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Abstract

Diverse mutant vectors play a significant role in the performance of the Differential Evolution (DE). A mutant vector is
generated using a stochastic mathematical equation, known as mutation strategy. Many mutation strategies have been proposed
in the literature. Utilizing multiple mutation strategies with the help of an adaptive operator selection (AOS) technique can
improve the quality of the mutant vector. In this research, one popular AOS technique known as perturbation adaptive pursuit
(PAP) is integrated with the DE algorithm for managing a pool of mutation strategies. A community-based reward criterion
is proposed that rewards the cumulative performance of the whole population. The proposed approach is called ‘Dynamic
Mutation Strategy Selection in Differential Evolution using Perturbed Adaptive Pursuit (dmss-DE-pap)’. The performance of
dmss-DE-pap is evaluated over the 30D and 50D optimization problems of the CEC 2014 benchmark test suite. Results are

competitive when compared with other state-of-the-art evolutionary algorithms and some recent DE variants.

Keywords Differential evolution - Evolutionary optimization - Meta-heuristics - Adaptive pursuit strategy - Mutations

Mathematics Subject Classification 68W50 - 68T05 - 68T20 - 90C59

Introduction

Recently, the popularity of population-based evolution-
ary algorithms (EAs) has grown extensively due to their
robust capabilities in solving complex real-world optimiza-
tion problems [1]. The optimization problems arise across
various disciplines of science and engineering, including
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domains like data mining, machine learning, and artificial
intelligence [2, 3]. The objective function(s) associated with
such optimization problems are defined over high-dimen-
sional search spaces and are highly non-linear, non-convex,
and non-differentiable. The lack of gradient-specific infor-
mation coupled with high computational cost makes many
traditional optimization techniques obsolete or difficult to
use [4]. Evolutionary algorithms (EAs) are modern stochas-
tic optimization techniques that follow a non-conventional
gradient-free approach. These algorithms do not assume any
specific properties like linearity, continuity, or convexity
regarding the underlying objective function(s) and follow the
principles of minimal information availability [5]. However,
due to their stochastic search behavior, these algorithms are
prone to stuck in the regions of local optimal solution(s)
and may suffer stagnation or premature convergence [6, 7].

The Differential Evolution (DE) algorithm is a popular
population-based evolutionary algorithm [8]. It involves two
stochastic operations, namely mutation and crossover, and
three control parameters: population size (N), scaling factor
(F), and crossover rate (CR). First, a population of N repre-
sentative solutions (known as vectors in DE terminology)
is randomly initialized in the search space, and then new
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solutions are generated using stochastic mathematical equa-
tions. These stochastic mathematical equations are referred
to as mutation strategies in the DE literature and are used to
define the DE mutation operator [9-11]. It has been studied
that the performance of the DE algorithm is significantly
affected by the choice of mutation strategy defining the
mutation operator [12, 13]. The inappropriate choice of
mutation strategy may lead to premature convergence in the
DE algorithm [13-15].

To improve this performance issue, the utilization of
multiple mutation strategies with adaptive control parameter
settings in a single run of the DE optimization procedure
was first proposed in the SaDE algorithm [16]. Then,
following similar research direction, different DE variants,
like EPSDE [17], CoDE [18], MPEDE [19], EDEV [20],
MMRDE [21], and DISDE [22] were proposed that utilize
multiple mutation strategies. However, it is interesting to
note that the idea of utilizing multiple mutation strategies
in an online manner in the DE algorithm can be seen as
equivalent to implementing the adaptive operator selection
(AOS) technique for selecting various mutation strategies.
Three major research questions may appear while utilizing
multiple mutation strategies. The first question is how many
mutation strategies should be utilized, the second question
is what type of mutation strategies should be utilized,
and the third question is how to utilize them for optimal
performance. This research focuses on studying the third
question that is how to utilize multiple mutation strategies
in order to obtain optimal performance. Major contributions
of this research work are as follows.

e An adaptive operator selection (AOS) technique, known
as the perturbation adaptive pursuit (PAP) strategy,
is integrated with DE for utilizing multiple mutation
strategies in a single run.

e A community-based reward criterion is proposed in
which a selected mutation strategy is credited with
a positive or negative reward based on its cumulative
performance on the population.

e For saving the computationally intensive task of manual
parameter tuning, the success-history-based parameter
adaption technique is employed for adapting scalar
factor F, and crossover rate CR during the optimization
procedure. A linear population reduction scheme is
utilized for adapting the population size.

e Experiments are conducted on CEC 2014 benchmark
problems and experimental results are compared with
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some other evolutionary algorithms and DE variants uti-
lizing multiple mutation strategies for a fair comparison.

The rest of the paper is organized as follows: Background
for this research is given in section “Background”. A brief
discussion on the perturbed adaptive pursuit (PAP) is given
in section “The Adaptive Pursuit Strategy”. The detailed
discussion on the proposed dmss-DE-pap algorithm is
given in section “Dynamic Mutation Strategy Selection
in Differential Evolution Using Perturbed Adaptive
Pursuit (dmss-DE-pap)”. Experimental results are given
in section “Experimental Results” and a discussion of
the obtained results is given in section “Discussion”.
Section “Conclusion” concludes the research.

Background

In this section, first, the working procedure of the
canonical DE is discussed. Then a brief review of DE
variants incorporating multiple mutation strategies is
given. Since the idea of utilizing multiple mutation
strategies in a single run of the optimization procedure
is similar to the technique of adaptive operator selection
(AOS), some relevant AOS techniques are also discussed
for the sake of completeness.

Canonical Differential Evolution Algorithm

The Differential Evolution (DE) algorithm is a popula-
tion-based stochastic optimizer [8]. The working proce-
dure of the DE algorithm involves two major evolutionary
operations, known as mutation and crossover, and three
major control parameters namely population size N, scal-
ing factor F, and crossover rate CR. For initialization,
a set P={X;,X,,...,Xy}, is initialized. The elements
of P represent uniformly distributed random solutions
in the bounded D-dimensional search space. The vector
X! = {x;1, %2, --»%p},i = 1,2,...,N.represents the state
or position of the i’ solution in the search space, at par-
ticular time instance ¢, where ¢ denotes the iteration coun-
ter. This population P is evolved iteratively to approximate
the global optimal solution(s). The algorithmic procedure
of the DE algorithm is illustrated in Algorithm 1. The DE
algorithm is terminated when either the desired accuracy
of the approximation is achieved or the maximum number
of iterations f,,,, is exhausted.
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Algorithm 1 Differential Evolution Algorithm

Require: Objective Function f, Dimension D, Search Bounds [Zyin;, Tmaz,], 1 <

j < D, Pop Size N, Scaling Factor F', Crossover Rate C'R. Iteration counter ¢
Ensure: Global Optimum f(Xp.s:), Global Optimal Solution Xpest

1: Set iteration counter ¢ < 0

2. Initialize XZQ = (zi1,...,2;,p) foreach 1 <i <N

Tij = Tmin; t rand(0, 1) (xmax_,- - xmin_;)

3: while termination criteria not satisfied do

fori<+ 0;i< N;i++ do

Phase

Choose r1,72,r3 randomly s.t. 1,79, 73 and ¢ all are distinct // Mutation

VI e X0+ (X, - X)) (1)

/] X! = (xi1,...,%;p) is called target vector and V;Hl = (vi1,...,0;p) is called

trial vector, 1 <i < N.

Pick random dimension jrqnq < rand{1, D} // Crossover Phase

6:

7: for j < 0,j < D,j++ do

8: if rand(0,1) < CR or j = jrqna then
9: Ui 5 < Vi

10 else

11: Ui 5 < Tij

12: end if

13: // Ul = (ui,...,u;p) is called child vector, 1 <4< N
14: end for

15: // Selection Phase (Minimization problems)

16: if f(U}) < f(X}) then

17: Xt Ut

18: else

19: X xt

20: end if

21: end for

22: t+—t+1
23: end while

The equation 1 in the Algorithm 1 is referred to as
mutation operator of the DE. Many mutation strategies have
been proposed in the DE literature, some of the widely used
mutation strategies are listed below:

e DE/rand/1
t+1 _ yt (Yt _ ¥yt

Vi - Xrl +F (Xr2 Xr3) (2)

o DE/best/1
1_

Vit =X + F- (X = X0) 3)
e DE/rand/2

VH =X +F- X =X )+F- (X -X') 4)

1 2 3 4 5

o DE/best/2
I _
Vit =Xy + F- X — XD+ F- X =X) (5)

¢ DE/current-to-pbest/1

VE =X F (K, ~XDHF X =X (o)
Here, r, 1 <k <5 are randomly selected indices distinct
from i in the range [1, N]. X and V/*! represent target
vectors and trial vector, respectively. X}’m . in equations (3),
(5), is the best vector and, X; bes; I €Quation (6) is a randomly
selected vector from the top p% vectors in the current

population.
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It has been shown in previous works that the performance
of these mutation strategies largely depends on the
underlying functional landscape [13, 14, 16]. In an attempt
to mitigate this dependence, the idea of utilizing multiple
mutation strategies is explored in the DE literature. Several
successful DE variants have been proposed. In the next
subsection, a discussion on some of such popular DE
variants utilizing multiple mutation strategies is given.

DE Variants with Multiple Mutation Strategies

Mutation strategies in the DE algorithm utilize a weighted
vector difference approach for generating trial vectors in
the search space. In general, mutation strategies utilize one
vector difference or two vector difference based scaling
to generate mutant vector. However, the performance of
these mutation strategies is affected by the characteristics
of the underlying objective function(s) [23]. For instance,
mutation strategies involving two vector differences such as
‘DE/rand/2’ and ‘DE/best/2’ produce more diverse vectors
than strategies involving single vector differences such
as ‘DE/rand/1’ and ‘DE/best/1’. The mutation strategies
involving single vector differences perform better on
unimodal problems, while their performance suffers badly
on multi-modal problems [24]. Hence, for solving black-box
optimization problems, it is desirable that modality of the
function do not limit the search scope of the DE algorithm.

Inspired by this, Qin et al. [16] proposed the SaDE
algorithm that utilized multiple mutation strategies in the
optimization procedure of the DE algorithm. Mallipeddi
et al. [17] proposed the EPSDE algorithm in which a pool
of three distinct mutation strategies was used. Similarly,
Wang et al. [18] proposed the CoDE algorithm in which
three distinct mutation strategies were used along with three
different settings of control parameters F, and CR. Wu et al.
[19] proposed the MPEDE algorithm in which three distinct
mutation strategies were used with a multi-population
framework, and competitive results were reported. The
same authors Wu et al. [20] proposed the EDEV algorithm
in which an ensemble of three different DE variants, namely
JADE, CoDE, and EPSDE were utilized in a single run of
the optimization procedure and compared with other state-
of-the-art DE variants.

However, the idea of utilizing multiple mutation strategies
as an adaptive operator selection (AOS) technique was
first studied in the context of operator selection in genetic
algorithm [25]. Inspired by this, Gong et al. [26] conducted
an empirical study on adaptive strategy selection in the DE
algorithm for numerical optimization problems. Two adaptive
operator selection techniques, namely, probability matching
[27], and adaptive pursuit [25], were integrated into the JADE
algorithm with a pool containing 4 mutation strategies of the
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DE algorithm. For assigning credits to a particular mutation
strategy, a credit assignment technique based on the fitness
values of the target and test vectors was proposed. However,
the major drawback associated with such credit assignment is
that a particular mutation strategy may accumulate excessive
credits (or, rewards) at an early phase of the evolutionary
process, which in turn depletes the role of other available
strategies in the strategy pool [28]. Considering these factors
into account, in this research, a novel community-based
reward criterion is proposed. The underlying population is
treated as a community, and a particular mutation strategy
is rewarded if more than (100 - @)%, where a = 0.6, mutant
vectors are better than their corresponding target vectors.
This ensures that the algorithm has less leverage in switching
the mutation strategies compared to a pure greedy strategy
selection approach based on the relative fitness of the
individual. Further, instead of utilizing the adaptive pursuit
(AP) strategy, a perturbation parameter-based adaptive
pursuit strategy (PAPS) as proposed in [28] is integrated
for mutation strategy selection. This modification ensures
that the proposed algorithm readjusts the weights of the
underlying mutation strategies in order to efficiently utilize
the diversity of the operator pool. Moreover, the proposed
method can be well utilized with other frameworks of the
evolutionary algorithms, and not limited to the DE algorithm
only. In the next section, a brief discussion of the adaptive
pursuit strategy is given.

The Adaptive Pursuit Strategy

The Adaptive Pursuit Strategy is an adaptive technique
for operator selection [25]. The adaptive pursuit comes
under a broader class of rapidly converging algorithms for
learning automata. These techniques adapt the probability
vector of the operator in a manner that the algorithm
chooses the operator with an estimated maximal reward.
The adaptive pursuit strategies perform two major tasks of
credit assignment and operator selection. Credit assignment
is used to assign rewards to an operator based on its past
performance in the search process, and operator selection is
performed to choose an operator automatically for the future
iterations in an iterative process [29]. Mathematically, it is
defined as follows:

Suppose H is a set of K operators, say,
H={hh,,... ,h,(}.l For a given iteration ¢, let us
assume, the associated selection probability vector
(or, weight vector) is W, = {wy ,w,,,...,wg,} where,
0<w,<1Vi=1,2,...,K. The quality vector associated
with the pool of operators is Q, = {q, ;> q5,» --- » G, } Where,

! For this study, operators are different mutation strategies of the DE
algorithm.
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Fig. 1 Flow Chart of the dmss-
DE-pap algorithm
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q;0=1,Vi=1,2,...,K. Say, for a selected operator h;, w;,
and g;, represent the weight and the quality values, respec-
tively. The adaptive pursuit strategy is given as follows.

1. For a given iteration ¢, select an operator hk’,, 1<k<K,
from the pool of operators H in proportion to the selec-
tion probability vector W, , and evaluate the reward r;,
for the operator /.

2. Update the quality value g, , of /; , based on the reward
value r;,. Reward value can be positive or negative
based on the performance of the underlying operator / ,.

3. If the quality value g;, of h, improved, increase the
selection probability of &, and decrease that of others,
or vice-versa.

4. If the termination criteria are not satisfied, the adaptive
pursuit strategy goes to step 1 for selecting an operator
based on W, for the next iterations.

The adaptive pursuit strategy helps in choosing
the optimal operator from the pool of operators H
automatically. However, this strategy is more suited for
cases when the underlying environment is static. For
dynamic environments like the evolving phase of an
evolutionary algorithm, this strategy may favor strategies
that perform better at the initial phase of the optimization
procedure by assigning excessive rewards. Effectively,
this will deplete the selection chances of other available
strategies in the long run and may not utilize the pool
diversity efficiently. Inspired by this, in this proposed
work, an adaptive pursuit strategy with a perturbation
parameter (PAPS) is utilized for strategy selection. A
concise overview of PAPS is given in the next subsection.

Perturbation Adaptive Pursuit Strategy

The major drawback associated with the adaptive pursuit strat-
egy for strategy selection in the context of the DE algorithm is

Weight Vector

Weight Update
Mechanism

that if a particular strategy performs better at an early phase of
the evolutionary process, it may accumulate excessive rewards
and dominate other strategies. This may lead to less-than-opti-
mal utilization of alternative mutation strategies, and the full
potential of the pool’s diversity would not be realized [28].
However, if a perturbation parameter P, is incorporated for
adjusting the weights of underlying strategies. It can increase
the chances of utilizing all other available strategies in the
pool. Inspired by this, weights of strategies in the pool are
randomly assigned when the value of a generated random
number is less than the value of perturbation parameter P,,.
This increases the robustness of the proposed dmss-DE-pap
algorithm in strategy selection. A detailed description of the
proposed algorithm is given in the next section.

Dynamic Mutation Strategy Selection
in Differential Evolution Using Perturbed
Adaptive Pursuit (dmss-DE-pap)

The proposed dmss-DE-pap algorithm is an integration
of the perturbed adaptive pursuit for managing a pool of
multiple mutation strategies in DE.

A pool of five different mutation strategies is created, and
equal weights and quality values are assigned to each strat-
egy. For initialization, a strategy is picked randomly from
the pool, and the algorithmic procedure of the DE algorithm
with a self-adaptive control parameter setting is executed.
Based on the performance of the selected strategy, a posi-
tive or negative reward is allocated, and with the help of the
received reward values, the quality and weight values are
adjusted. This process is repeated iteratively till the termi-
nation criteria are not satisfied. The pseudo-code and flow
chart of the proposed dmss-DE-pap algorithm is given in
Algorithm 2, and Fig. 1, respectively. In the next subsec-
tions, a detailed description of components associated with
the proposed dmss-DE-pap algorithm is given.
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Algorithm 2 Dynamic Mutation Strategy Selection in Differential Evolution using Perturbed Adaptive Pursuit

(dmss-DE-pap)

Require: Obj. Fun. f, Dim. D, Search Bounds [Zmin;, Tmaz,], 1 < j < D, Pop Size
N, Scaling Factor F, Crossover rate CR. Mazj.,, Pool Size K <« 5, Reward
Control Parameter a < 0.6, Quality Control Parameter 3 < 0.1, Perturbation

Probability P, < 0.1.

Ensure: Global Optimum f(Xpest), Global Optimal Solution Xpes:

1: Set iteration counter ¢ <— 0

2: Initialize strategy pool H = {hq, ha,..

1,2,.... K.

3: Initialize weight vector W = (0.2,0.2,...,

. hi}. hy is DE mutation strategy, k =

0.2), Quality vector Q = (1,1,...,1),

Reward Vector R = (0,0,...,0) s.t., [W| =|Q| = |R| = K.

4: Initialize local counter LC = (l¢,lca, . .

5. while t < Max;., do

., lek), Corresponding to each strategy hy

6: Select a mutation strategy hy = argmaz(W)
1<k<K
7: Apply DE with selected mutation strategy hi // (see Algorithm 1)
8: for i+ 0;i < NP;i++ do
9 if f(U;) < f(X;) then
10: ley « lex +1 // X, : Parent Vector, U; : Child Vector
11: else
12: le — lck
13: end if
14: end for

15: Apply Reward-Assigning Mechanism // (see Algorithm 3)
16: Apply Quality-Update Mechanism // (see Algorithm 4)
17: Apply Perturbation-based Weight Update Mechanism // (see Algorithm 5 )

18: t<+—1t + 1
19: end while

Strategy Pool

The proposed dmss-DE-pap algorithm utilizes a pool con-
taining five different mutation strategies of the DE algorithm
as mentioned in Egs. 2-6) at section “Canonical Differential
Evolution Algorithm”. The reason for selecting these five
mutation strategies is their distinguished characteristics and
performance in different kinds of optimization problems.
For instance, strategies like ‘DE/rand/2’ and ‘DE/best/2’
are more suitable for multi-modal problems, and are more
exploratory, however, these strategies provide slow conver-
gence [21]. Similarly, strategies like ‘DE/rand/1’ and ‘DE/
best/1’ have fast convergence speeds, and are better suited
for solving global optimization problems, even, if they are
prone to get stuck in the region of local optima [21]. ‘DE/
current-to-pbest/1’ is an advanced mutation strategy, pro-
posed in the JADE algorithm. There are two versions avail-
able for this strategy, one is with an external archive of top
p% solutions, and the other is without an external archive,
in which top p% individuals are chosen from the current
population. This strategy is capable of producing more
diverse vectors and has shown improved performance [30].
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To incorporate all these characteristics in the operator pool,
the proposed dmss-DE-pap algorithm utilizes the above-
mentioned five strategies and selects a particular strategy
based on its quality value and weight vector. The quality
value of a selected mutation strategy is updated using the
obtained reward values. In the next subsection, details about
the reward-assigning mechanism are given.

Reward-Assigning Mechanism

The reward values serve as the feedback signals for updat-
ing the quality values of the underlying strategies. In the
proposed dmss-DE-pap algorithm, a community-based
reward-assigning mechanism has been proposed in which a
strategy is credited with a positive reward value if more than
100 - a%, (where a = 0.6), mutant vectors are better than
their corresponding target vectors. This means a particular
strategy is credited with a positive reward if it improves at
least 60% of the current population, otherwise, the strat-
egy is credited with a negative reward. The parameter a is
called the reward control parameter, and the value of @ near
1 can be considered an optimistic reward assignment, while
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a value of a near 0 can be thought of as a pessimistic reward
assignment. The major advantage of using this reward crite-
rion is that the algorithm will not switch between strategies
aggressively, and characteristics of the underlying strategy
will be exploited till it stops improving the majority of the
population. A local counter /c; is used to record the instances
where the mutant vectors are better than their corresponding
target vectors while employing the k" mutation strategy. The
pseudo-code of the proposed reward-assigning mechanism
is given in Algorithm 3.

Algorithm 3 Reward-Assigning Mechanism

values associated with underlying strategies. In the next sec-
tion, details about the quality update mechanism are given.

Quality-Update Mechanism

Based on the received rewards by the underlying mutation
strategies, the quality values stored in a quality vector Q are
updated. Initially, all the mutation strategies in the pool are
treated as of the same quality, and equal quality values are
assigned, i.e., Q = (1, 1, ..., 1). The quantum of the quality
values for the underlying mutation strategies are updated

Require: local counter LC = (l¢1,lca, ..
eter o, Reward Vector R = (71,4, 72,4, - -

Ensure: Reward 7,

1: at iteration ¢, if selected strategy is hyq,

2: if ley > round(a * N) then
3 Tkt < 1

4: else

5: Tkt < -1

6: end if

.,lck ), Pop Size N, reward control param-
.,TK,t), iteration counter ¢.

The proposed reward-assigning mechanism is different from
the reward-assigning mechanisms proposed in [26], in the
sense that, earlier proposed reward criterion was based on
the individual’s relative fitness values while the proposed
reward-assigning mechanism in the dmss-DE-pap algorithm
is based on the success of whole population or community.
This ensures proper exploitation of the underlying mutation
strategies in the strategy pool. The reward values obtained
by a particular strategy will be utilized to update the quality

Algorithm 4 Quality-Update Mechanism

using a quality control parameter f. In the proposed work,
the value of f is taken to be 0.1. If a selected mutation strat-
egy obtains a positive reward, then the associated quality
value of that strategy is updated using the quality control
parameter f, while keeping the quality of other mutation
strategies unchanged. Similarly, if a selected mutation strat-
egy receives a negative reward, the quality value associated
with it is degraded while keeping the quality values of other
mutation strategies unchanged. The pseudo-code for the
quality-update mechanism is given in Algorithm 4.

Require: selected mutation strategy hy ¢, reward-value ry, +, quality value g ¢+, quality

control parameter 3, iteration counter t.

Ensure: Quality value g 141

. at iteration ¢, if selected strategy is hy ¢,

1
2: if 4,4 > 0 then

3 Qi1 — (L+B) *qrs
4: else

5 Qryi+1 < (1= B) * Qi
6: end if

SN Computer Science
A SPRINGER NATURE journal



771 Page 8 of 21

SN Computer Science (2024) 5:771

Table 1 Initial parameter

Initial Parameters Settings

N =100, C, =2,C, =2, Topology: Fully Connected
N =100, F =0.5and CR = 0.7
N =100, u = PS/2w =log(u +0.5) = log(1 : p), py =

Hop+2 —
Co= 52D, = 14 C, +2 % max(y/ (=)~ 1,0)

. . Algorithm
settings for all considered
algorithms PSO [35]
DE [8]
CMA-ES [36]
ABC [34]

LSHADE [31]

N =100, Limit (L) = 0.6 - D - PS, ¢ = rand(~-a,a), -1 <a < 1
N,.=18-D.N

F ~ C(up,0.1), pig = 0.5

=4, 4, =05

min

CR ~ C(ucg.0.1), p=0.11

NVI'ICLX
H, F and CR same as LSHADE, u, = 0.8

i-LSHADE [37]

=12-D,N,, =4

min

Heg =05, pp, = peg, =0.9

max

N = 100, Operator Pool size H = 4, F € N[0.5,0.3], CR € N[0.5,0.1]
N =100, Operator Pool size H = 3,[F = 1.0,CR = 0.1],[F = 1.0,CR = 0.9]

=25-InD - \/l_) N,,i, =4, F and CR same as LSHADE, u = 0.3

[F=08,CR=0.2]

N = 100, Operator Pool size H =4, F =[0.4 : 0.1 : 0.9]

and CR =[0.1 : 0.1 : 0.9]

iSO [38] N
SaDE [16]

CoDE [18]

EPSDE [17]

dmss-DE-pap N,

max

=16-D, N,

min

= 10, Operator pool size H = 5

F.CR, py = 0.5, yiep = 0.5
a=06,§=0.1P,=0.1

With the help of updated quality values, weight values asso-
ciated with underlying strategies are updated. In the next sub-
section, details about the proposed perturbation-based weight
update mechanism are given.

Perturbation-Based Weight Update Mechanism

The weight value of the selected mutation strategy is updated
using the quality values. If the updated quality value is g .,
and the quality value before applying the quality-update
mechanism is g, ,. These values are first compared, and if the
updated quality value g ,, | is better than the quality value g, ,,
the weight value of the selected mutation strategy is increased
with the help of quality control parameter f, while keeping
the weight values of other mutation strategies in the pool
unchanged. Similarly, if the converse is true, that is, g; ., is
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less than or equal to g, ,, the weight value associated with the
selected mutation strategy is decreased, while keeping the
weight values of other strategies unchanged. However, if a
particular strategy is able to accumulate positive rewards in
the early phase of the optimization procedure, its quality value,
hence the weight value will be comparatively larger than the
quality and weight values of other available mutation strate-
gies. This will favor the strategy performing better at an early
stage of the optimization procedure over other available muta-
tion strategies in the pool, and the diversity of the pool will not
be exploited optimally. Keeping this into consideration, a per-
turbation parameter P, is introduced in the weight mechanism
that will reinitialize the weight values of all available mutation
strategies with a probability P,. The implementation details of
the proposed perturbation-based weight update mechanism are
given in the Algorithm 5.
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Algorithm 5 Perturbation-based Weight Update Mechanism

Require: selected mutation strategy hy ¢, quality value g, quality control parame-
ter B, weight value wy,;, Weight Vector W, Perturbation parameter P,, iteration

counter t.

Ensure: Weight value wy, 141, Weight vector W

1. at iteration ¢, if selected strategy is hy .,

2. if rand() < P, then

3: W < rand(W) // assign random weight values to W.

4. else

5 if Qkt+1 > qkt then

6: Wk t+1 (1 + 5) * Wk ¢
7 else

8 W1 — (1= B) xwpe
9: end if

10: end if

The proposed perturbation-based weight update mecha-
nism ensures that no particular mutation strategy in the
strategy pool becomes greedy and dominates the optimiza-
tion procedure while depleting the participation of other
available mutation strategies in the pool. The proposed
dmss-DE-pap algorithm utilizes two types of control
parameters, one type is associated with the perturbation
adaptive pursuit strategy while the other set is associated
with the DE algorithm. In the next section, a discussion
of associated parameters with the proposed dmss-DE-pap
algorithm is given.

Associated Parameters
The proposed dmss-DE-pap algorithm utilizes two distinct

sets of control parameters. One set of parameters contains
the control parameters associated with the DE algorithm

that are population size N, scaling factor F, and crossover
rate CR. The other set of parameters contains the reward
control parameter a, and quality control parameter f. In
the proposed dmss-DE-pap algorithm, the control param-
eters associated with the DE algorithm are self-adaptive
and majorly inspired by the LSHADE algorithm [31]. The
population size is adjusted using the linear population size
reduction (LPSR) mechanism as proposed in the LSHADE
algorithm, and the control parameters are adjusted using
the success-history-based parameter adaption scheme [32].
The implementation details of the success-history-based
parameter adaption technique are given in algorithm 6. The
self-adaptive control parameter setting improves the per-
formance of the DE algorithm and reduces the burden of
the computationally intensive task of manually tuning the
control parameters.

Table 2 p-values at significance

level 0.05 and effect size metric CEC 14 30D 20D

Cohens-d Algorithms p-value Cohens-d h p-value Cohens-d h
ABC 0.00176 0.7342 1 0.00085 0.8081 1
PSO 0.00072 0.8171 1 0.00052 0.8333 1
DE 0.00020 0.8389 1 0.00012 0.8771 1
CMAES 0.00274 0.6963 1 0.00384 0.5495 1
LSHADE 0.00979 0.5280 1 0.0560 0.1919 0
iLSHADE 0.00399 0.5661 1 0.00728 0.4319 1
iSO 0.05944 0.2022 0 0.00166 0.7311 1
SaDE 0.00190 0.7236 1 0.00613 0.5449 1
CoDE 0.00333 0.5719 1 0.00138 0.7417 1
EPSDE 0.00169 0.7316 1 0.00797 0.5099 1
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Algorithm 6 Success-history-based-parameter adaption scheme [32]

Require: Mg + [0.5,...,0.5], Mcg < [0.5,...,0.5], s.t. |Mp| = |[Mcgr| =5, Sr +

¢, and Scr < ¢,

Ensure: Scalar Factor F', Crossover rate CR

select index id < rand{1, K}
Generate Fiq < randc;(Mp(id),0.1)

if SF7SCR 75 ¢ then
Mp «+ Meanwr(SF), and
Meg + Meanwa(Mcrg)

© @23 q RNy

=
Y22

(see SHADE Algorithm [32])

else

13: Mp < Mp, and Mcgr < Mcr
14: end if

// rande;(p, o) Cauchy distribution with mean p and variance o

Generate CR;q < randn;(Mcr(id),0.1)

// randn;(u, o) Normal distribution with mean p and variance o

Store F;q and C'R;4 associated with successful individuals in Sg and Scg i.e.
Sp < Sp U Fiq, Scr < ScrUCRq,

: /] Meanwy, and Meanw, are Lehmer mean and arithmetic mean, respectively.

15: return F < Mp(id) and CR + Mcgr(id)

Another set of control parameters associated with pertur-
bation-based adaptive pursuit strategy contains reward con-
trol parameter a and quality control parameter f. The values
of a and f lies in the range (0, 1). In this research, the value
of a is taken to be 0.6, and the value of fis taken to 0.1. A
higher value of a near to or equal to 1 makes the population
more greedy which could affect the exploration capabilities
of the algorithm and can lead to premature convergence, on
the other hand, a small value of a can affect the exploitation
capabilities. The parameter § helps in scaling the quality
vector. A value of f near 1 can be considered an aggressive
quality update, while a value near O can be considered a pes-
simistic quality update. The value of the control parameters
a and f are obtained empirically in this research by applying
grid search on 10 equally spaced values of @ and f in the
range (0,1). For assessing the optimization capabilities of
the proposed dmss-DE-pap algorithm, experiments on 30D
and 50D CEC 2014 benchmark test suits are conducted, and
experimental results are compared with the other state-of-
the-art evolutionary algorithms and some recent DE vari-
ants. In the next section, experimental results obtained by
the proposed dmss-DE-pap algorithm are reported in detail.

Experimental Results

The performance of the proposed dmss-DE-pap algorithm is
tested on the CEC 2014 benchmark test suite [33]. The CEC
2014 benchmark test suite contains four different classes

SN Computer Science
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of optimization problems including unimodal problems,
multi-modal problems, hybrid problems, and composite
problems. In addition, these problems are highly anti-sym-
metric, rotated, and irregular [33]. Moreover, while solving
these problems the information about their optimum solu-
tion is not used, which means these problems are treated as
completely black-box problems. For our experiments, the
CEC 2014 benchmark problems are labeled as f, —f, and
separated into four different groups: f, — f,, are in the uni-
modal functions group, f, — f, arein the multi-modal func-
tion group, f, ~—f,, are in the hybrid function group, and
Jay, = Ju,, are in the composite function group. To validate

Table 3 Average Ranks in the Friedman Test

Algorithms CEC14 Avg Final
30D 50D Ranks Ranks

ABC 7.66 8.46 7.69 8
PSO 7.93 8.70 7.98 9
DE 10.03 10.33 10.03 11
CMAES 7.11 7.55 7.11 7
LSHADE 4 42 4.05 4
iLSHADE 3.75 35 3.74 3
iSO 3.71 4.16 3.74 2
SaDE 6.81 5.61 6.78 6
CoDE 8.06 6.73 8.01 10
EPSDE 4.96 4.15 491 5
dmss-DE-pap 1.93 2.58 1.91 1
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Fig.2 Mean percent use of

Participation of Strategies in the Optimization Process-CEC14 30D

Participation of Strategies in the Optimization Process-CEC14 50D
359

strategy pool in the optimiza- 1

tion of 30D and 50D CEC 2014
Functions
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=R NN W
o w o wu o

«

o

Unimodal
Function Group

(a) 30D CEC2014 Functions

the proposed dmss-DE-pap performance, four standard evo-
lutionary algorithms, ABC [34], PSO [35], DE [8], CMA-
ES [36], and three control parameter adaptive DE variants,
LSHADE [31], i-LSHADE [37], and jSO [38], and three DE
variants with multiple mutation strategies, SaDE [16], CoDE
[18], and EPSDE [17] are considered for comparison. The
control parameter settings are taken as mentioned in their
original papers and given in Table 1.

As per the experimentation guidelines of CEC 2014 [33],
51 independent runs are carried out on each benchmark
test function with an upper limit of 10000 - D function
evaluations, where D is the dimension of the search space.
Test results for 30D, and 50D are reported in this research,
and fitness errors that are smaller than “eps" (eps = 107%%)
are considered to be zero. All the experiments are performed
on a PC with Intel(R) Core(TM) i7-9750 H CPU @ 2.60GHz
on the Windows 11 Operating System. For comparing the
results of the proposed dmss-DE-pap algorithm with other
considered algorithms, non-parametric tests are conducted
and discussed in the next subsection.

Non-Parametric Tests

For comparing the proposed dmss-DE-pap with other under-
lying algorithms, the Wilcoxon signed-rank test is employed
with the 5% significance level. The null hypothesis H, :
“there is no significant difference between dmss-DE-pap and
other compared algorithm" is tested based on the median
values of mean fitness on 30D, and 50D test functions. The
corresponding p-values at the significance level 5% and
effect size metrics Cohens-d are reported in Table 2. The
value ‘h = 0’ indicates the failure to reject the null hypoth-
esis H,, and the value ‘2 = 1’ indicates the rejection of the
null hypothesis H, at 5% level of significance. The effect size
metric Cohens-d provides the magnitude of the difference
between the means of two populations. This allows to study
the impact of different treatments over the underlying experi-
ments. The cohens-d values can be obtained in four different
scenarios: (1) simple group design, (2) two-group design,
(3) single group two-repeated measures, (4) designs with

Multimodal Hybrid

mm SsT1 [mn sT1
EN sT12 304 EN sT2
B ST3 =3 ST3
EEA ST4 = sT4

IN)
o

N ST5 EEE STS

Percentage Usage
N
=1

-
o

o

o

Unimodal
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Function Group

(b) 50D CEC2014 Functions

Composite

baseline to compare. A detailed study concerning comput-
ing methodologies of cohens-d values can be found in [39].
In this research, a two group design is considered for which
cohens-d values are calculated using following Eq. (7).

M2 - M1

Cohens —d = ————— (7

Sp

Where, M1, and M2 are mean values of group 1 and group
2, respectively. And, S, is called pooled standard deviation
and calculated using the Eq. (8).

G- (n—1)-ST+@n,—1)-5; ®)
P (ny +ny) -2

Where, S, and S, are the standard deviation of the group 1
and group 2, respectively. And, n; and n, are a sample size of
group 1 and group 2, respectively. The value of Cohens-d is
subjective and depends on the experimental specifications.
Values near 0.2 are considered as ‘merely statistical’, values
between 0.2—0.5 are considered as ‘subtle’, and values above
0.5 are considered ‘obvious’ [39]. The proposed dmss-
DE-pap is considered as group 1 while other compared
algorithms are treated as group 2. The cohens-d values
obtained by the proposed dmss-DE-pap algorithm are
mostly greater than 0.2, except for the jSO algorithm in
30D problems and the LSHADE algorithm in 50D problems.
This implies that the performance of the proposed dmss-DE-
pap is superior compared to other considered algorithms.
To assess the winning performance of the dmss-DE-pap
algorithm, the Friedman rank test is employed. The average
rank and final rank obtained using the Friedman test are
given in Table 3. It can be seen from Table 3, that the dmss-
DE-pap algorithm outperforms all other underlying algo-
rithms and secures the best rank. Additionally, for reporting
the comprehensive performance of the proposed dmss-DE-
pap algorithm from the perspective of the accuracy of the
optimal solution, the mean, and std (standard deviation)
of error for the total 51 runs are calculated and reported
in Tables 5, and 6, respectively. The Rank/Stats below the
test metrics mean, and std in the Tables 5 and 6, denote the

SN Computer Science
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Fig. 3 Exploration-Exploitation Plots for Unimodal, Multi-Modal, Hybrid and Composite Functions

Table4 Time complexity of dmss-DE-pap on 30D and 50D CEC14
benchmark

70 Tl 72 (T2 -T1)/TO
D =30 0.32 3.26 4.16 2.81
D =50 0.32 3.40 5.18 5.56

Friedman rank obtained by the considered algorithms on
individual benchmark problems.

The proposed dmss-DE-pap algorithm utilizes a pool of
5 mutation strategies, however, it is important to analyze the
participation of each mutation strategy in the optimization
procedure. The next subsection discusses strategy pool
analysis.

SN Computer Science
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Strategy Pool Analysis

In the strategy pool H, 5 different mutation strategies are
denoted as ST1-STS, where ST1 is ‘DE/current-to-pbest/1’,
ST2 is ‘DE/rand/2’, ST3 is ‘DE/best/2’, ST4 is ‘DE/rand/1’
and ST5 is ‘DE/best/1’. To assess the contribution of each
strategy in the search procedure, the mean percent use of all
the strategies is reported in Fig. 2.

Since the CEC14 benchmark test suite is divided into
four groups as unimodal functions group (f, - f,,), multi-
modal functions group ( Ja, = Ja,,)» hybrid functions group
(fa,, — fay,)> and composite functions group (f, . —f,, ), the
mean percent is calculated as the ratio of the number of
invocation of a particular strategy to the total number of
invocations of all the strategies in 51 runs. It can be observed
that all the strategies in the pool are participating in the
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& optimization procedure. However, strategy ST1 is the most
m s - n o o rominent strategy among others as it has maximum con-
Q‘ S = P 2 Q p t strategy g oth th
A g€z €2 37 8z ¢& tribution in the optimization process. It is also important
4 =3 S x (=3 . ey s [T
El.8s_83_22_33_38§._ to analyze the exploration-exploitation capabilities of the
proposed dmss-DE-pap algorithm for the better understand-
ing of its optimization capabilities. In the next section, an
@ § o E § ﬁ ° [é 5 § i analysis of the exploratlon-e).(plmt.atl(?n capabilities of the
% S 3 S % P «“ S s proposed dmss-DE-pap algorithm is discussed.
Dl = S —© @A B A& — 1 v B en
Exploration-Exploitation Analysis
v o
u S. 2o @Zg 9. =4 Apart from managing the diversity of the pool, the proposed
a § 2 g i - g % £ 2 = % dmss-DE-pap algorithm also maintains a balance between
Ve mo s —ad =1 oo addo—=aoxn exploration and exploitation of the search procedure. For
o % effectively assessing the exploration-exploitation trade-off,
o — o @3 ~ =~ a dimension-wise diversity-based analysis is adopted [40].
o ] 5 S § - lé % 5 N The percentage of exploitation and exploration is calculated
g g2 & g 5% 2@ using the equation (9) given below:
N lo — O N N I N T Vv n n AN~ — >~
2 g L ® 2 |Div — Div, .|
Sy £2 fOx = I Exploitation% = <D—m x 100
2 g3 d8 uwx x84 a8 Vimax ©)
LIld =SS 0@ s A F v on <F v 0 < n < Div
o - - - - - o Exploration% = <Div > x 100
Q (o) <t — — 0 < - \O max
< S =~ < (S = N
Il 22 2% 25 ¥ g% L . .
9 8 o S & Q9 K> N Here, the diversity Div is calculated using the equation (10)
Hlhn = S e~ N> —~ > A R below
given below:
sa] o ) 0 o~ =)
[a) o~ <t © I'e] (=3 [Selse)
= ~ a ol oo D - d
o o= = 8 28 R = a 1
A d€8 g2 == 5f 24 Div= =" Div,
Hle = S v+ aloon =< F 0 d'l J
j:
(10)
N
= 1
4 ¥q 2% Zg &g %8 Dy = 2 redX0 =
\ ) N ) a <+ = i=1
Zl,88 g5 25 _.8% &¢
Olo =S o> 0 6N A~ A . . i . . . .
Div,,,. is the maximum diversity recorded during the opti-
= L .
8 3 mization process. Here, med;(X) denotes the median of the
I % I < th 1 .. / .
3 A A £ S35 j™ dimension in the population. To assess the exploration-
o =] O [ 3N} = N O e . e .
u 2 g S = g & z @ exploitation capability of the dmss-DE-pap algorithm, pop-
AIEE 38 =Z8Y=28EZR/ R ulation diversity analysis is performed on unimodal (f,,),
5o multi-modal (f,), hybrid (f,;), and composite (f,,5) func-
®© X i i
© € 3 © tions of 30D CEC14 benchmark problems, and exploration-
= o % o = & S o o . C
§ = § § o § S % = 7 exploitation plots are illustrated in Fig. 3.
2ls £ 2 o g S _ § S;i - g oo The proposed dmss-DE-pap algorithm depicts a fine
AT T e oo ma s e s an = balance between exploration and exploitation during its
optimization procedure, hence it can be considered as a
&8, 8= & g w 2q robust optimizer for solving complex optimization problems.
O o a4z Ta Xy 28 In the next subsection, the algorithmic time complexity of the
i% S 2o wn o a « 8 ™ - = . .
N =S = n = ¥ 0 Ao ®x o proposed dmss-DE-pap algorithm is reported.
j2l iz} i} [} [} [z}
5 5 5 5 5 5 5 P .
B3 2. &_. &_ ¢_ 2. ¢ Algorithmic Time Complexity
E 2|E s = o = o =ER= g 3 |
S8 IS & v S8E&E T S8 gT s8L v s& T S
S22 222K EXZ EX = BN L .
8 The algorithmic time complexity of the proposed dmss-DE-
w | E pap algorithm is evaluated using the criteria given by the
AR
] E < 5 % 3 < CEC14 benchmark test problems [33]. Table 4 shows the
ClE] < 3 < < <
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& time complexity of the dmss-DE-pap algorithm on 30 and
= — . .
m S 50-dimensional benchmark problems.
@ = = 70 is the time taken (in seconds) to compute the test
El. 3 % - problem given as following [33]:
clc;
mw E = clear all;
a2 o Q@ .
& 2 o tic
Sl ] < ©~ — .
for i=1:1000000
x= 0.55 + [double]*i;
0
i X=X + X; x=x/2; x=x*xX; x=sqrt(x);
m )
2 2 g x=log(x); x=exp(x); x=x/(x+2);
O | o — N N
end
toc
<t o
=3
E—’ o =
S| o § § ~ The time taken to compute 200000 function evaluations
S o of f,;5 problem is denoted by T'1, and 72 is the average time
gt taken to compute 200000 function evaluations of benchmark
o E E function f,,; for five independent runs by dmss-DE-pap
Gle ©wo algorithm.
m o~
AL
7 €@ . .
Ale ST - Discussion
2| %s . .
E: Q 3 The experimental findings concludes that the dmss-DE-
= § 3 pap algorithm demonstrates competitive performance
o I when compared with other state-of-the-art algorithms. It
can be noted from Fig. 2 that dmss-DE-pap effectively
- =g manages the underlying operator pool. All the strategies
2 g3 participate in the optimization process. Strategy ST1 in
5 - E § o the operator pool reports the maximum mean percent
usage and hence can be considered a better strategy
- compared to other strategies in the pool. Similarly, Fig. 3
% g depicts that the dmss-DE-pap algorithm effectively
§ S manages the exploration-exploitation trade-off. To
Blz ax=e compare the performance of the dmss-DE-pap algorithm
- with other underlying algorithms, Tables 5 and 6 reports
§ ,% the optimization performance of all underlying algorithms
° vz along with the dmss-DE-pap algorithm on CEC14 test
= (%: § =) suite. Better results are marked with bold entries in
the Tables 5 and 6, and the corresponding Friedman
ranks are given below the test metrics mean and std. The
5 4] comparative assessment of the dmss-DE-pap algorithm on
S § § the CEC14 test suite is given in the following subsections.
2|+ 58+«
= Comparison on 30D CEC14 Benchmark Problems
Q 3 w2 w2
g S|lg2s2E” For 30D CEC14 benchmark problems, the dmss-DE-pap
2 - algorithm secures the lowest rank on 17 out of 30 problems.
° '% The performance of the dmss-DE-pap algorithm on uni-
@ E £ modal problems f,; — f,53is better than all other underlying
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algorithms except the performance is similar to LSHADE,
i-LSHADE, and jSO algorithms. For multi-modal problems
Saa — fa16, the dmss-DE-pap algorithm outperforms all other
algorithms on fs, f,6. fa9-fa13-f214 a0d f,;5. On function f,,,
the dmss-DE-pap algorithm secures the second rank outper-
forming all other algorithms except CMA-ES. The perfor-
mance of the dmss-DE-pap algorithm is similar to CMA-ES,
i-LSHADE, jSO, SaDE, and EPSDE on function f,;, and
the performance of the dmss-DE-pap algorithm is similar
to EPSDE on function f,4. The dmss-DE-pap algorithm
secures third rank on the functions f,,; and f,¢, fifth rank
on the function f,;,, and sixth rank on the function f,,.
Similarly, on hybrid functions f,,; — f,»,, the dmss-DE-pap
algorithm secures the best rank on f,,7,f,19, .0, and 51,
while it secures second rank on the function f,,3 outper-
forming all other algorithms except LSHADE algorithm.
The dmss-DE-pap algorithm secures the fourth rank on the
function f,,,, behind LSHADE, i-LSHADE and jSO algo-
rithm. On composite functions f,,3 — f,3, the dmss-DE-pap
algorithm secures the best rank in all the functions except on
the function f,,;, where the performance of the dmss-DE-
pap algorithm is behind CoDE and EPSDE algorithm (See
Table 5). The dmss-DE-pap received the best rank of 1.93
over all 30D functions.

Comparison on 50D CEC14 Benchmark Problems

For 50D CEC14 benchmark problems, the dmss-DE-pap
algorithm secures the lowest rank on 11 out of 30 problems
outperforming all other underlying algorithms. For unimodal
function group f,; — f,3, the dmss-DE-pap algorithm out-
performs all other algorithms on function f,;. In contrast,
the performance of the dmss-DE-pap algorithm is similar to
1-LSHADE and jSO on f,,, and the performance is similar
to LSHADE, i-LSHADE, and jSO on function f,;. Simi-
larly, for multi-modal function group f,, — f,,¢, the dmss-
DE-pap algorithm almost outperforms all other underlying
algorithms. On function fg, 4, the performance of dmss-
DE-pap is similar to LSHADE, i-LSHADE, jSO, SaDE,
and EPSDE, and on function f,; and f 4, its performance is
similar to the jSO algorithm. The dmss-DE-pap algorithm
secures second rank, on the functions f,5 and f,;, behind
the jSO algorithm and secures second rank. On the function
fa11» 1t is behind the EPSDE algorithm. In a similar manner,
for hybrid function group f,;7 — f,2,, the dmss-DE-pap algo-
rithm secures first rank on the functions f,,7,f,19:/20. 21>
second rank on the function f, 5, and fourth rank on the
function f,,,. For composite function group f,,; — f,3¢. the
dmss-DE-pap algorithm secures the first rank on the func-
tion except for function f,; (refer Table 6) The experimental
results confirm the competitive optimization capabilities of
the proposed dmss-DE-pap algorithm.
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Conclusion

The perturbation-based adaptive pursuit strategy is an effec-
tive strategy for operator selection from a given pool of oper-
ators. It manages the diversity of the pool better and enhances
the robustness of the algorithm. In the proposed work, the
mentioned strategy is employed on the pool of mutation
operators of DE to exploit the various characteristics of
multiple mutation operators in a single run of the optimi-
zation process. A success history-based parameter adaption
scheme is employed to tune the control parameters F and
CR. A linear population reduction mechanism is employed
to check the computational cost of the algorithm. Experi-
mental results of the proposed dmss-DE-pap are promising
when compared with other state-of-the-art evolutionary and
swarm intelligence-based algorithms. However, the proposed
approach may fail, if all the mutation operators in the opera-
tor pool are not capable of handling the given optimization
problem or suffer from poor performance. The optimal size
of the operator pool and content of the operator pool in dmss-
DE-pap is a matter of further research. More sophisticated
advanced methods of reinforcement learning and machine
learning can be incorporated. Apart from the adaptive pursuit
strategies, upper confidence bound (UCB) methods can also
be employed similarly and their effect on the performance
of the current algorithmic framework can be studied in the
future research.
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