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Rotating spiral and scroll waves (vortices) are investigated in the FitzHugh-Nagumo model of excitable media. The
focus is on a parameter region in which there exists bistability between alternative stable vortices with distinct periods.
Response Functions are used to predict the filament tension of the alternative scrolls and it is shown that the slow-
period scroll has negative filament tension, while the filament tension of the fast-period scroll changes sign within
a hysteresis loop. The predictions are confirmed by direct simulations. Further investigations show that the slow-
period scrolls display features similar to delayed after-depolarisation (DAD) and tend to develop into turbulence similar
to Ventricular Fibrillation (VF). Scrolls with positive filament tension collapse or stabilize, similar to monomorphic
Ventricular Tachycardia (VT). Perturbations, such as boundary interaction or shock stimulus, can convert the vortex
with negative filament tension into the vortex with positive filament tension. This may correspond to transition from
VF to VT unrelated to pinning.
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Orderly contraction of the heart is essential to pump
blood efficiently. This order is imposed by electrical ex-
citation waves propagating throughout the heart mus-
cle. Abnormalities in the propagation of excitation waves,
known as arrhythmias, are responsible for many cardiac
pathologies. Particularly dangerous are re-entrant ar-
rhythmias, where excitation waves circulate along closed
pathways. Re-entrant excitation “vortices”, that are not
attached to anatomical features, are spiral waves in two
dimensions (2D) scroll waves in three dimensions (3D). As
a rule, the rotation frequency and shape of a spiral wave is
uniquely determined by local properties of the tissue. We
investigate a region of parameters in a simplified mathe-
matical model of excitation, in which two classes of vor-
tices can exist. They differ significantly in their frequency
and shape. Which of the two is realized, depends on the
initial conditions. The defining feature of the model, re-
sponsible for this dichotomy, is well known in heart elec-
trophysiology. It is called delayed after-depolarization and
is known to have a pro-arrhythmic effect. We focus espe-
cially on the three-dimensional scroll waves. Based on the
asymptotic theory utlizing Response Functions, we predict
a change of sign of the filament tension of the scrolls on
one of the branches. Negative tension is known to promote
“scroll wave turbulence”. We investigate, by numerical
simulations, specifics of this phenomenon in presence of
alternative scrolls. We describe conversion of one type of
vortex to the other under various perturbations, including
external shocks such as are used for defibrillation, inter-
actions with boundaries, and curvature of the scroll fila-
ments. Finally, we discuss implications of our findings for
cardiac arrhythmias.

I. INTRODUCTION

Spiral waves in two-dimensions, and scroll waves in
three-dimension, are regimes of self-organization observed
in physical1–3, chemical4,5, and biological6–11 dissipative sys-
tems, where wave propagation is supported by a source of en-
ergy stored in the medium. The interest in the dynamics of
these waves has significantly broadened over the years as de-
velopments in experimental techniques have permitted them
to be observed and studied in an ever increasing number of di-
verse systems12–19. However, the occurrence of these waves in
excitable media, and cardiac tissue in particular, has been and
continues to be one of the main motivating factors for their
study.

In most situations, a spiral wave in excitable media rotates
with a period determined uniquely by the medium. However,
there are cases in which there is bistability between alternative
waves in the same medium. It is precisely this case which is
of interest in this paper. Our particular concerns are (1) the
transitions between the alternative solutions, that is, how can
transition from one type of solution to the other be effected,
(2) the differences in the dynamics exhibited by alternative
scroll waves in the 3D setting, and finally (3) the relationship
these phenomena may have to cardiac electrophysiology.

Our study is based on the FitzHugh-Nagumo (FHN) model,
a standard two-component reaction-diffusion model capturing
the essential features of excitable media such as cardiac tissue.
The model is given by

∂tu = f(u, v) +∇2u, (1)
∂tv = g(u, v), (2)

where u and v are the dependent variables, corresponding
roughly to membrane voltage and ionic channels, respectively.
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The kinetic terms in the model are

f(u, v) = α−1(u− u3/3− v),
g(u, v) = α (u+ β − γv).

with parameters α, β, and γ. Space units are set such that the
diffusion coefficient is 1.

Typical solutions to the FHN model include rotating spiral
waves in 2D and rotating scroll waves in 3D. These waves,
whether in 2D or 3D, are commonly referred to vortices, al-
though they are unrelated to fluid vorticity. As already noted,
in most situations vortices rotate with a period determined
uniquely by the model parameters. However, it has been
shown by Winfree20 that for certain model parameters there
exist alternative stable spirals with distinct periods. A pair
of such stable spiral solutions in the FHN model is shown in
Fig. 1. We refer to the two solutions as slow and fast. The slow
spiral has a longer temporal period, larger spatial wavelength,
and larger core radius than the fast one. The longer period of a
slow vortex is due to the small extra loop near the fixed point
in the u-v phase portrait, Fig. 1(e), which manifests itself as
extra maximum in the tail of the action potential, Fig. 1(c):
the feature known as delayed after-depolarisation (DAD) in
cardiac electrophysiology21. The fast, shorter period vortices
do not show DADs in their action potentials, Figs. 1(d) and
1(f). We stress here that the analogy is phenomenological, as
the FHN model is too simplistic to incorporate the physiology
of real cardiac DADs. In cardiac action potentials, the addi-
tional hump (local maximum) in the action potential is due to
Ca2+ overload, which has a potentially oscillatory nature22.
In the FHN model, it is due to an oscillatory character of the
stable equilibrium. The common features are that the action
potential can possess, or not, the additional hump depending
on how the state was arrived at and the properties of resulting
spiral and scroll waves depend on the duration of the action
potential.

The shaded region in Fig. 2 shows the portion of parame-
ter space, for fixed γ = 0.5, where alternative vortices exist.
This region has been computed as part of the present study.
Fast spirals exist to the lower left while slow spirals exist to
the upper right. Within the cusp-shaped region both types of
vortices exist with bistability between them. The boundaries
of the bistable region are fold singularies (limit points) meet-
ing at a cusp, (α, β) ≈ (0.27, 0.8). Above the cusp, fast and
slow vortices are connected continuously. The thin vertical
line shows a representative one-parameter cut, α = 0.3, that
will be the focus of much of our study. The dashed line relates
to a 3D phenomenon which we now address.

In 3D, scroll waves are organized about filaments and the
possible behavior is richer than in 2D. (See e.g. Ref. 23.) Fil-
aments are not, in general, fixed in space but instead undergo
motion, typically on a slow timescale relative to the rotation
period. Hence, in addition to whatever dynamics 2D spiral
waves might have, scroll waves exhibit additional dynamics
associated with filament motion. (See for example 24–31 and
references therein.) Working in Frenet coordinates, the mo-
tion may be conveniently expressed in terms of the velocities
VN and VB in the normal and binormal directions, respec-
tively, at each point along the filament. Motion along the tan-
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FIG. 1. (Color online) A pair of alternative vortices for the same
model parameters: α = 0.3, β = 0.72, γ = 0.5. (Left) slow so-
lution and (right) fast solution. (a,b) spiral waves, shown as a com-
bined density plot of u-field (red component) and v-field (green and
blue components) and tip traces; (c,d) action potentials; (e,f) phase
portraits, enlarged in the area around the fixed point.

gential direction is of no physical significance and is equiva-
lent to reparametrization of the filament.

First semi-phenomenologically32 and later using asymp-
totics33–35, the equations of filament motion have been ob-
tained. At lowest order these are

VN = b2κ+ . . . , VB = c3κ+ . . . , (3)

where κ is the filament curvature. The coefficients b2 and c3
depend on properties of the medium and 2D spiral solutions.
The coefficient b2 is called the filament tension. To understand
this, consider a circular filament, i.e. a scroll ring. For posi-
tive b2 a scroll ring will contract somewhat as if the ring were
an elastic ring under tension. For negative b2, the ring will
expand, as though under negative tension. More generally in
the negative-tension case, filaments will increase in length and
eventually evolve into full scale autowave turbulence36. The
dashed curve in Fig. 2 indicates a change of sign of filament
tension discussed at length later in the paper. The coefficient
c3, which we shall call the binormal drift coefficient describes
the drift of a scroll ring perpendicular to the plane of the ring,
or more generally, the velocity component orthogonal to the
local plane of the filament.

The remainder of the paper is then devoted to understanding
the alternative vortices in 2D and 3D. We first consider rele-
vant asymptotic theory and discuss how Response Functions
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FIG. 2. (Color online) Portion of the parameter space of the
FitzHugh-Nagumo model containing alternative vortices. γ is fixed
at 0.5. Within the shaded cusp-shapped region both fast and slow
vortices exist. The thin vertical line at α = 0.3 shows the parameter
cut considered throughout the paper. The dashed curve marks a line
of zero filament tension. To the lower left of this curve fast vortices
have positive filament tension.
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FIG. 3. (Color online) Alternative vortices along the parameter cut
α = 0.30, γ = 0.5 shown in Fig. 2. Red squares are fast spirals
and blue circles are slow spirals. (a) Hysteresis loop in the rotation
frequency ω. (b) Prediction for filament tension b2. (c) Prediction
for the binormal drift coefficient c3.

can be used to predict the filament tension of the alternative
vortices. We then investigate the dynamics of the alternative
vortices in 2D and 3D through direct numerical simulations.
In addition to confirming the prediction, we study how the
alternative vortices can be converted one into another in a va-
riety of situations.

II. ASYMPTOTICAL PREDICTIONS

A. Filament tension and drift

At leading asymptotic order, the motion of scroll filaments
is determined by the two coefficients b2 and c3 appearing in
Eqs. (3). Once these coefficients are known, the most impor-
tant properties of filament dynamics, especially the sign of the
coefficient b2 determining the sign of the filament tension, are
determined.

The coefficients for filament motion in Eqs. (3) are given
by the following simple formula34,35

b2 + ic3 =
〈
W(1) , DV(1)

〉
, (4)

where angle brackets denote an inner product, V(1) is a Gold-
stone mode, W(1) is the corresponding Response Function
(RF), and D is a diffusion matrix. We now elaborate, although
we refer the reader to other publications for most technical de-
tails33,35,37–39.

First consider a rotating spiral wave solution of Eqs. (1)-(2).
It is convenient to work in a frame of reference co-rotating
with the spiral, at angular velocity ω. Denote the steady spiral
seen in this co-rotating frame by U = (u, v)T.

Now consider the linear stability of such a spiral. Due
to symmetries of the system, there will be three eigenvalues
given by λ = inω, with corresponding eigenvectors or Gold-
stone modes V(n), where n = −1, 0, 1. The n = 0 eigenvalue
and Goldstone mode is related to rotational symmetry and the
complex pair of eigenvalues and Goldstone modes n = ±1 is
related to translational symmetry.

In addition to the linear stability problem there is the asso-
ciated adjoint problem. The adjoints eigenmodes correspond-
ing to eigenvalues −inω are the RFs and are denoted W(n).
Thus one sees that to obtain the coefficients for filament mo-
tion in Eq. (4) we require the translational Goldstone mode
V(1) and corresponding Response Function W(1). D is just
the matrix of diffusion coefficients appearing in the reaction-

diffusion equations, so for Eqs. (1)-(2), D =
[

1 0
0 0

]
. The

angle brackets in Eq. (4) signify a straightforward integration
over space of the Hermitian product of the vector fields. We
note that similar methods employing RFs can be used to ob-
tain the drift velocities of vortices in response to perturbations
to Eqs. (1)-(2)39–42.

The prediction of filament tension, and more generally drift
velocities, relies on two conditions: firstly, the localization
of the RFs W(n) in the vicinity of the core of the spiral and
secondly, the ability to compute the RFs efficiently and ac-
curately. Existence of localized RFs has been demonstrated
for a broad range of the models’ parameters in several mod-
els42–48. A robust method to compute the RFs with good ac-
curacy for any model of excitable medium with differentiable
kinetics has been developed in Ref. 47, extending eariler sta-
bility methods49. Using these methods, we have computed
the steady spiral U, its rotational velocity ω together with the
Goldstone modes V(n) and the response functions W(n) for
model (1)-(2) on a disk of radius ρmax = 25 with Nθ = 64
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FIG. 4. (color online) Spiral waves, shown is the u-field (below, flat),
and their translational response functions
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surface) for (a) the slow solution, and (b) the fast solution; β = 0.72.

grid points in the angular direction and Nρ = 251 grid points
in the radial direction, see Fig. 4.

We focus now on the parameter path indicated in Fig. 2.
For α = 0.3 and γ = 0.5 the hysteresis loop in the spirals’
rotational velocity ω has been obtained by continuation in pa-
rameter β. As is seen in Fig. 3(a), for these parameters, alter-
native stable spiral wave solutions with distinct ω exist in the
range β` ≤ β ≤ βu, where β` ≈ 0.708, βu ≈ 0.740.

We have also computed the filament tension b2 and the drift
coefficient c3 along this parameter path and the results are
shown in Figs. 3(b) and 3(c). The most significant feature of
these results is the sign change of the filament tension within
the hysteresis loop. Below β = β∗ ≈ 0.722, the alterna-
tive vortices have filament tension of opposite signs: the fast
vortex has positive tension while the slow one has negative
tension. At β = β∗, the filament tension of the fast vortex
changes sign so that in the parameter range β∗ ≤ β ≤ βu, the
alternative vortices both have negative filament tension.

The binormal drift coefficient c3 computed in this parame-
ter cut is of fixed sign (negative). The graphs of this coefficient
for the alternative vortices cross at β ≈ 0.726.

B. Scroll rings and electrophoretic drift

There is a connection between filament motion of scroll
rings in 3D and the drift of spiral waves in response to ap-
plied electric fields (electrophoretic drift) in 2D. Both things
will appear in the subsequent numerical studies and it is ap-
propriate to summarize the issues here.

A scroll ring not only has a circular filament, but the entire
solution has an axial symmetry. It is convenient to study such
a structure in cylindrical coordinates (r, θ, z), where by sym-
metry, the solution is independent of θ. Hence the diffusion
term in Eq. (1) becomes

∇2u(r, z) =
(
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2

)
u(r, z).

In this way scroll rings may be studied using 2D numerical
computations as long as one is not interested in any symmetry-
breaking effects. Moreover, if one is interested in scroll rings
with small curvature κ, corresponding to rings of large fila-

ment radius R = 1/κ, one may use the approximation

∇2u(r, z) ≈
(
∂2

∂r2
+ κ

∂

∂r
+

∂2

∂z2

)
u(r, z). (5)

For small-curvature rings this is an exceedingly accurate ap-
proximation. In fact it is equivalent to considering only the
lowest-order curvature contributions as in Eqs. (3). We shall
use this approach to evaluate filament tension and drift. Note
that the normal to the scroll ring points in the outward radial
direction and so a positive normal velocity VN > 0 corre-
sponds to decreasing r, and vice versa.

Returning to the 2D Cartesian situation, if an electric field is
applied to an excitable medium, spiral drift may ensue26,50. If
we consider a reaction-diffusion system in which the u reagent
is electrically charged and the v is neutral, then the effect of
applying an electric field can be modeled by including a term

E ∂u
∂x
, (6)

on the right hand side of Eq. (1), where E is proportional to the
applied electric field, which is taken to be in the x direction.

For small values of E , the effect of such a term will be drift
of the spiral and one can calculate, using Response Functions,
the drift velocity 39,42,51. However, one can use the formal
equivalence26 between the term E∂u/∂x of Eq. (6) and the
term κ∂u/∂r in Eq. (5) to obtain the drift velocity for vortex
rings from the results for the applied electric field. Note, that
electrophoretic drift towards negative x corresponds to pos-
itive filament tension and towards positive x corresponds to
negative filament tension.

III. TWO-DIMENSIONAL SIMULATIONS

2D simulations have been performed with a suitably modi-
fied version of EZSPIRAL52. Unless specified otherwise, sim-
ulations have been performed using forward Euler timestep-
ping on a uniform Cartesian grid on square domains 40 ×
40 s.u. with non-flux boundary conditions, nine-point approx-
imation of the Laplacian, spatial discretization ∆x = ∆y =
h = 1/3 and time step ∆t = 3/80. The tip of the spiral
is defined as the intersections of isolines u(x, y) = u∗ and
v(x, y) = v∗, and the angle between ∇u at the tip and x axis
is taken as orientation of the tip. We use (u∗, v∗) = (0, 0).
Initial conditions for the alternative spirals have been com-
puted using parameter continuation and then converted into
the input format of EZSPIRAL.

A. Alternative vortices: conversion by a shock

First, to test if the alternative vortices can be converted from
one into another in a controllable way, we add a constant value
A to the fast variable u, uniformily throughout space, at a
specified time instant T .

u(x, y, t)→ u(x, y, t) +A, at t = T (7)
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FIG. 5. (Color online) Minimum shock amplitudes A needed to
convert one type of spiral into the other (solid lines, “Conversion”)
in comparison with the shock amplitudes for the elimination of spiral
waves (dashed lines, “Defibrillation”). Shocks applied to fast spirals
are indicated with (red) squares and those applied to slow spirals
are indicated with (blue) circles. Also shown is the narrow region
(yellow shaded, “Multiplication”) in which shocks to slow spirals
produce conversion to fast spirals with multiplication via front break-
up.

This may be considered as a crude model of a defibrillating
shock. We use a box size of 50 × 50 s.u., and in selected
simulations up to 150 × 150 s.u., with spatial discretization
h = 0.1 and time step ∆t = 2.25× 10−3.

The minimum shock amplitudes required to convert one al-
ternative vortex into another are shown in Fig. 5, together with
the corresponding “defibrillation thresholds” : the minimum
shock amplitudes that are sufficient for the complete elimina-
tion of spiral-wave activity.

It can be seen that, within the bistable parameter region
β` ≤ β ≤ βu, there are distinct intervals of behavior de-
marked by the values β1 ≈ 0.722 and β2 ≈ 0.736. Slow
spirals can be converted to fast spirals throughout most of,
but not all of, the region of bistability (circles connected by
solid curve in Fig. 5). For β > β2, which is near the limit of
the fast-spiral branch, we have not observed conversion from
slow to fast spirals. We find conversion from fast to slow
spirals (squares connected by solid curve in Fig. 5) in only
about half of the bistable region; conversion occurs only for
β1 ≤ β ≤ βu. Below β1 we have not observed conversion
from fast to slow spirals even as we increase A to the defib-
rillation threshold which eliminates spirals from the medium.
Empirically, β1 is very close to β∗, the value of β at which the
filament tension changes sign, but we have not investigated
how precisely or robustly this equality holds.

Thus we see that for β in the intermediate region between
β1 and β2 conversion in both directions is possible. For β` ≤
β ≤ β1 it is possible to convert a slow vortex into its faster
counterpart, but not conversely, while for β2 ≤ β ≤ βu it is
possible to convert a fast vortex into its slower counterpart,
but not conversely.

(a) (b) (c)

FIG. 6. (Color online) Shock conversion with multiplication at
β = 0.73. (a) Slow vortex with the large core before the shock. (b)
Front breaks immediately after a shock of amplitude A = 0.29. (c)
Multiple fast spirals with small cores, approximately 50.3 t.u. after
the shock.

We also observed conversion with multiplication from a
slow vortex with a large core into multiple fast vortices with
small cores, via break-up of some segments of excitation
fronts. This is illustrated in Fig. 6. This conversion with mul-
tiplication occurs in a very small range of shock amplitudes
just above the conversion amplitude, see the shaded region in
Fig. 5. Note that break-up of spiral waves by spatially uniform
shocks has been previously observed, e.g. Ref. 53, in cases
without bistability, but at shock magnitudes close to the defib-
rillation threshold. Here we observe it in a system with alter-
native spiral waves, at shock magnitudes significantly smaller
than the defibrillation threshold and only slightly above the
conversion threshold. We have not observed conversion with
multiplication from a fast spiral into multiple slow spirals by
any shock amplitude.

B. Conversion due to interaction with the boundary

To study how interaction with a boundary may bring about
conversion, we gently push the spiral towards a boundary us-
ing electrophoretic drift discussed in Sec. II B. Recall that as
discussed in that section, 2D electrophoretic drift is related to
the 3D phenomenon of filament tension, so that b2 < 0 (neg-
ative tension) corresponds to electrophoretic drift to the right
and b2 > 0 (positive tension) corresponds to drift to the left.

Representative simulations are shown in Fig. 7 at β = 0.71.
Simulations are started from the slow, large-core spiral. The
period of the spiral is T ≈ 16.8654. The spiral drifts from
its initial position to the right in agreement with the prediction
b2 < 0. It also moves up, as it should, since predicted drift
coefficient, c3 is negative. When the spiral nears a boundary,
its core radius decreases significantly and its period changes to
T ≈ 11.2964. The horizontal drift component changes sign
[Fig. 7(b)], corresponding to switching to b2 > 0. and the
spiral moves to the left rather than to the right. The binormal
component of drift changes magnitude but not sign.

At the top boundary, the spiral drifts to the left until it pins
to the top left corner of the box [Fig. 7(c)]. If the Neumann
boundary conditions (NBCs) at the top and bottom edges of
the box are changed to periodic boundary conditions (PBCs),
the fast spiral with a small core will continue to drift upwards
along the left boundary indefinitely [Fig. 7(d-f)].
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FIG. 7. (Color online) Conversion due to do interaction with a boundary. Simulations are started with a slow spiral at β = 0.71. The spiral is
induced to drift toward the right boundary by electrophoresis perturbation of amplitude E = 0.03. See supplementary material at [URL will
be inserted by AIP] for a movie of this simulation. (a-c) Three snapshots of the evolution with Neumann boundaries conditions on all four
sides. (d-f) Three snapshots of the evolution with Neumann boundaries conditions on right and left, and periodic boundary conditions on top
and bottom.

C. Conversion due to applied field

Electrophoretic driving of a sufficiently high magnitude can
itself cause conversion of vortices directly. Figure 8 shows
selected simulations illustrating this phenomenon. Figure 8(a)
shows that E = 0.035 is not strong enough to convert the slow
spiral into the fast, and indeed it allows the spiral to continue
to drift to the right boundary, at which the conversion happens.
Figure 8(b) shows the simulation with the threshold amplitude
E = 0.0472, allowing the conversion to happen well before
reaching the boundary. Finally, Fig. 8(c) shows a simulation
with E = 0.06 which is strong enough to convert the slow
spiral into the fast one almost immediately.

Figures 8(d-f) illustrate the combined effect of an elec-
trophoretic driving and defibrillation-style shock. Shocks of
various amplitudes are applied after 8 rotation periods of the
slow spiral. If the amplitude is sufficiently high, conver-
sion happens before the spiral reaches the boundary. In the
presence of electrophoretic driving with E = 0.03, we find
that the minimal shock strength required for conversion is
Aconv ≈ 0.1489 (the case shown in the figure), which is
slightly smaller than that Aconv ≈ 0.1789 required for con-
version in the absence of applied field (E = 0).

D. Verfication of predictions and effects of discretization

Before proceeding to 3D simulations, we compared the pre-
dictions for the filament tension b2 and binormal drift coef-
ficient c3 obtained via RFs in Sec. II, with direct 2D com-
puter simulations of axisymmetric scroll rings as discussed in
Sec. II B. From the motion of the axisymmetric filament in the
radial (normal) and vertical (binormal) directions we obtain
the coefficients b2 and c3. In 2D, it is possible to perform sim-
ulations to very high spatial resolution with reasonable cost
and hence we are also able to study in detail the effects of
numerical resolution.

Simulations of electrophoretic drift at E = 0.01 have been
conducted for the fast vortex over a variety of regular grids
with spacings ∆r = ∆z = h. Results are shown in Fig. 9 for
two values of β: β = 0.71, a typical case away from where
b2 crosses zero in Fig. 3, and β = 0.722, a case very near the

zero crossing of b2. In the typical case, left column of Fig. 9,
both b2 and c3 converge extremely well as the grid size goes to
zero to the predicted values given by Eq. (4). The convergence
is quadratic, i.e. linear in h2, as is consistent with the second-
order accuracy of the numerical simulation.

The case shown in the right column of Fig. 9, where the
predicted value of b2 is small, is more problematic. Again, c3
converge extremely well, and with the expected form, to the
predicted result. The convergence of the tension b2 is less sat-
isfying, both in the form of the convergence and in the asymp-
totic value. The exact reasons for this are outside the focus of
the current study. The important point is the sign change of b2
seen in the right column of Fig. 9 due to finite resolution. This
means that a 3D numerical simulation performed at even high
resolution, e.g. h = 0.2 will be qualitatively different from a
fully resolved simulation at these parameter values, since the
simulated filament tension will be negative whereas the fully
resolved tension is positive.

The conclusion is that the filament tension and binormal
drift predicted from RFs and plotted in Fig. 3 are borne out by
direct numerical simulations. Nevertheless, 3D simulations
should only be performed for the model parameters such that
the discretization does not qualitatively affect the simulations
by artificially changing the sign of the filament tension. For
the parameters we consider, this means to the left (β ≤ 0.71)
or the right (β ≥ 0.73) sides of zero crossing of b2 in Fig. 3.

IV. THREE-DIMENSIONAL SIMULATIONS

We have seen in Sec. III that it is possible convert between
fast and slow vortices in 2D by a variety of mechanisms, such
as interactions with boundaries and shocks. These effects will
also exist in 3D, but in 3D the additional effects arising due
to filament curvature and filament tension can be hugely im-
portant. This is especially so in the region where, according
to predictions of Sec. II, the alternative vortices have opposite
signs of filament tension.

Simulations have been performed with a version of
EZSCROLL54 modified for FHN kinetics. The simulations
use forward Euler timestepping on a uniform Cartesian grid on
cuboid domains of varying size with non-flux boundary con-
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(a) (b) (c) (d) (e) (f)

FIG. 8. (Color online) Conversion due to applied fields. All simulations start from a slow spiral at β = 0.71. (a-c) Three simulations for field
strengths (a) E = 0.035, (b) E = 0.0472, (c) E = 0.06. In (a) conversion occurs at the boundary, whereas for (b,c) conversion occurs due
to sufficiently strong electrophoretic drift. (d-f) Three snapshots of a single simulation with E = 0.03. After 8 rotations a shock of strength
A = 0.14889 is applied resulting in conversion.
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FIG. 9. (Color online) Numerical convergence of b2 and c3 from nu-
merical simulations of electrophoretic drift. The fast vortex is sim-
ulated over regular grid spacings ∆r = ∆z = h as indicated. Left
column: β = 0.71, a typical case away from b2 = 0. Both co-
efficients converge quadratically in h to the values predicted by RFs
(blue dashed lines). Right column: β = 0.722, a case close to b2 = 0
where filament tension is small. c3 converges quadratically while the
convergence of b2 is less clear. Importantly, except at very high res-
olution the tension in the simulation is of the opposite sign from the
asymptotic result.

ditions, nineteen-point approximation of the Laplacian, space
discretization step ∆x = ∆y = ∆z = h = 1/3 and time
discretiation step ∆t = 3/80. Numerical determination of the
instant position of scroll filaments is technically challenging,
and we use an easy substitute: the instant phase singularity
lines, defined as the intersections of isolines u(x, y) = u∗
and v(x, y) = v∗. Such singularity lines correspond to spi-
ral tips in 2D, and like a spiral tip rotates around the current
rotation center, so a singularity line rotates around the current
filament. We also assume that inasmuch as the twist of scroll
waves is insignificant, then the curvature of the singularity line
is close to the curvature of the filament, so we take the former
as an approximation of the latter. As with 2D simulations in
EZSPIRAL, we use (u∗, v∗) = (0, 0), with some exceptions
described later. Initial conditions for alternative scrolls are
obtained by first computing alternative spirals on a polar grid,
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FIG. 10. (Color online) Evolution of a fast helical scroll with positive
filament tension at β = 0.71. The domain has Neumann boundary
conditions. (a-f) The filament straightens up (the numbers under the
snapshots show corresponding time in timeunits); (g) action poten-
tials with blue crosses marking the times at which two of the snap-
shots are taken. Singularity lines are used as approximations to the
scroll filament.

using methods described in Ref. 47, then converting these so-
lutions to Cartesian coordinates and “stacking” spirals on top
of one other to generate 3D scroll waves.

It is more difficult in 3D than in 2D to use core size and vi-
sual inspection to distinguish between fast and slow vortices.
However, point records of the action potentials, u(t) at some
fixed location, may clearly distinguish the two types of vor-
tices (recall Fig. 1). Slow vortices have extra maxima in the
tails of their action potentials, the DADs, while fast vortices
do not, no DADs. This method of distinguishing between vor-
tices assumes that the whole solution consists of only slow or
only fast vortices. A more sophisticated method free from this
assumption is described later.

A. Alternative vortices with opposite signs of filament
tension

The first case we consider is at β = 0.71, where the fast and
slow vortices have opposite signs of filament tension. Simula-
tions have been conducted in a box of size 50× 50× 50 s.u.,
with Neumann boundary conditions (NBCs) on all sides. Sim-
ulations are started from alternative vortices with filaments in
the form of helices constructed by layering 2D solutions such
as to create a helical scroll with one turn from bottom to top.
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FIG. 11. (Color online) Evolution of a slow helical scroll with neg-
ative filament tension at β = 0.71. Same domain and parameters as
for the fast vortex in Fig. 10. (a-f) (Top) isosurfaces of the u-field;
(middle) filament only (as in Fig. 10). (g) action potentials with blue
crosses marking the times at which the snapshots are taken. The helix
initially expands as expected for negative tension, but then undergoes
conversion and contracts. See supplementary material at [URL will
be inserted by AIP] for a movie of this simulation.

The radius of the helix is 2 s.u. We expect that the filament of
the fast vortex with positive filament tension will straighten up
while slow vortex with negative filament tension will expand,
possibly breaking up and developing into turbulence.

Figure 10 shows the evolution of the fast vortex with pos-
itive filament tension. As expected, the filament straightens
up, see Fig. 10(a-f). The record of corresponding action po-
tential, Fig. 10(g), shows that there is no conversion into the
slow alternative vortex: no DADs appeared.

Figure 11 shows the evolution of the slow vortex with neg-
ative filament tension. First, the filament expands as expected.
However, after five full rotations, the vortex spontaneously
changes its period and converts into its fast counterpart with
positive filament tension, and we see DADs disappearing at
this moment in Fig. 11(g). The fast, positive filament ten-
sion vortex subsequently contracts, see Fig. 11(d-f), and dis-
appears.

B. Conversion due to curvature

To identify the cause for the spontaneous conversion in the
simulations just discussed, we have repeated the simulation
with the slow helical vortex in different domain sizes with pe-
riodic boundary conditions (PBCs) on the top and bottom of
the domain, and NBCs elsewhere.

In this series of simulations, we start from a helical fila-
ment with one full turn from bottom to top. We monitor the
mean radius of the projected filament onto the base of the box.
Initially the projection is a circle. The initial helical filament
expands. As this expansion is inherently unstable, the pro-
jections of the filament onto the base very soon cease to be
circular. See Figs. 12-14.

Figure 15(a) shows how the mean radius of a vortex fila-
ment’s projection changes every period in the boxes 50×50×
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FIG. 12. (Color online) Conversion of a slow helical vortex into a fast
one at β = 0.71. Domain size is 50× 50× 50 s.u. with PBC on top
and bottom and NBC elsewhere. (a-f) evolution of the filament (top
row) and projections of the filament onto the base of the box (second
row) shown in red, with the barycenter shown as a blue cross and the
mean radius shown as the green circle. (g) action potentials (u-field
against time t), blue crosses correspond to the times at which the
snapshots in (a-f) are taken, and the period number is shown on the
upper axis. (h) period T plotted against time t.

50 s.u., 50× 50× 100 s.u. and 70× 70× 50 s.u. The vertical
lines show the time at which conversion happens in each box,
as indicated by the morphology of the point records. It can be
seen that in the boxes 50× 50× 50 s.u. and 70× 70× 50 s.u.,
both of height Lz = 50 s.u., conversion happens at approx-
imately the same time, regardless of the width of the box.
Whereas in the box 50× 50× 100 s.u. with the height 100s.u.
conversion happens much later than in the other two cases.
Comparing the simulations in boxes 50 × 50 × 50 s.u. and
50× 50× 100 s.u., one can conclude that interaction with the
boundary is probably not the main factor in the conversion, as
it takes significantly different times in the boxes of the same
width, and similar times in boxes of different widths.

Critical curvature is a more plausible cause for conversion.
On qualitative level, larger Lz means smaller initial curvature
and, by Eq. (3), slower evolution. This is indeed what hap-
pens: the helix with Lz = 100 expands more slowly than
those with Lz = 50, see Fig. 15(a). Thus it will take longer
for the filament curvature to reach any particular value, e.g. its
critical value.

To quantify this argument, consider an ideal helix whose
curvature κ depends on the radius of its projection ρ as

κ =
ρ

ρ2 + (Lz/2π)2
, (8)

where Lz is the height of the helix making one full turn. Fig-
ure 15(b) shows how the curvature κ of an ideal helix changes
with ρ, for the selected values of Lz . The important feature



9

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

(a) (b) (c) (d) (e) (f)

-2

-1

 0

 1

 2

121110987

u

(g)

 8

 12

 16

 20

189.376177.835166.522151.641134.939117.496

T

t

(h)

FIG. 13. (Color online) Same as in Fig. 12 except with a box of size
50× 50× 100 s.u.
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FIG. 14. (Color online) Same as in Fig. 12 except with a box of size
70× 70× 50 s.u.

is that the curvature of a helix increases with ρ up to a certain
maximum which depends onLz . The largerLz , the slower the
growth of κ with ρ and the smaller the maximum. For com-
parison, we also show on Fig. 15(b) the curvature κcrit, which
causes immediate conversion. This is known from the 2D sim-
ulation shown in Fig. 8(c) where E = 0.06 causes immediate
conversion. Again using the formal equivalence between elec-
trophoresis and curvature (Sec. II B), we have κcrit = 0.06.

These graphs imply that for an ideal vortex, the conver-
sion due to curvature will happen later for larger Lz , which
is in qualitative agreement with the observations shown in
Fig. 15(a). However, there is no quantitative agreement. This
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FIG. 15. (Color online) Curvature evolution. (a) The mean radius,
ρ, of the (x, y) projection of the filament, against the period number,
NT . The vertical lines separate the slow region (to the left of the line)
from the fast region (to the right). (b) Dependence of the curvature,
κ, on the radius of the projection, ρ, using Eq. (8) for an ideal helix.
The horizontal line is the critical curvature, κcrit.

is likely because the shape of the filaments very soon deviates
from an ideal helix.

We have explicitly calculated the curvature of the filaments
using numerical differentiation with Tikhonov regularization.
The details of the procedure can be found in the Appendix (see
supplementary material at [URL will be inserted by AIP]).
The results of this analysis are presented in Fig. 16(a) and
Fig. 17(a), with the local curvature shown against z coordinate
on the filament, for selected values of the scroll period num-
bersNT . We see that the curvature grows very non-uniformly,
both along the filament and in time.

To detect the conversion visually, so as to be more precise
about time and location of the conversion, we have analyzed
the fine structure of the scroll cores, using a modified version
of the instant phase singularities: u∗ = −1.04, v∗ = −0.656.
The idea is that the point (u∗, v∗) is within the small loop
of the phase trajectory shown in Fig. 1(c), and existence of
such a loop is the signature of slow scrolls. Using this defi-
nition, slow scrolls are characterized by a double singularity
line, whereas the fast scrolls have a single singularity line.
See Fig. 16(b-d) and Fig. 17(b-d). One can see that the con-
version is indicated by the departing of the secondary singu-
larity from the main one following the period in which the
filament curvature (obtained for the standard, “robust” singu-
larity u∗ = v∗ = 0) has exceeded threshold on a substantial
continuous interval. We see this as a confirmation that cur-
vature of the filament is the likely cause of the conversion in
these simulations.

C. Dynamics of alternative ring vortices

We have also considered the dynamics of alternative scroll
rings with filament tension of opposite sign at β = 0.71. One
expects that, at least initially, a ring with positive tension will
drift and contract, while a ring with negative filament tension
will drift and expand. We are interested in the long-term dy-
namics of such rings.

A quarter of a scroll ring with positive filament tension is
initiated in a cubical box of size 50× 50× 50 s.u. Two cases
have been considered. In one the box has Neumann boundary
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FIG. 16. (Color online) Curvature and conversion in the 70× 70× 50 s.u. domain corresponding to the simulation shown in Fig. 14. (a) The
curvature against z coordinate on the filament, for selected values of the scroll period numbersNT . (b,c,d): the double-singularity visualization
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FIG. 17. (Color online) Same as in Fig. 16, except for the 50× 50× 50 s.u. simulation shown in Fig. 13.
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FIG. 18. (Color online) Evolution of a fast scroll ring with positive
tension at β = 0.71. One quarter of the ring is simulated in a do-
main with Neumann boundary conditions on four sides and periodic
boundary conditions one the top and bottom. Visualizations and time
series are as in previous figures.

conditions on all sides (not shown) and in the other the box
has Neumann boundary conditions on four sides and periodic
boundary conditions on the top and bottom (case shown in
Fig. 18). The initial radius of the ring is ≈ 25 s.u. and meets
two adjacent sides at right angles as seen in Fig. 18(a).

The scroll drifted upwards, remaining essentially flat. In
the case with Neumann boundary conditions on all sides,
the ring approaches the upper boundary where it shrinks and
eventually disappears in a top corner of the box. With peri-
odic boundary condition, as seen in Fig. 18, instead of col-
lapsing, the ring drifts upwards continuously and reaches an
asymptotic constant radius. In a way, this perpetual move-

ment is similar to what was observed in 2D simulations
of electrophoretic drift with periodical boundary conditions,
Fig. 7(d-f).

The existence of the stable vortex rings in excitable me-
dia was first reported by Winfree55 and confirmed experimen-
tally, see e.g. Ref.30. The upward component of the ring’s
velocity at the chosen set of model parameters is in agreement
with the asymptotic theory which gives c3 < 0 for β = 0.71.
More importantly, it seems that the positive filament tension,
b2 > 0, on its own may be not enough for a ring to collapse. It
seems that, in the absence of other perturbations, the positive
filament tension shrinks a ring vortex just to a stable mini-
mum radius not equal to zero, while the internal interaction of
parts of the vortex prevents it from complete collapse. Note
that in simulations of vortex rings with positive filament ten-
sion, with both Neumann and periodic boundary conditions,
no conversion of the fast vortex into its slow counterpart has
been observed.

Now consider the evolution of the slow vortex ring with
negative filament tension shown in Fig. 19. The model pa-
rameters are the same as in the previous simulation although
here we show the case with Neumann boundary conditions
on all sides of the domain. In accordance with the negative
filament tension, the ring initially expands [Fig. 19(a-b)] and
becomes non-planar. After five rotations the vortex converts
into its fast counterpart (with positive tension), as seen in the
action potential recordings in Fig. 19(g). From this point the
vortex propagates to the top boundary where it contracts and
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FIG. 19. (Color online) Evolution of a slow scroll ring with negative
tension at β = 0.71. The simulation is initiated with a quarter of the
ring in a domain with Neumann boundary conditions on all sides.
Visualizations and time series are as in previous figures.

disappears in the top corner, Fig. 19(c-f).
In case of periodic boundary conditions (not shown) the

scenario is: expansion due to negative tension followed by
conversion to the fast vortex with positive filament tension,
followed by contraction to a stable ring with a nonzero ra-
dius, similar to Fig. 18. The same type of scenario was first
reported by Sutcliffe and Winfree56 who explained it by the
twist of the filament. Here we have demonstrated that the
switching from expansion to contraction could be due to sim-
ple switching from a vortex with negative filament tension to
its counterpart with positive filament tension.

D. Alternative vortices with negative filament tension

At β = 0.73, the alternative solutions both have negative
filament tension, as can be seen Fig. 3. Still, only the slower
vortex displays DADs in its action potentials. As we know
from the 2D studies [Fig. 5], at these model parameters con-
version is possible both ways, from slow to fast and from fast
to slow vortex.

First we consider the evolution of a helical vortex initiated
from the fast spiral shown in Fig. 20. Simulations are in a box
of size 50× 50× 50 s.u., with Neumann boundary conditions
on all sides. The filament initially expands due to negative
tension, but quickly converts to the slow scroll after just two
rotations. See the DADs appeared in Fig. 20(g). The slower
vortex continues to expand and then converts back to the fast
vortex after 14 periods. Since both alternative vortices have
negative tension, eventually full fibrillation with multiple fil-
aments develops as is seen Fig. 20(c). There are no further
spontaneous conversions, and the fast vortex with negative fil-
ament tension continues to evolve. However, we see a gradual
reduction in the number of filaments until only a single tiny
piece persists in the bottom right corner of the box.

Thus far, we have observed only spontaneous conversion
between alternative vortices in 3D. It is important for cardio-
logical applications to verify whether 3D vortices can be con-
verted by a shock. Having the prolonged period of slow vortex
evolution in the simulation shown in Fig. 20(g), we have re-
peated the simulation and this time applied a uniform shock,
Eq. (7), to the slow vortex. The action potential time series,
but not the visualization, are shown in Fig. 20(h). A shock of

(a) 15.863 (b) 163.688 (c) 349.763 (d) 2733.450 (e) 5240.925 (f) 5418.938

-2

-1

 0

 1

 2

15.863 163.688 349.763 2733.450 5240.925 5418.938

Time

V
o

lt
ag

e

(g)

-2

-1

 0

 1

 2

 0  100  200  300  400  500  600  700

Time

V
o

lt
ag

e

(h)

FIG. 20. (Color online) Evolution when alternative scrolls both have
negative filament tension, β = 0.73. Simulations start with a fast
helical scroll. The boundary conditions are Neumann on all bound-
aries. (a–f) (Top row) isosurfaces of the u-field; (second row) fila-
ments only. (g) Action potentials with blue crosses marking the times
at which the snapshots are taken. (h) Action potentials for a simula-
tion with the same initial and boundary conditions, but with a shock
stimulus applied at the instant marked with a blue dot).

amplitude A = 0.8 is applied just after the third slow vortex
period. The shock successfully converts the slow vortex into
its fast counterpart. The rest of the evolution of the fast scroll
was similar to Fig. 20(a-f): development of the full fibrillation
followed by gradual reduction of the number of filaments in
the box to just a single tiny persistent piece in the top right
corner of the box, but in approximately half of the time taken
without the shock.

V. DISCUSSION

In this study we have investigated dynamics of alternative
spiral and scroll waves in the FitzHugh-Nagumo model, in
a parameter region of bistability between distinct alternative
vortices. Some of the features have been noted already by
Winfree20 who discovered such alternative solutions. Here we
have extended those studies and related them to the asymp-
totic theory of spiral and scroll wave dynamics. The most
important features are:

1. There is a parameter region in FHN model where
stable alternative spiral wave solutions, with differ-
ent rotation frequencies, exist. Faster spiral waves
have the normal morphology of the “action potential”
whereas the slower spiral waves show “delayed after-
depolarization” morphology.

2. The alternative vortices can convert one into the other
as a result of a variety of perturbations, such as a homo-
geneous pulse stimulus or interaction with a boundary.
There are distinct parametric regions where this transi-
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tion may occur in one direction only, either from slow
to fast vortex or from fast to slow, as well as the re-
gions where the transition can occur in both directions.
Conversion of a single slow vortex into multiple fast
vortices is also possible.

3. The conversion effects of spirals can also be observed
for scroll waves. In addition, scroll waves can demon-
strate spontaneous conversion apparently related to the
filament curvature.

4. In accordance with the predictions of the asymptotic
theory, the alternative scroll waves have significantly
different filament tensions. In particular, the filament
tension of the faster scroll waves changes sign in the
parametric interval considered, whereas the slow scroll
waves have negative filament tension in this interval.
Therefore, there exists a parameter region where the fast
vortex with positive filament tension has a slow coun-
terpart with negative filament tension, and a parameter
region where both alternative vortices have negative fil-
ament tension. The scrolls with positive filament ten-
sion have tendency to contract, or straighten up if the
filament connects opposite surfaces of the box. The
vortex rings with positive filament tension might have
a stable radius not equal to zero, and collapse only due
to an additional perturbation, e.g. hitting the boundary
perpendicular to the axis of the ring.

The scrolls with negative filament tension have the ten-
dency to lengthen and multiply, which can lead to “scroll wave
turbulence”, phenomenologically similar to certain stages of
cardiac fibrillation. However, interaction of different scroll
filaments with each other and/or with the boundary may lead
to the stabilization of the scrolls notwithstanding the effects of
the filament tension, as was observed previously (e.g. Ref. 34
p. 139) and in simulations presented here. Therefore, in
three dimensional experiments and simulations the stabilized
scrolls with negative filament tension may behave identically
to the scrolls with the positive filament tension, and the only
way to distinguish between them is to compute/measure their
response functions.

The conversion processes summarized in points 2 and 3
above are essentially threshold effects and so are not asymp-
totic in nature. However, there are examples where (non-
asymptotic) analytical approaches have been successful in
describing threshold phenomena,57. Following the idea of
Ref. 57, it may be possible to describe conversion of spiral
waves in response to external stimuli using center-stable space
of the unstable spiral wave solutions, which presumably sep-
arates (in the functional space) the stable alternative spirals
observed in simulations.

Assuming that the above features are present in other mod-
els, including more physiologically realistic ones, one may
conjecture the following scenarios, which may be relevant to
cardiac electrophysiology.

Shock-induced conversion of fibrillation to tachycardia.
Suppose the cardiac tissue fibrillates due to “scroll turbu-
lence” mechanism, underlied by slow scrolls. Such slow

scrolls are likely to convert to fast scrolls either due to cur-
vature or to interaction with each other or with boundaries.
However this may take a long time. An electric shock which
is too weak to instantly defibrillate, may still be enough to
convert from slow to fast scrolls. If the fast scrolls have posi-
tive filament tension, this may lead to “delayed defibrillation”,
when the fibrillation stops via collapse of all scrolls, but only
many cycles after the shock, or to “tachycardia” when the fast
scrolls would stabilize either by connecting opposite surfaces
of the tissue (say transmural filaments) or by attaching to lo-
calized inhomogeneities or anatomical features.

If the corresponding fast scrolls have negative filament ten-
sion, they might stabilize due to interaction with each other
and with the boundary, leading to tachycardia indistinguish-
able from the one with positive filament tension and without
pinning to anatomical obstacles.

Intermittent fibrillation. If both alternative scrolls have neg-
ative filament tension and can be converted equally one into
another, then a relatively weak external shock applied to the
stabilized fast scroll can convert it back into the slow one,
which will initiate another, may be prolonged fibrillation pe-
riod before eventual conversion and stabilization back into
tachycardia.

The FitzHugh-Nagumo model is admittedly very far
from realistic cardiac models. However, delayed after-
depolarization is indeed known in electrophysiology, and
known to have arrhythmogenic effect21,58. The presence of
DADs will add to the period of the vortices, and the tendency
of vortices with longer periods to have negative filament ten-
sion is universal32 and not restricted to the FHN model. The
coexistence of vortices with different periods and different fil-
ament tensions is key to the effects we have described. Hence
we believe that the basic phenomenology involved in our re-
sults is not restricted to FHN and may be observed in any ex-
citable media with DADs, and so is likely to be relevant to
cardiac electrophysiology. This capacity of DAD is distinct
from its well-known role as a mechanism of arrhythmia initi-
ation.
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