type-2
fuzzy regression,” IEEE Transactions on Cognitive and Developmental
Systems, vol. 14, no. 3, pp. 1217–1231, 2021.

[45] M. Laha, A. Konar, and A. K. Nagar, “Olfactory perceptual-ability
assessment by near-infrared spectroscopy using vertical-slice based
fuzzy reasoning,” IEEE Access, vol. 11, pp. 17 779–17 792, 2023.

[46] S. Ghosh, A. Konar, and A. K. Nagar, “Cognitive assessment of scientific
creative-skill by brain-connectivity analysis using graph convolutional-
interval type-2 fuzzy network,” IEEE Transactions on Cognitive and
Developmental Systems, 2024.

[47] X. Wang, H. Ren, and A. Wang, “Smish: A novel activation function
for deep learning methods,” Electronics, vol. 11, no. 4, p. 540, 2022.

[48] D. Wu, “On the fundamental differences between interval type-2 and
type-1 fuzzy logic controllers,” IEEE Transactions on Fuzzy Systems,
vol. 20, no. 5, pp. 832–848, 2012.

[49] Y. Zhang, H. Ishibuchi, and S. Wang, “Deep takagi–sugeno–kang fuzzy
classifier with shared linguistic fuzzy rules,” IEEE Transactions on Fuzzy
Systems, vol. 26, no. 3, pp. 1535–1549, 2017.

[50] R. Zurrin, S. T. S. Wong, M. M. Roes, C. M. Percival, A. Chinchani,
L. Arreaza, M. Kusi, A. Momeni, M. Rasheed, Z. Mo et al., “Functional
brain networks involved in the raven’s standard progressive matrices task
and their relation to theories of fluid intelligence,” Intelligence, vol. 103,
p. 101807, 2024.

[51] A. E. Green, D. J. Kraemer, J. A. Fugelsang, J. R. Gray, and K. N.
Dunbar, “Neural correlates of creativity in analogical reasoning.” Journal
of Experimental Psychology: Learning, Memory, and Cognition, vol. 38,
no. 2, p. 264, 2012.

[52] A. E. Green, “Creativity, within reason: Semantic distance and dynamic
state creativity in relational thinking and reasoning,” Current Directions
in Psychological Science, vol. 25, no. 1, pp. 28–35, 2016.

[53] C.-Y. Kao, “How figurativity of analogy affects creativity: The appli-
cation of four-term analogies to teaching for creativity,” Thinking skills
and creativity, vol. 36, p. 100653, 2020.

[54] M. S. Vendetti, A. Wu, and K. J. Holyoak, “Far-out thinking: Generating
solutions to distant analogies promotes relational thinking,” Psycholog-
ical science, vol. 25, no. 4, pp. 928–933, 2014.

[55] “Appendix: Attached as a supplementary file in the submission portal.”
[56] N. Naseer and K.-S. Hong, “fnirs-based brain-computer interfaces: a

review,” Frontiers in human neuroscience, vol. 9, p. 3, 2015.
[57] H. Wang, X. Zhang, J. Li, B. Li, X. Gao, Z. Hao, J. Fu, Z. Zhou,

and M. Atia, “Driving risk cognition of passengers in highly automated
driving based on the prefrontal cortex activity via fnirs,” Scientific
Reports, vol. 13, no. 1, p. 15839, 2023.

[58] V. Kumar, M. Arya, A. Kumar, and D. K. Jhariya, “Design and compar-
ison between iir butterworth and chebyshev digital filters using matlab,”
in 2024 Fourth International Conference on Advances in Electrical,
Computing, Communication and Sustainable Technologies (ICAECT).
IEEE, 2024, pp. 1–7.

[59] E. Oja and Z. Yuan, “The fastica algorithm revisited: Convergence
analysis,” IEEE transactions on Neural Networks, vol. 17, no. 6, pp.
1370–1381, 2006.

[60] N. Selvaraj, Y. Mendelson, K. H. Shelley, D. G. Silverman, and K. H.
Chon, “Statistical approach for the detection of motion/noise artifacts in
photoplethysmogram,” in 2011 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. IEEE, 2011, pp.
4972–4975.

[61] A. Aarabi and T. J. Huppert, “Characterization of the relative con-
tributions from systemic physiological noise to whole-brain resting-
state functional near-infrared spectroscopy data using single-channel
independent component analysis,” Neurophotonics, vol. 3, no. 2, pp.
025 004–025 004, 2016.

[62] A. Grinsted, J. C. Moore, and S. Jevrejeva, “Application of the cross
wavelet transform and wavelet coherence to geophysical time series,”
Nonlinear processes in geophysics, vol. 11, no. 5/6, pp. 561–566, 2004.

[63] H. Zaynidinov, U. Juraev, S. Tishlikov, and J. Modullayev, “Application
of daubechies wavelets in digital processing of biomedical signals and
images,” in International Conference on Intelligent Human Computer
Interaction. Springer, 2023, pp. 194–206.

[64] B. C. Van Wijk, C. J. Stam, and A. Daffertshofer, “Comparing brain
networks of different size and connectivity density using graph theory,”
PloS one, vol. 5, no. 10, p. e13701, 2010.

[65] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The journal of machine learning research, vol. 13, no. 1, pp.
281–305, 2012.

[66] A. Khasnobish, A. Konar, D. N. Tibarewala, and A. K. Nagar, “By-
passing the natural visual-motor pathway to execute complex movement
related tasks using interval type-2 fuzzy sets,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 25, no. 1, pp. 91–
105, 2016.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 20XX 16

[67] A. Konar, Computational Intelligence: Principles, techniques and appli-
cations. Springer Science & Business Media, 2006.

[68] M. Laha, A. Konar, P. Rakshit, L. Ghosh, S. Chaki, A. L. Ralescu, and
A. K. Nagar, “Hemodynamic response analysis for mind-driven type-
writing using a type 2 fuzzy classifier,” in 2018 IEEE international
conference on fuzzy systems (FUZZ-IEEE). IEEE, 2018, pp. 1–8.

[69] R. Navarro-Almanza, M. A. Sanchez, G. Licea, and J. R. Castro,
“Knowledge transfer for labeling unknown fuzzy sets using grammar-
guided genetic algorithms,” Applied Soft Computing, vol. 124, p. 109019,
2022.

[70] S. Singh and S. Lalotra, “On generalized correlation coefficients of
the hesitant fuzzy sets with their application to clustering analysis,”
Computational and Applied Mathematics, vol. 38, no. 1, p. 11, 2019.

[71] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, “Neuro-fuzzy and soft
computing-a computational approach to learning and machine intelli-
gence [book review],” IEEE Transactions on automatic control, vol. 42,
no. 10, pp. 1482–1484, 1997.

[72] J. Duncan, M. Assem, and S. Shashidhara, “Integrated intelligence from
distributed brain activity,” Trends in cognitive sciences, vol. 24, no. 10,
pp. 838–852, 2020.

[73] F. Faul, E. Erdfelder, A.-G. Lang, and A. Buchner, “G* power 3: A
flexible statistical power analysis program for the social, behavioral,
and biomedical sciences,” Behavior research methods, vol. 39, no. 2,
pp. 175–191, 2007.

[74] “The database wbcds is uploaded in the google
drive,” 2025. [Online]. Available: https://drive.google.com/file/d/
1gVXlkzLJl8cMLlcb4-dw9mH8DMZ81OQA/view?usp=sharing

[75] “The database swicds is uploaded in the google
drive,” 2025. [Online]. Available: https://drive.google.com/file/d/
1hKOn56Spz9ZhRDpnw 9IE8HDVTIP1wkX/view?usp=sharing

[76] “The database nicds is uploaded in the google
drive,” 2025. [Online]. Available: https://drive.google.com/file/d/
1Bd1z5o8OJ-1vsvcDY5nqlVEe4ER72Vy-/view?usp=sharing

[77] S. Xu, M. J. Reiss, and W. Lodge, “Comprehensive scientific creativity
assessment (c-sca): A new approach for measuring scientific creativity
in secondary school students,” International Journal of Science and
Mathematics Education, vol. 23, no. 2, pp. 293–319, 2025.

[78] W. Aschauer, K. Haim, and C. Weber, “A contribution to scientific
creativity: A validation study measuring divergent problem solving
ability,” Creativity Research Journal, vol. 34, no. 2, pp. 195–212, 2022.

[79] G. A. of the World Medical Association et al., “World medical asso-
ciation declaration of helsinki: ethical principles for medical research
involving human subjects,” The Journal of the American College of
Dentists, vol. 81, no. 3, pp. 14–18, 2014.

[80] “The ethics committee report is uploaded in the google drive,”
2025. [Online]. Available: https://drive.google.com/file/d/12nKOUNfE
nXKzxiUlCOHBxr5qwXREKp3/view?usp=sharing

[81] M. L. Stanley, M. N. Moussa, B. M. Paolini, R. G. Lyday, J. H. Burdette,
and P. J. Laurienti, “Defining nodes in complex brain networks,”
Frontiers in computational neuroscience, vol. 7, p. 169, 2013.

[82] J. Molina del Rı́o, M. A. Guevara, M. Hernández González, R. M.
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