
Vol.:(0123456789)

SN Computer Science           (2024) 5:771  
https://doi.org/10.1007/s42979-024-03062-2

SN Computer Science

ORIGINAL RESEARCH

Dynamic Mutation Strategy Selection in Differential Evolution Using 
Perturbed Adaptive Pursuit

Prathu Bajpai1 · Ogbonnaya Anicho2 · Atulya K. Nagar2 · Jagdish Chand Bansal1 

Received: 21 March 2024 / Accepted: 17 June 2024 
© The Author(s) 2024

Abstract
Diverse mutant vectors play a significant role in the performance of the Differential Evolution (DE). A mutant vector is 
generated using a stochastic mathematical equation, known as mutation strategy. Many mutation strategies have been proposed 
in the literature. Utilizing multiple mutation strategies with the help of an adaptive operator selection (AOS) technique can 
improve the quality of the mutant vector. In this research, one popular AOS technique known as perturbation adaptive pursuit 
(PAP) is integrated with the DE algorithm for managing a pool of mutation strategies. A community-based reward criterion 
is proposed that rewards the cumulative performance of the whole population. The proposed approach is called ‘Dynamic 
Mutation Strategy Selection in Differential Evolution using Perturbed Adaptive Pursuit (dmss-DE-pap)’. The performance of 
dmss-DE-pap is evaluated over the 30D and 50D optimization problems of the CEC 2014 benchmark test suite. Results are 
competitive when compared with other state-of-the-art evolutionary algorithms and some recent DE variants.

Keywords Differential evolution · Evolutionary optimization · Meta-heuristics · Adaptive pursuit strategy · Mutations

Mathematics Subject Classification 68W50 · 68T05 · 68T20 · 90C59

Introduction

Recently, the popularity of population-based evolution-
ary algorithms (EAs) has grown extensively due to their 
robust capabilities in solving complex real-world optimiza-
tion problems [1]. The optimization problems arise across 
various disciplines of science and engineering, including 

domains like data mining, machine learning, and artificial 
intelligence [2, 3]. The objective function(s) associated with 
such optimization problems are defined over high-dimen-
sional search spaces and are highly non-linear, non-convex, 
and non-differentiable. The lack of gradient-specific infor-
mation coupled with high computational cost makes many 
traditional optimization techniques obsolete or difficult to 
use [4]. Evolutionary algorithms (EAs) are modern stochas-
tic optimization techniques that follow a non-conventional 
gradient-free approach. These algorithms do not assume any 
specific properties like linearity, continuity, or convexity 
regarding the underlying objective function(s) and follow the 
principles of minimal information availability [5]. However, 
due to their stochastic search behavior, these algorithms are 
prone to stuck in the regions of local optimal solution(s) 
and may suffer stagnation or premature convergence [6, 7].

The Differential Evolution (DE) algorithm is a popular 
population-based evolutionary algorithm [8]. It involves two 
stochastic operations, namely mutation and crossover, and 
three control parameters: population size (N), scaling factor 
(F), and crossover rate (CR). First, a population of N repre-
sentative solutions (known as vectors in DE terminology) 
is randomly initialized in the search space, and then new 

Ogbonnaya Anicho, Atulya K. Nagar and Jagdish Chand Bansal 
have contributed equally to this work.

 * Atulya K. Nagar 
 atulya.nagar@hope.ac.uk

 Prathu Bajpai 
 prathubajpai1812@gmail.com

 Ogbonnaya Anicho 
 anichoo@hope.ac.uk

 Jagdish Chand Bansal 
 jcbansal@sau.ac.in

1 Department of Mathematics, South Asian University, Rajpur 
Road, New Delhi, Delhi 110068, India

2 Faculty of Science, Liverpool Hope University, Hope Park, 
Liverpool L16 9JD, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03062-2&domain=pdf
http://orcid.org/0000-0001-9029-5129


 SN Computer Science           (2024) 5:771   771  Page 2 of 21

SN Computer Science

solutions are generated using stochastic mathematical equa-
tions. These stochastic mathematical equations are referred 
to as mutation strategies in the DE literature and are used to 
define the DE mutation operator [9–11]. It has been studied 
that the performance of the DE algorithm is significantly 
affected by the choice of mutation strategy defining the 
mutation operator [12, 13]. The inappropriate choice of 
mutation strategy may lead to premature convergence in the 
DE algorithm [13–15].

To improve this performance issue, the utilization of 
multiple mutation strategies with adaptive control parameter 
settings in a single run of the DE optimization procedure 
was first proposed in the SaDE algorithm [16]. Then, 
following similar research direction, different DE variants, 
like EPSDE [17], CoDE [18], MPEDE [19], EDEV [20], 
MMRDE [21], and DISDE [22] were proposed that utilize 
multiple mutation strategies. However, it is interesting to 
note that the idea of utilizing multiple mutation strategies 
in an online manner in the DE algorithm can be seen as 
equivalent to implementing the adaptive operator selection 
(AOS) technique for selecting various mutation strategies. 
Three major research questions may appear while utilizing 
multiple mutation strategies. The first question is how many 
mutation strategies should be utilized, the second question 
is what type of mutation strategies should be utilized, 
and the third question is how to utilize them for optimal 
performance. This research focuses on studying the third 
question that is how to utilize multiple mutation strategies 
in order to obtain optimal performance. Major contributions 
of this research work are as follows.

• An adaptive operator selection (AOS) technique, known 
as the perturbation adaptive pursuit (PAP) strategy, 
is integrated with DE for utilizing multiple mutation 
strategies in a single run.

• A community-based reward criterion is proposed in 
which a selected mutation strategy is credited with 
a positive or negative reward based on its cumulative 
performance on the population.

• For saving the computationally intensive task of manual 
parameter tuning, the success-history-based parameter 
adaption technique is employed for adapting scalar 
factor F, and crossover rate CR during the optimization 
procedure. A linear population reduction scheme is 
utilized for adapting the population size.

• Experiments are conducted on CEC 2014 benchmark 
problems and experimental results are compared with 

some other evolutionary algorithms and DE variants uti-
lizing multiple mutation strategies for a fair comparison.

The rest of the paper is organized as follows: Background 
for this research is given in section  “Background”. A brief 
discussion on the perturbed adaptive pursuit (PAP) is given 
in section  “The Adaptive Pursuit Strategy”. The detailed 
discussion on the proposed dmss-DE-pap algorithm is 
given in section  “Dynamic Mutation Strategy Selection 
in Differential Evolution Using Perturbed Adaptive 
Pursuit (dmss-DE-pap)”. Experimental results are given 
in section  “Experimental Results” and a discussion of 
the obtained results is given in section  “Discussion”. 
Section “Conclusion” concludes the research.

Background

In this section, first, the working procedure of the 
canonical DE is discussed. Then a brief review of DE 
variants incorporating multiple mutation strategies is 
given. Since the idea of utilizing multiple mutation 
strategies in a single run of the optimization procedure 
is similar to the technique of adaptive operator selection 
(AOS), some relevant AOS techniques are also discussed 
for the sake of completeness.

Canonical Differential Evolution Algorithm

The Differential Evolution (DE) algorithm is a popula-
tion-based stochastic optimizer [8]. The working proce-
dure of the DE algorithm involves two major evolutionary 
operations, known as mutation and crossover, and three 
major control parameters namely population size N, scal-
ing factor F, and crossover rate CR. For initialization, 
a set P = {X1,X2,… ,XN} , is initialized. The elements 
of P represent uniformly distributed random solutions 
in the bounded D-dimensional search space. The vector 
Xt
i
= {xi,1, xi,2,… , xi,D}, i = 1, 2,… ,N. represents the state 

or position of the ith solution in the search space, at par-
ticular time instance t, where t denotes the iteration coun-
ter. This population P is evolved iteratively to approximate 
the global optimal solution(s). The algorithmic procedure 
of the DE algorithm is illustrated in Algorithm 1. The DE 
algorithm is terminated when either the desired accuracy 
of the approximation is achieved or the maximum number 
of iterations tmax is exhausted.



SN Computer Science           (2024) 5:771  Page 3 of 21   771 

SN Computer Science

Algorithm 1  Differential Evolution Algorithm

The equation  1 in the Algorithm  1 is referred to as 
mutation operator of the DE. Many mutation strategies have 
been proposed in the DE literature, some of the widely used 
mutation strategies are listed below:

• DE/rand/1

• DE/best/1

• DE/rand/2

(2)Vt+1
i

= Xt
r1
+ F ⋅ (Xt

r2
− Xt

r3
)

(3)Vt+1
i

= Xt
best

+ F ⋅ (Xt
r2
− Xt

r3
)

(4)Vt+1
i

= Xt
r1
+ F ⋅ (Xt

r2
− Xt

r3
) + F ⋅ (Xt

r4
− Xt

r5
)

• DE/best/2

• DE/current-to-pbest/1

Here, rk, 1 ≤ k ≤ 5 are randomly selected indices distinct 
from i in the range [1, N]. Xt

rk
 and Vt+1

i
 represent target 

vectors and trial vector, respectively. Xt
best

 in equations (3), 
(5), is the best vector and, Xt

pbest
 in equation (6) is a randomly 

selected vector from the top p% vectors in the current 
population.

(5)Vt+1
i

= Xt
best

+ F ⋅ (Xt
r1
− Xt

r2
) + F ⋅ (Xt

r3
− Xt

r4
)

(6)Vt+1
i

= Xt
i
+ F ⋅ (Xt

pbest
− Xt

i
) + F ⋅ (Xt

r1
− Xt

r2
)



 SN Computer Science           (2024) 5:771   771  Page 4 of 21

SN Computer Science

It has been shown in previous works that the performance 
of these mutation strategies largely depends on the 
underlying functional landscape [13, 14, 16]. In an attempt 
to mitigate this dependence, the idea of utilizing multiple 
mutation strategies is explored in the DE literature. Several 
successful DE variants have been proposed. In the next 
subsection, a discussion on some of such popular DE 
variants utilizing multiple mutation strategies is given.

DE Variants with Multiple Mutation Strategies

Mutation strategies in the DE algorithm utilize a weighted 
vector difference approach for generating trial vectors in 
the search space. In general, mutation strategies utilize one 
vector difference or two vector difference based scaling 
to generate mutant vector. However, the performance of 
these mutation strategies is affected by the characteristics 
of the underlying objective function(s) [23]. For instance, 
mutation strategies involving two vector differences such as 
‘DE/rand/2’ and ‘DE/best/2’ produce more diverse vectors 
than strategies involving single vector differences such 
as ‘DE/rand/1’ and ‘DE/best/1’. The mutation strategies 
involving single vector differences perform better on 
unimodal problems, while their performance suffers badly 
on multi-modal problems [24]. Hence, for solving black-box 
optimization problems, it is desirable that modality of the 
function do not limit the search scope of the DE algorithm.

Inspired by this, Qin et  al. [16] proposed the SaDE 
algorithm that utilized multiple mutation strategies in the 
optimization procedure of the DE algorithm. Mallipeddi 
et al. [17] proposed the EPSDE algorithm in which a pool 
of three distinct mutation strategies was used. Similarly, 
Wang et al. [18] proposed the CoDE algorithm in which 
three distinct mutation strategies were used along with three 
different settings of control parameters F, and CR. Wu et al. 
[19] proposed the MPEDE algorithm in which three distinct 
mutation strategies were used with a multi-population 
framework, and competitive results were reported. The 
same authors Wu et al. [20] proposed the EDEV algorithm 
in which an ensemble of three different DE variants, namely 
JADE, CoDE, and EPSDE were utilized in a single run of 
the optimization procedure and compared with other state-
of-the-art DE variants.

However, the idea of utilizing multiple mutation strategies 
as an adaptive operator selection (AOS) technique was 
first studied in the context of operator selection in genetic 
algorithm [25]. Inspired by this, Gong et al. [26] conducted 
an empirical study on adaptive strategy selection in the DE 
algorithm for numerical optimization problems. Two adaptive 
operator selection techniques, namely, probability matching 
[27], and adaptive pursuit [25], were integrated into the JADE 
algorithm with a pool containing 4 mutation strategies of the 

DE algorithm. For assigning credits to a particular mutation 
strategy, a credit assignment technique based on the fitness 
values of the target and test vectors was proposed. However, 
the major drawback associated with such credit assignment is 
that a particular mutation strategy may accumulate excessive 
credits (or, rewards) at an early phase of the evolutionary 
process, which in turn depletes the role of other available 
strategies in the strategy pool [28]. Considering these factors 
into account, in this research, a novel community-based 
reward criterion is proposed. The underlying population is 
treated as a community, and a particular mutation strategy 
is rewarded if more than (100 ⋅ �)% , where � = 0.6 , mutant 
vectors are better than their corresponding target vectors. 
This ensures that the algorithm has less leverage in switching 
the mutation strategies compared to a pure greedy strategy 
selection approach based on the relative fitness of the 
individual. Further, instead of utilizing the adaptive pursuit 
(AP) strategy, a perturbation parameter-based adaptive 
pursuit strategy (PAPS) as proposed in [28] is integrated 
for mutation strategy selection. This modification ensures 
that the proposed algorithm readjusts the weights of the 
underlying mutation strategies in order to efficiently utilize 
the diversity of the operator pool. Moreover, the proposed 
method can be well utilized with other frameworks of the 
evolutionary algorithms, and not limited to the DE algorithm 
only. In the next section, a brief discussion of the adaptive 
pursuit strategy is given.

The Adaptive Pursuit Strategy

The Adaptive Pursuit Strategy is an adaptive technique 
for operator selection [25]. The adaptive pursuit comes 
under a broader class of rapidly converging algorithms for 
learning automata. These techniques adapt the probability 
vector of the operator in a manner that the algorithm 
chooses the operator with an estimated maximal reward. 
The adaptive pursuit strategies perform two major tasks of 
credit assignment and operator selection. Credit assignment 
is used to assign rewards to an operator based on its past 
performance in the search process, and operator selection is 
performed to choose an operator automatically for the future 
iterations in an iterative process [29]. Mathematically, it is 
defined as follows:

Suppose H is  a  set  of  K operators ,  say, 
H = {h1, h2,… , hK}.1 For a given iteration t, let us 
assume, the associated selection probability vector 
(or, weight vector) is Wt = {w1,t,w2,t,… ,wK,t} where, 
0 ≤ wit ≤ 1 ∀i = 1, 2,… ,K . The quality vector associated 
with the pool of operators is Qt = {q1,t, q2,t,… , qKt} where, 

1 For this study, operators are different mutation strategies of the DE 
algorithm.



SN Computer Science           (2024) 5:771  Page 5 of 21   771 

SN Computer Science

qi,0 = 1,∀i = 1, 2,… ,K . Say, for a selected operator hi , wit 
and qit represent the weight and the quality values, respec-
tively. The adaptive pursuit strategy is given as follows. 

1. For a given iteration t, select an operator hk,t, 1 ≤ k ≤ K, 
from the pool of operators H in proportion to the selec-
tion probability vector Wk,t and evaluate the reward rk,t 
for the operator hk,t.

2. Update the quality value qk,t of hk,t based on the reward 
value rk,t . Reward value can be positive or negative 
based on the performance of the underlying operator hk,t.

3. If the quality value qk,t of hk,t improved, increase the 
selection probability of hk,t and decrease that of others, 
or vice-versa.

4. If the termination criteria are not satisfied, the adaptive 
pursuit strategy goes to step 1 for selecting an operator 
based on Wt+1 for the next iterations.

The adaptive pursuit strategy helps in choosing 
the optimal operator from the pool of operators H 
automatically. However, this strategy is more suited for 
cases when the underlying environment is static. For 
dynamic environments like the evolving phase of an 
evolutionary algorithm, this strategy may favor strategies 
that perform better at the initial phase of the optimization 
procedure by assigning excessive rewards. Effectively, 
this will deplete the selection chances of other available 
strategies in the long run and may not utilize the pool 
diversity efficiently. Inspired by this, in this proposed 
work, an adaptive pursuit strategy with a perturbation 
parameter (PAPS) is utilized for strategy selection. A 
concise overview of PAPS is given in the next subsection.

Perturbation Adaptive Pursuit Strategy

The major drawback associated with the adaptive pursuit strat-
egy for strategy selection in the context of the DE algorithm is 

that if a particular strategy performs better at an early phase of 
the evolutionary process, it may accumulate excessive rewards 
and dominate other strategies. This may lead to less-than-opti-
mal utilization of alternative mutation strategies, and the full 
potential of the pool’s diversity would not be realized [28]. 
However, if a perturbation parameter Pp is incorporated for 
adjusting the weights of underlying strategies. It can increase 
the chances of utilizing all other available strategies in the 
pool. Inspired by this, weights of strategies in the pool are 
randomly assigned when the value of a generated random 
number is less than the value of perturbation parameter Pp . 
This increases the robustness of the proposed dmss-DE-pap 
algorithm in strategy selection. A detailed description of the 
proposed algorithm is given in the next section.

Dynamic Mutation Strategy Selection 
in Differential Evolution Using Perturbed 
Adaptive Pursuit (dmss‑DE‑pap)

The proposed dmss-DE-pap algorithm is an integration 
of the perturbed adaptive pursuit for managing a pool of 
multiple mutation strategies in DE.

A pool of five different mutation strategies is created, and 
equal weights and quality values are assigned to each strat-
egy. For initialization, a strategy is picked randomly from 
the pool, and the algorithmic procedure of the DE algorithm 
with a self-adaptive control parameter setting is executed. 
Based on the performance of the selected strategy, a posi-
tive or negative reward is allocated, and with the help of the 
received reward values, the quality and weight values are 
adjusted. This process is repeated iteratively till the termi-
nation criteria are not satisfied. The pseudo-code and flow 
chart of the proposed dmss-DE-pap algorithm is given in 
Algorithm 2, and Fig. 1, respectively. In the next subsec-
tions, a detailed description of components associated with 
the proposed dmss-DE-pap algorithm is given.

Fig. 1  Flow Chart of the dmss-
DE-pap algorithm



 SN Computer Science           (2024) 5:771   771  Page 6 of 21

SN Computer Science

Algorithm  2  Dynamic Mutation Strategy Selection in Differential Evolution using Perturbed Adaptive Pursuit 
(dmss-DE-pap)

Strategy Pool

The proposed dmss-DE-pap algorithm utilizes a pool con-
taining five different mutation strategies of the DE algorithm 
as mentioned in Eqs. 2-6) at section “Canonical Differential 
Evolution Algorithm”. The reason for selecting these five 
mutation strategies is their distinguished characteristics and 
performance in different kinds of optimization problems. 
For instance, strategies like ‘DE/rand/2’ and ‘DE/best/2’ 
are more suitable for multi-modal problems, and are more 
exploratory, however, these strategies provide slow conver-
gence [21]. Similarly, strategies like ‘DE/rand/1’ and ‘DE/
best/1’ have fast convergence speeds, and are better suited 
for solving global optimization problems, even, if they are 
prone to get stuck in the region of local optima [21]. ‘DE/
current-to-pbest/1’ is an advanced mutation strategy, pro-
posed in the JADE algorithm. There are two versions avail-
able for this strategy, one is with an external archive of top 
p% solutions, and the other is without an external archive, 
in which top p% individuals are chosen from the current 
population. This strategy is capable of producing more 
diverse vectors and has shown improved performance [30]. 

To incorporate all these characteristics in the operator pool, 
the proposed dmss-DE-pap algorithm utilizes the above-
mentioned five strategies and selects a particular strategy 
based on its quality value and weight vector. The quality 
value of a selected mutation strategy is updated using the 
obtained reward values. In the next subsection, details about 
the reward-assigning mechanism are given.

Reward‑Assigning Mechanism

The reward values serve as the feedback signals for updat-
ing the quality values of the underlying strategies. In the 
proposed dmss-DE-pap algorithm, a community-based 
reward-assigning mechanism has been proposed in which a 
strategy is credited with a positive reward value if more than 
100 ⋅ �% , (where � = 0.6 ), mutant vectors are better than 
their corresponding target vectors. This means a particular 
strategy is credited with a positive reward if it improves at 
least 60% of the current population, otherwise, the strat-
egy is credited with a negative reward. The parameter � is 
called the reward control parameter, and the value of � near 
1 can be considered an optimistic reward assignment, while 



SN Computer Science           (2024) 5:771  Page 7 of 21   771 

SN Computer Science

a value of � near 0 can be thought of as a pessimistic reward 
assignment. The major advantage of using this reward crite-
rion is that the algorithm will not switch between strategies 
aggressively, and characteristics of the underlying strategy 
will be exploited till it stops improving the majority of the 
population. A local counter lck is used to record the instances 
where the mutant vectors are better than their corresponding 
target vectors while employing the kth mutation strategy. The 
pseudo-code of the proposed reward-assigning mechanism 
is given in Algorithm 3.

Algorithm 3  Reward-Assigning Mechanism

 

The proposed reward-assigning mechanism is different from 
the reward-assigning mechanisms proposed in [26], in the 
sense that, earlier proposed reward criterion was based on 
the individual’s relative fitness values while the proposed 
reward-assigning mechanism in the dmss-DE-pap algorithm 
is based on the success of whole population or community. 
This ensures proper exploitation of the underlying mutation 
strategies in the strategy pool. The reward values obtained 
by a particular strategy will be utilized to update the quality 

values associated with underlying strategies. In the next sec-
tion, details about the quality update mechanism are given.

Quality‑Update Mechanism

Based on the received rewards by the underlying mutation 
strategies, the quality values stored in a quality vector Q are 
updated. Initially, all the mutation strategies in the pool are 
treated as of the same quality, and equal quality values are 
assigned, i.e., Q = (1, 1,… , 1) . The quantum of the quality 
values for the underlying mutation strategies are updated 

using a quality control parameter � . In the proposed work, 
the value of � is taken to be 0.1. If a selected mutation strat-
egy obtains a positive reward, then the associated quality 
value of that strategy is updated using the quality control 
parameter � , while keeping the quality of other mutation 
strategies unchanged. Similarly, if a selected mutation strat-
egy receives a negative reward, the quality value associated 
with it is degraded while keeping the quality values of other 
mutation strategies unchanged. The pseudo-code for the 
quality-update mechanism is given in Algorithm 4.

Algorithm 4  Quality-Update Mechanism



 SN Computer Science           (2024) 5:771   771  Page 8 of 21

SN Computer Science

With the help of updated quality values, weight values asso-
ciated with underlying strategies are updated. In the next sub-
section, details about the proposed perturbation-based weight 
update mechanism are given.

Perturbation‑Based Weight Update Mechanism

The weight value of the selected mutation strategy is updated 
using the quality values. If the updated quality value is qk,t+1 , 
and the quality value before applying the quality-update 
mechanism is qk,t . These values are first compared, and if the 
updated quality value qk,t+1 is better than the quality value qk,t , 
the weight value of the selected mutation strategy is increased 
with the help of quality control parameter � , while keeping 
the weight values of other mutation strategies in the pool 
unchanged. Similarly, if the converse is true, that is, qk,t+1 is 

less than or equal to qk,t , the weight value associated with the 
selected mutation strategy is decreased, while keeping the 
weight values of other strategies unchanged. However, if a 
particular strategy is able to accumulate positive rewards in 
the early phase of the optimization procedure, its quality value, 
hence the weight value will be comparatively larger than the 
quality and weight values of other available mutation strate-
gies. This will favor the strategy performing better at an early 
stage of the optimization procedure over other available muta-
tion strategies in the pool, and the diversity of the pool will not 
be exploited optimally. Keeping this into consideration, a per-
turbation parameter Pp is introduced in the weight mechanism 
that will reinitialize the weight values of all available mutation 
strategies with a probability Pp . The implementation details of 
the proposed perturbation-based weight update mechanism are 
given in the Algorithm 5.

Table 1  Initial parameter 
settings for all considered 
algorithms

Algorithm Initial Parameters Settings

PSO [35] N = 100 , C1 = 2 , C2 = 2 , Topology: Fully Connected
DE [8] N = 100 , F = 0.5 and CR = 0.7

CMA-ES [36] N = 100 , � = PS∕2 w = log(� + 0.5) − log(1 ∶ �) , �eff =
1

w2

C� =
�eff+2

D+�eff+5 D� = 1 + C� + 2 ∗ max(

√

(
�eff−1

D+1
) − 1, 0)

ABC [34] N = 100 , Limit (L) = 0.6 ⋅ D ⋅ PS , � = rand(−a, a) , −1 ≤ a ≤ 1

Nmax = 18 ⋅ D , Nmin = 4 , �F = 0.5

LSHADE [31] F ∼ C(�F , 0.1) , �CR = 0.5

CR ∼ C(�CR, 0.1) , p = 0.11

Nmax = 12 ⋅ D , Nmin = 4

i-LSHADE [37] H, F and CR same as LSHADE, �F = 0.8

�CR = 0.5 , �FH
= �CRH

= 0.9

jSO [38] Nmax = 25 ⋅ lnD ⋅

√

D , Nmin = 4 , F and CR same as LSHADE, �F = 0.3

SaDE [16] N = 100 , Operator Pool size H = 4 , F ∈ N[0.5, 0.3] , CR ∈ N[0.5, 0.1]

CoDE [18] N = 100 , Operator Pool size H = 3 , [F = 1.0,CR = 0.1], [F = 1.0,CR = 0.9]

[F = 0.8,CR = 0.2]

EPSDE [17] N = 100 , Operator Pool size H = 4 , F = [0.4 ∶ 0.1 ∶ 0.9]

and CR = [0.1 ∶ 0.1 ∶ 0.9]

dmss-DE-pap Nmax = 16 ⋅ D , Nmin = 10 , Operator pool size H = 5

F,CR, �F = 0.5 , �CR = 0.5

� = 0.6 , � = 0.1,Pp = 0.1



SN Computer Science           (2024) 5:771  Page 9 of 21   771 

SN Computer Science

Algorithm 5  Perturbation-based Weight Update Mechanism

The proposed perturbation-based weight update mecha-
nism ensures that no particular mutation strategy in the 
strategy pool becomes greedy and dominates the optimiza-
tion procedure while depleting the participation of other 
available mutation strategies in the pool. The proposed 
dmss-DE-pap algorithm utilizes two types of control 
parameters, one type is associated with the perturbation 
adaptive pursuit strategy while the other set is associated 
with the DE algorithm. In the next section, a discussion 
of associated parameters with the proposed dmss-DE-pap 
algorithm is given.

Associated Parameters

The proposed dmss-DE-pap algorithm utilizes two distinct 
sets of control parameters. One set of parameters contains 
the control parameters associated with the DE algorithm 

that are population size N, scaling factor F, and crossover 
rate CR. The other set of parameters contains the reward 
control parameter � , and quality control parameter � . In 
the proposed dmss-DE-pap algorithm, the control param-
eters associated with the DE algorithm are self-adaptive 
and majorly inspired by the LSHADE algorithm [31]. The 
population size is adjusted using the linear population size 
reduction (LPSR) mechanism as proposed in the LSHADE 
algorithm, and the control parameters are adjusted using 
the success-history-based parameter adaption scheme [32]. 
The implementation details of the success-history-based 
parameter adaption technique are given in algorithm 6. The 
self-adaptive control parameter setting improves the per-
formance of the DE algorithm and reduces the burden of 
the computationally intensive task of manually tuning the 
control parameters.

Table 2  p-values at significance 
level 0.05 and effect size metric 
Cohens-d

CEC 14 30D 50D

Algorithms p-value Cohens-d h p-value Cohens-d h

ABC 0.00176 0.7342 1 0.00085 0.8081 1
PSO 0.00072 0.8171 1 0.00052 0.8333 1
DE 0.00020 0.8389 1 0.00012 0.8771 1
CMAES 0.00274 0.6963 1 0.00384 0.5495 1
LSHADE 0.00979 0.5280 1 0.0560 0.1919 0
iLSHADE 0.00399 0.5661 1 0.00728 0.4319 1
jSO 0.05944 0.2022 0 0.00166 0.7311 1
SaDE 0.00190 0.7236 1 0.00613 0.5449 1
CoDE 0.00333 0.5719 1 0.00138 0.7417 1
EPSDE 0.00169 0.7316 1 0.00797 0.5099 1



 SN Computer Science           (2024) 5:771   771  Page 10 of 21

SN Computer Science

Algorithm 6  Success-history-based-parameter adaption scheme [32]

Another set of control parameters associated with pertur-
bation-based adaptive pursuit strategy contains reward con-
trol parameter � and quality control parameter � . The values 
of � and � lies in the range (0, 1). In this research, the value 
of � is taken to be 0.6, and the value of � is taken to 0.1. A 
higher value of � near to or equal to 1 makes the population 
more greedy which could affect the exploration capabilities 
of the algorithm and can lead to premature convergence, on 
the other hand, a small value of � can affect the exploitation 
capabilities. The parameter � helps in scaling the quality 
vector. A value of � near 1 can be considered an aggressive 
quality update, while a value near 0 can be considered a pes-
simistic quality update. The value of the control parameters 
� and � are obtained empirically in this research by applying 
grid search on 10 equally spaced values of � and � in the 
range (0,1). For assessing the optimization capabilities of 
the proposed dmss-DE-pap algorithm, experiments on 30D 
and 50D CEC 2014 benchmark test suits are conducted, and 
experimental results are compared with the other state-of-
the-art evolutionary algorithms and some recent DE vari-
ants. In the next section, experimental results obtained by 
the proposed dmss-DE-pap algorithm are reported in detail.

Experimental Results

The performance of the proposed dmss-DE-pap algorithm is 
tested on the CEC 2014 benchmark test suite [33]. The CEC 
2014 benchmark test suite contains four different classes 

of optimization problems including unimodal problems, 
multi-modal problems, hybrid problems, and composite 
problems. In addition, these problems are highly anti-sym-
metric, rotated, and irregular [33]. Moreover, while solving 
these problems the information about their optimum solu-
tion is not used, which means these problems are treated as 
completely black-box problems. For our experiments, the 
CEC 2014 benchmark problems are labeled as fa1 − fa30 and 
separated into four different groups: fa1 − fa3 are in the uni-
modal functions group, fa4 − fa16 are in the multi-modal func-
tion group, fa17 − fa22 are in the hybrid function group, and 
fa23 − fa30 are in the composite function group. To validate 

Table 3  Average Ranks in the Friedman Test

Algorithms CEC14 Avg Final

30D 50D Ranks Ranks

ABC 7.66 8.46 7.69 8
PSO 7.93 8.70 7.98 9
DE 10.03 10.33 10.03 11
CMAES 7.11 7.55 7.11 7
LSHADE 4 4.2 4.05 4
iLSHADE 3.75 3.5 3.74 3
jSO 3.71 4.16 3.74 2
SaDE 6.81 5.61 6.78 6
CoDE 8.06 6.73 8.01 10
EPSDE 4.96 4.15 4.91 5
dmss-DE-pap 1.93 2.58 1.91 1



SN Computer Science           (2024) 5:771  Page 11 of 21   771 

SN Computer Science

the proposed dmss-DE-pap performance, four standard evo-
lutionary algorithms, ABC [34], PSO [35], DE [8], CMA-
ES [36], and three control parameter adaptive DE variants, 
LSHADE [31], i-LSHADE [37], and jSO [38], and three DE 
variants with multiple mutation strategies, SaDE [16], CoDE 
[18], and EPSDE [17] are considered for comparison. The 
control parameter settings are taken as mentioned in their 
original papers and given in Table 1.

As per the experimentation guidelines of CEC 2014 [33], 
51 independent runs are carried out on each benchmark 
test function with an upper limit of 10000 ⋅ D function 
evaluations, where D is the dimension of the search space. 
Test results for 30D, and 50D are reported in this research, 
and fitness errors that are smaller than “eps" (eps = 10−08) 
are considered to be zero. All the experiments are performed 
on a PC with Intel(R) Core(TM) i7-9750 H CPU @ 2.60GHz 
on the Windows 11 Operating System. For comparing the 
results of the proposed dmss-DE-pap algorithm with other 
considered algorithms, non-parametric tests are conducted 
and discussed in the next subsection.

Non‑Parametric Tests

For comparing the proposed dmss-DE-pap with other under-
lying algorithms, the Wilcoxon signed-rank test is employed 
with the 5% significance level. The null hypothesis H0 ∶ 
“there is no significant difference between dmss-DE-pap and 
other compared algorithm" is tested based on the median 
values of mean fitness on 30D, and 50D test functions. The 
corresponding p-values at the significance level 5% and 
effect size metrics Cohens-d are reported in Table 2. The 
value ‘ h = 0 ’ indicates the failure to reject the null hypoth-
esis Ho , and the value ‘ h = 1 ’ indicates the rejection of the 
null hypothesis Ho at 5% level of significance. The effect size 
metric Cohens-d provides the magnitude of the difference 
between the means of two populations. This allows to study 
the impact of different treatments over the underlying experi-
ments. The cohens-d values can be obtained in four different 
scenarios: (1) simple group design, (2) two-group design, 
(3) single group two-repeated measures, (4) designs with 

baseline to compare. A detailed study concerning comput-
ing methodologies of cohens-d values can be found in [39]. 
In this research, a two group design is considered for which 
cohens-d values are calculated using following Eq. (7).

Where, M1, and M2 are mean values of group 1 and group 
2, respectively. And, Sp is called pooled standard deviation 
and calculated using the Eq. (8).

 Where, S1 and S2 are the standard deviation of the group 1 
and group 2, respectively. And, n1 and n2 are a sample size of 
group 1 and group 2, respectively. The value of Cohens-d is 
subjective and depends on the experimental specifications. 
Values near 0.2 are considered as ‘merely statistical’, values 
between 0.2−0.5 are considered as ‘subtle’, and values above 
0.5 are considered ‘obvious’ [39]. The proposed dmss-
DE-pap is considered as group 1 while other compared 
algorithms are treated as group 2. The cohens-d values 
obtained by the proposed dmss-DE-pap algorithm are 
mostly greater than 0.2, except for the jSO algorithm in 
30D problems and the LSHADE algorithm in 50D problems. 
This implies that the performance of the proposed dmss-DE-
pap is superior compared to other considered algorithms.

To assess the winning performance of the dmss-DE-pap 
algorithm, the Friedman rank test is employed. The average 
rank and final rank obtained using the Friedman test are 
given in Table 3. It can be seen from Table 3, that the dmss-
DE-pap algorithm outperforms all other underlying algo-
rithms and secures the best rank. Additionally, for reporting 
the comprehensive performance of the proposed dmss-DE-
pap algorithm from the perspective of the accuracy of the 
optimal solution, the mean, and std (standard deviation) 
of error for the total 51 runs are calculated and reported 
in Tables 5, and 6, respectively. The Rank/Stats below the 
test metrics mean, and std in the Tables 5 and 6, denote the 

(7)Cohens − d =
M2 −M1

Sp

(8)Sp =

√

(n1 − 1) ⋅ S2
1
+ (n2 − 1) ⋅ S2

2

(n1 + n2) − 2

Fig. 2  Mean percent use of 
strategy pool in the optimiza-
tion of 30D and 50D CEC 2014 
Functions



 SN Computer Science           (2024) 5:771   771  Page 12 of 21

SN Computer Science

Friedman rank obtained by the considered algorithms on 
individual benchmark problems.

The proposed dmss-DE-pap algorithm utilizes a pool of 
5 mutation strategies, however, it is important to analyze the 
participation of each mutation strategy in the optimization 
procedure. The next subsection discusses strategy pool 
analysis.

Strategy Pool Analysis

In the strategy pool H, 5 different mutation strategies are 
denoted as ST1-ST5, where ST1 is ‘DE/current-to-pbest/1’, 
ST2 is ‘DE/rand/2’, ST3 is ‘DE/best/2’, ST4 is ‘DE/rand/1’ 
and ST5 is ‘DE/best/1’. To assess the contribution of each 
strategy in the search procedure, the mean percent use of all 
the strategies is reported in Fig. 2.

Since the CEC14 benchmark test suite is divided into 
four groups as unimodal functions group ( fa1 − fa3 ), multi-
modal functions group ( fa4 − fa16 ), hybrid functions group 
( fa17 − fa22 ), and composite functions group ( fa23 − fa30 ), the 
mean percent is calculated as the ratio of the number of 
invocation of a particular strategy to the total number of 
invocations of all the strategies in 51 runs. It can be observed 
that all the strategies in the pool are participating in the 

Fig. 3  Exploration-Exploitation Plots for Unimodal, Multi-Modal, Hybrid and Composite Functions

Table 4  Time complexity of dmss-DE-pap on 30D and 50D CEC14 
benchmark

T0 T1 T̂2 (T̂2 − T1)∕T0

D = 30 0.32 3.26 4.16 2.81
D = 50 0.32 3.40 5.18 5.56



SN Computer Science           (2024) 5:771  Page 13 of 21   771 

SN Computer Science

Ta
bl

e 
5 

 P
er

fo
rm

an
ce

 o
f d

m
ss

-D
E-

pa
p 

on
 3

0D
 C

EC
14

 b
en

ch
m

ar
k 

pr
ob

le
m

s

Fu
nc

tio
n

M
et

ric
s

A
B

C
PS

O
D

E
C

M
A

ES
LS

H
A

D
E

iL
SH

A
D

E
jS

O
Sa

D
E

C
oD

E
EP

SD
E

dm
ss

-D
E-

pa
p

f a
1

M
ea

n
11

68
89

7
67

32
06

12
55

42
75

4
13

88
21

4
0.

00
0.

00
0.

00
34

32
34

59
17

76
55

98
7

36
22

62
5.

78
24

0.
00

std
38

93
27

25
29

91
15

82
18

1
64

73
13

0.
00

0.
00

0.
00

87
04

41
8

33
58

05
05

11
10

63
0

0.
00

R
an

k/
St

at
s

6
5

10
7

2.
5

2.
5

2.
5

9
11

8
2.

5
f a

2
M

ea
n

10
20

27
.3

18
9

24
86

4.
68

37
29

29
.0

94
3

25
36

8.
81

04
0.

00
0.

00
0.

00
11

5.
66

48
36

10
05

.7
88

1
20

13
.2

47
4

0.
00

std
10

30
90

.7
13

9
91

86
.3

29
1

29
21

.7
26

3
15

56
2.

28
62

0.
00

00
0.

00
00

0.
00

00
29

6.
64

60
82

28
5.

36
29

25
85

.5
10

1
0.

00
R

an
k/

St
at

s
10

8
7

9
2.

5
2.

5
2.

5
5

11
6

2.
5

f a
3

M
ea

n
96

78
1.

72
06

18
88

.3
28

3
24

00
.7

33
7

25
32

8.
08

54
0.

00
0.

00
0.

00
0.

03
85

38
.3

29
5

49
3.

94
42

0.
00

std
16

21
5.

75
35

11
67

.8
09

6
98

19
5.

93
00

73
81

.7
96

9
0.

00
0.

00
0.

00
0.

01
65

9.
43

02
37

7.
33

16
0.

00
R

an
k/

St
at

s
11

8
9

10
2.

5
2.

5
2.

5
5

6
7

2.
5

f a
4

M
ea

n
65

.6
04

7
83

.3
71

6
67

.3
30

4
14

.6
98
0

58
.7

06
4

58
.5

60
8

31
.2

85
6

85
.9

26
6

37
.5

36
1

27
.3

94
4

58
.5

19
2

std
16

.8
24

6
24

.4
07

2
80

.4
58

3
0.

96
81

1.
01

19
0.

02
79

0.
30

11
2.

93
96

11
.0

13
2

5.
66

85
0.
00
03
9

R
an

k/
St

at
s

8
10

9
1

7
6

4
11

5
3

2
f a

5
M

ea
n

20
.9

26
4

20
.7

09
2

20
.9

01
1

20
.3

78
0

20
.7

61
7

20
.9

09
5

20
.1

99
3

20
.8

87
4

20
.5

61
5

20
.4

72
5

19
.1
07
8

std
0.

07
31

0.
10

14
0.

04
68

0.
05

56
0.

02
11

0.
02

71
0.

08
78

0.
05

47
0.

04
82

0.
04

11
0.
00
17

R
an

k/
St

at
s

11
6

9
3

7
10

2
8

5
4

1
f a

6
M

ea
n

26
.6

47
2

32
.5

12
0

36
.6

14
5

0.
00
00
2

2.
08

56
2.

94
04

0.
11

91
18

.0
29

2
29

.9
19

8
16

.8
54

9
0.

00
95

std
1.

36
45

2.
45

13
1.

11
00

0.
00
00
04

1.
19

74
1.

16
53

0.
38

91
9.

81
73

1.
01

02
1.

40
75

0.
03

26
R

an
k/

St
at

s
8

10
11

7
2

3
4

6
9

5
1

f a
7

M
ea

n
0.

00
92

0.
10

14
27

.1
04

7
0.

00
00

0.
00

01
0.

00
00

0.
00

00
0.

00
00

0.
10

46
0.

00
00

0.
00

00
std

0.
00

66
0.

02
69

2.
67

79
0.

00
00

0.
00

35
0.

00
00

0.
00

00
0.

00
00

0.
02

77
0.

00
00

0.
00

00
R

an
k/

St
at

s
8

9
11

3.
5

7
3.

5
3.

5
3.

5
10

3.
5

3.
5

f a
8

M
ea

n
12

6.
98

28
75

.9
34

6
20

7.
37

57
15

8.
52

94
2.

05
44

0.
00

01
0.

00
04

0.
99

50
0.

00
47

0.
00

00
00

.0
0

std
11

.2
61

3
12

.1
32

7
12

.3
86

8
9.

97
94

0.
68

71
0.

00
00

0.
00

03
0.

95
43

0.
00

25
0.

00
00

00
.0
0

R
an

k/
St

at
s

9
8

11
10

7
3

4
6

5
1.

5
1.

5
f a

9
M

ea
n

13
9.

89
36

11
0.

19
21

25
3.

84
67

15
8.

23
66

13
.9

07
8

12
.2

12
8

7.
23

12
15

4.
77

87
15

1.
34

56
65

.6
95

3
6.
43
07

std
16

.9
04

2
24

.2
37

8
14

.2
11

1
9.

47
34

2.
42

40
2.

30
19

1.
55

92
9.

63
84

10
.5

75
0

8.
68

94
1.
01
28

R
an

k/
St

at
s

7
6

11
10

4
3

2
9

8
5

1
f a

1
0

M
ea

n
46

98
.9

92
2

33
74

.6
40

3
59

63
.2

27
2

71
85

.4
47

1
0.

06
06

0.
00

93
0.

00
19

41
.6

05
4

14
81

.6
67

3
0.

91
33

0.
00
05
51

std
30

5.
75

52
66

6.
91

98
19

4.
13

97
25

6.
54

99
0.

08
74

0.
01

13
0.

01
02

65
.2

32
7

15
0.

60
53

0.
97

84
0.
00
13

R
an

k/
St

at
s

9
8

10
11

3
2

1
5

7
4

6
f a

1
1

M
ea

n
49

25
.8

59
4

40
12

.8
75

4
71

18
.9

78
8

70
94

.5
26

4
26

4.
49

54
24

5.
03

40
16
6.
13
97

67
54

.3
06

3
64

67
.4

60
8

42
46

.4
39

7
17

8.
05

36
std

29
3.

27
17

54
5.

52
51

26
5.

98
78

21
9.

61
27

97
.2

16
1

72
.1

91
4

59
.7

05
1

23
8.

32
66

25
8.

21
34

40
9.

61
93

54
.5
11
1

R
an

k/
St

at
s

7
5

11
10

1
2

4
9

8
6

3
f a

1
2

M
ea

n
1.

68
06

1.
05

31
2.

63
33

00
.0
0

0.
20

61
0.

23
57

0.
22

11
2.

44
34

1.
43

02
1.

06
02

0.
27

73
std

0.
26

21
0.

61
39

0.
35

06
00

.0
0

0.
03

19
0.

03
11

0.
04

12
0.

21
20

0.
14

57
0.

12
89

0.
10

31
R

an
k/

St
at

s
9

6
11

1
2

4
3

10
8

7
5

f a
1
3

M
ea

n
0.

36
19

0.
57

88
0.

97
10

0.
23

83
0.

11
33

0.
11

61
0.

20
40

0.
33

04
0.

50
90

0.
34

36
0.
01
48



 SN Computer Science           (2024) 5:771   771  Page 14 of 21

SN Computer Science

Ta
bl

e 
5 

 (c
on

tin
ue

d)

Fu
nc

tio
n

M
et

ric
s

A
B

C
PS

O
D

E
C

M
A

ES
LS

H
A

D
E

iL
SH

A
D

E
jS

O
Sa

D
E

C
oD

E
EP

SD
E

dm
ss

-D
E-

pa
p

std
0.

04
22

0.
13

55
0.

10
29

0.
03

73
0.

01
35

0.
01

35
0.

03
12

0.
03

36
0.

06
71

0.
04

46
0.
00
26

R
an

k/
St

at
s

8
10

11
5

2
3

4
6

9
7

1
f a

1
4

M
ea

n
0.

24
91

0.
30

77
0.

61
00

0.
41

62
0.

02
03

0.
00

20
0.

00
21

0.
28

62
0.

28
34

0.
27

09
0.
00
00
19
6

std
0.

02
26

0.
08

10
0.

19
31

0.
05

95
0.

02
53

0.
02

40
0.

02
39

0.
02

34
0.

03
36

0.
04

22
0.
00
00
23

R
an

k/
St

at
s

5
9

11
10

4
2

3
8

7
6

1
f a

1
5

M
ea

n
14

.7
07

5
22

.7
33

9
77

.6
71

6
14

.0
90

9
2.

71
64

2.
38

06
2.

89
17

14
.9

03
5

18
.6

01
8

9.
95

42
0.
23
61

std
1.

45
96

3.
55

51
38

.5
17

3
1.

02
59

0.
81

11
0.

29
37

0.
38

66
1.

11
56

1.
36

21
1.

29
23

0.
26
40

R
an

k/
St

at
s

7
10

11
6

3
2

4
8

9
5

1
f a

1
6

M
ea

n
12

.8
75

3
12

.3
13

6
13

.1
74

2
13

.0
42

5
9.

63
70

9.
00
46

10
.3

82
2

12
.9

56
9

12
.9

91
8

11
.7

63
3

10
.0

73
5

std
0.
16
91

0.
40

48
0.

18
33

0.
30

29
0.

45
41

0.
42

88
0.

34
54

0.
15

84
0.

21
07

0.
21

58
0.

39
91

R
an

k/
St

at
s

7
6

11
10

2
1

4
8

9
5

3
f a

1
7

M
ea

n
66

42
20

.2
38

7
52

33
0.

88
31

73
66

5.
56

89
14

54
47

.5
76

0
31

1.
88

16
27

0.
75

22
23

3.
55

49
15

70
25

.2
36

1
39

38
08

2.
33

94
14

97
95

2.
45

34
19
4.
04
18
5

std
16

25
12

.5
50

4
82

50
.8

83
1

24
20

42
3.

19
83

75
27

0.
98

49
91

5.
10

32
10

2.
57

60
10

1.
08

81
84

16
4.

49
18

88
12

94
.4

14
6

76
01

95
.9

54
7

99
.0
01
7

R
an

k/
St

at
s

9
5

6
7

4
3

2
8

11
10

1
f a

1
8

M
ea

n
32

29
76

.8
13

8
12

32
2.

63
85

48
36

3.
42

31
15

51
52

.3
66

0
6.

20
68

7.
31

90
7.

78
31

26
10

99
1.

94
26

79
36

51
46

.2
36

2
12

62
81

.5
01

5
5.
39
52

std
20

35
6.

22
35

15
15

.3
40

3
13

46
0.

37
11

94
61

7.
63

79
2.

58
67

2.
93

30
2.

89
89

16
29

77
6.

24
98

25
60

48
99

.7
62

4
78

97
8.

43
59

2.
57
71

R
an

k/
St

at
s

9
5

6
8

1
3

4
10

11
7

2
f a

1
9

M
ea

n
20

.1
09

1
19

.6
60

6
44

.6
08

5
28

.9
24

7
7.

56
10

7.
61

20
9.

15
17

15
.7

58
5

19
.0

42
4

13
.1

39
3

3.
57
02

std
2.

05
63

14
.6

21
0

48
.3

44
8

3.
49

03
2.

00
87

1.
69

62
2.

09
37

1.
76

98
0.

78
78

1.
29

11
1.
17
21

R
an

k/
St

at
s

9
8

11
10

2
3

4
6

7
5

1
f a

2
0

M
ea

n
12

97
3.

65
39

85
6.

98
03

58
67

.2
46

3
38

39
5.

99
82

4.
76

68
3.

23
19

3.
34

21
26

4.
84

38
14

13
2.

17
14

28
45

.0
40

6
2.
21
15

std
45

06
.3

81
3

40
7.

93
82

18
1.

36
90

22
97

0.
19

54
2.

82
35

1.
08

28
1.

44
17

75
.0

82
1

48
12

.4
54

7
12

22
.7

28
7

1.
01
63

R
an

k/
St

at
s

9
6

8
11

4
2

3
5

10
7

1
f a

2
1

M
ea

n
61

75
3.

33
29

24
17

7.
58

66
75

93
2.

29
37

27
95

5.
91

31
17

9.
79

22
16

0.
79

02
10

7.
84

32
69

95
.8

95
6

10
73

09
4.

99
53

32
32

2.
99

76
10
2.
12
73

std
22

17
5.

49
06

93
51

.9
79

0
17

86
1.

83
36

12
34

3.
84

32
79

.5
11

4
95

.1
89

9
74

.2
05

2
26

00
.7

39
9

40
13

47
.5

96
3

17
50

6.
55

61
73

.0
13
4

R
an

k/
St

at
s

9
6

10
7

2
3

4
5

11
8

1
f a

2
2

M
ea

n
19

6.
79

26
40

0.
58

09
79

2.
22

38
93

1.
55

92
26

.9
92
1

27
.1

42
3

28
.3

10
9

44
0.

59
81

84
4.

80
80

11
6.

80
92

31
.2

72
9

std
75

.2
57

8
20

6.
68

02
11

1.
75

55
21

4.
33

85
1.
18
88

1.
38

14
1.

83
96

10
8.

69
03

15
7.

13
22

43
.8

41
6

4.
18

87
R

an
k/

St
at

s
6

7
9

11
1

2
3

8
10

5
4

f a
2
3

M
ea

n
33

0.
97

28
33

5.
91

60
36

1.
34

01
33

4.
19

11
34

5.
82

87
33

5.
58

28
33
1.
39
36

33
5.

57
95

33
0.

14
27

33
0.

14
22

33
9.

79
85

std
0.

27
61

0.
41

10
3.

16
79

6.
84

00
0.

00
00

0.
00

00
0.

00
01

0.
00

00
0.

00
15

0.
00

23
00

.0
0

R
an

k/
St

at
s

4
9

11
6

10
8

5
7

2
1

3
f a

2
4

M
ea

n
20

1.
34

11
20

1.
48

21
20

2.
49

73
20

1.
04

09
20

1.
12

66
20

1.
04

67
20

1.
77

82
20

0.
95

26
20

1.
25

68
20

0.
98

71
20
0.
06
99

std
0.

08
80

0.
21

01
0.

47
00

24
.3

86
6

0.
06

21
0.

04
73

0.
07

04
0.

05
41

0.
08

86
0.

07
61

0.
03
80

R
an

k/
St

at
s

8
9

11
4

6
5

10
2

7
3

1
f a

2
5

M
ea

n
20

6.
06

98
23

0.
77

97
24

0.
75

02
20

6.
87

29
20

9.
52

40
20

1.
97

78
20

2.
34

42
21

0.
84

43
22

8.
01

84
20

1.
92

78
19
1.
50
28

std
1.

21
00

16
.4

56
4

6.
23

49
2.

17
78

1.
33

02
1.

38
80

1.
61

64
2.

18
42

4.
68

21
0.

66
16

0.
40
81



SN Computer Science           (2024) 5:771  Page 15 of 21   771 

SN Computer Science

optimization procedure. However, strategy ST1 is the most 
prominent strategy among others as it has maximum con-
tribution in the optimization process. It is also important 
to analyze the exploration-exploitation capabilities of the 
proposed dmss-DE-pap algorithm for the better understand-
ing of its optimization capabilities. In the next section, an 
analysis of the exploration-exploitation capabilities of the 
proposed dmss-DE-pap algorithm is discussed.

Exploration‑Exploitation Analysis

Apart from managing the diversity of the pool, the proposed 
dmss-DE-pap algorithm also maintains a balance between 
exploration and exploitation of the search procedure. For 
effectively assessing the exploration-exploitation trade-off, 
a dimension-wise diversity-based analysis is adopted [40]. 
The percentage of exploitation and exploration is calculated 
using the equation (9) given below:

Here, the diversity Div is calculated using the equation (10) 
given below:

Divmax is the maximum diversity recorded during the opti-
mization process. Here, medj(X) denotes the median of the 
jth dimension in the population. To assess the exploration-
exploitation capability of the dmss-DE-pap algorithm, pop-
ulation diversity analysis is performed on unimodal ( fa1 ), 
multi-modal ( fa9 ), hybrid ( fa18 ), and composite ( fa25 ) func-
tions of 30D CEC14 benchmark problems, and exploration-
exploitation plots are illustrated in Fig. 3.

The proposed dmss-DE-pap algorithm depicts a fine 
balance between exploration and exploitation during its 
optimization procedure, hence it can be considered as a 
robust optimizer for solving complex optimization problems. 
In the next subsection, the algorithmic time complexity of the 
proposed dmss-DE-pap algorithm is reported.

Algorithmic Time Complexity

The algorithmic time complexity of the proposed dmss-DE-
pap algorithm is evaluated using the criteria given by the 
CEC14 benchmark test problems [33]. Table 4 shows the 

(9)
Exploitation% =

(

|Div − Divmax|

Divmax

)

× 100

Exploration% =

(

Div

Divmax

)

× 100

(10)

Div =
1

d

d
∑

j=1

Divj

Divj =
1

N

N
∑

i=1

|

|

|

medj(X) − xi,j
|

|

|

Ta
bl

e 
5 

 (c
on

tin
ue

d)

Fu
nc

tio
n

M
et

ric
s

A
B

C
PS

O
D

E
C

M
A

ES
LS

H
A

D
E

iL
SH

A
D

E
jS

O
Sa

D
E

C
oD

E
EP

SD
E

dm
ss

-D
E-

pa
p

R
an

k/
St

at
s

5
10

11
6

7
3

4
8

9
2

1
f a

2
6

M
ea

n
10

7.
30

28
10

4.
40

91
10

7.
69

69
10

2.
24

97
10

2.
17

73
10

2.
30

97
10

2.
20

67
10

0.
33

30
10

0.
50

10
10

0.
32

08
10
0.
08
90

std
0.

03
75

0.
10

61
0.

07
00

0.
03

92
0.

03
09

0.
01

32
0.

01
54

0.
04

51
0.

05
87

0.
04

22
0.
00
13
8

R
an

k/
St

at
s

10
9

11
7

5
8

6
3

4
2

1
f a

2
7

M
ea

n
55

9.
52

66
95

2.
82

52
11

42
.6

14
4

77
9.

09
00

36
0.

62
43

32
6.

17
44

30
2.

08
56

39
5.

28
21

11
06

.9
91

5
55

0.
77

34
30
0.
00
21

std
16

3.
19

10
21

8.
56

64
53

.5
63

2
47

1.
54

12
31

.6
39

0
19

.1
74

1
3.

69
40

49
.0

60
0

26
.3

71
7

12
8.

62
88

2.
67
11

R
an

k/
St

at
s

7
9

11
8

4
3

2
5

10
6

1
f a

2
8

M
ea

n
42

1.
42

31
12

47
.3

18
6

82
3.

90
53

41
9.

50
41

41
8.

62
58

42
1.

52
17

41
5.
52
17

42
1.

31
39

53
4.

33
31

39
5.

35
32

41
5.

99
95

std
9.

33
39

28
6.

40
32

43
.5

66
4

8.
74

65
2.

10
08

3.
22

12
5.

87
98

5.
90

07
32

.8
95

9
3.

85
46

3.
14
17

R
an

k/
St

at
s

6
11

10
4

8
7

3
5

9
2

1
f a

2
9

M
ea

n
22
8.
43
43

63
44

10
1.

48
27

66
18

80
4.

80
67

22
7.
67
62

59
7.

38
02

43
0.

13
88

42
8.

31
78

50
70

87
.5

04
3

22
6.

56
22

21
3.

70
70

42
9.

60
09

std
2.
19
85

13
42

65
2.

94
14

10
18

01
.2

40
1

2.
58

33
10

4.
48

27
15

1.
41

43
5.

24
97

24
54

30
6.

20
59

2.
58

07
1.

00
84

5.
21

31
R

an
k/

St
at

s
3

10
11

2
4

7
8

9
6

5
1

f a
3
0

M
ea

n
61

2.
57

59
24

13
.4

09
6

27
61

.2
87

4
17

14
.8

55
7

48
5.

81
39

42
2.
64
12

43
5.

44
69

71
0.

54
27

16
10

.4
81

3
42

7.
90

22
44

0.
66

59
std

87
.6

82
2

55
2.

55
12

56
1.

30
67

21
3.

73
92

45
.2
90
3

38
.9

79
6

52
.8

25
4

17
5.

72
27

21
8.

34
53

86
.4

34
4

42
0.

08
18

R
an

k/
St

at
s

6
10

11
9

5
2

4
7

8
3

1



 SN Computer Science           (2024) 5:771   771  Page 16 of 21

SN Computer Science

Ta
bl

e 
6 

 P
er

fo
rm

an
ce

 o
f d

m
ss

-D
E-

pa
p 

on
 5

0D
 C

EC
14

 b
en

ch
m

ar
k 

pr
ob

le
m

s

Fu
nc

tio
n

M
et

ric
s

A
B

C
PS

O
D

E
C

M
A

ES
LS

H
A

D
E

iL
SH

A
D

E
jS

O
Sa

D
E

C
oD

E
EP

SD
E

dm
ss

-D
E-

pa
p

f a
1

M
ea

n
18

69
92

22
3

51
07

21
4

99
18

78
67

8
50

71
35

34
62

98
36

.1
04

7
62

28
.2

95
8

13
.8

30
9

34
84

78
15

17
89

28
22

3
37

86
51

5
0.
77
95

std
33

84
99

83
14

82
71

9
15

94
55

06
0

17
17

59
62

29
.6

60
9

8.
77
21

11
.9

79
3

10
03

28
90

33
50

57
35

12
29

41
0

13
.1

50
5

R
an

k/
st

at
s

9
6

10
11

3
4

2
7

8
5

1

f a
2

M
ea

n
15

79
02

.9
09

9
23

49
84

.1
99

5
38

39
77

37
.1

17
4

43
74

6.
97

28
0.

14
61

0.
00

00
0.

00
00

17
7.

28
16

34
71

02
.4

37
7

24
61

.3
14

5
0.

00
00

std
56

79
1.

54
15

51
85

9.
63

93
41

23
31

7.
62

10
35

29
0.

23
02

0.
30

21
0.

00
00

0.
00

00
72

9.
55

83
10

05
59

.8
98

6
25

72
.1

33
8

0.
00

00
R

an
k/

st
at

s
8

9
11

7
4

2
2

5
10

6
2

f a
3

M
ea

n
23

13
55

.7
38

5
52

83
.1

52
8

12
91

8.
93

55
51

25
0.

94
98

0.
00

00
0.

00
00

0.
00

00
0.

03
72

45
.1

07
5

59
8.

80
65

0.
00

00
std

30
27

1.
71

84
27

85
.1

34
2

78
07

.8
93

7
94

66
6.

94
85

0.
00

00
0.

00
00

0.
00

00
0.

01
21

12
.6

00
3

49
5.

04
84

0.
00

00
R

an
k/

st
at

s
11

8
9

10
2.

5
2.

5
2.

5
5

6
7

2.
5

f a
4

M
ea

n
18

4.
32

19
16

5.
06

98
58

94
.2

87
1

33
.4
04
5

73
.1

25
4

73
.0

45
4

91
.7

00
0

85
.4

81
5

36
.1

01
2

30
.6

54
1

73
.1

00
0

std
16

.0
39

8
48

.1
14

2
63

9.
87

26
4.
00
93

46
.4

62
9

51
.1

16
2

44
.8

09
8

0.
11

39
8.

59
71

14
.8

28
1

48
.2

11
0

R
an

k/
st

at
s

10
9

11
2

6
4

8
7

3
1

5

f a
5

M
ea

n
21

.1
41

5
21

.0
49

0
21

.1
64

2
21

.1
71

0
20

.5
42

5
20

.1
06

5
20

.0
33
0

20
.8

87
3

20
.5

69
9

20
.4

54
5

20
.0

42
3

std
0.

03
01

0.
09

06
0.

03
58

0.
03

30
0.

03
85

0.
04

25
0.
02
47

0.
05

35
0.

04
15

0.
03

64
0.

04
09

R
an

k/
st

at
s

9
8

10
11

5
3

1
7

6
4

2

f a
6

M
ea

n
55

.2
28

6
62

.2
52

3
70

.0
37

6
0.
00
10

9.
41

25
0.

49
71

1.
57

00
18

.1
15

4
29

.7
12

3
17

.7
43

8
0.

52
40

std
2.

45
53

4.
20

10
1.

64
00

0.
00
02
5

1.
98

51
0.

73
31

0.
96

30
9.

26
02

0.
97

83
1.

51
74

0.
06

97
R

an
k/

st
at

s
9

10
11

1
5

2
4

7
8

6
3

f a
7

M
ea

n
0.

21
81

0.
43

49
35

5.
56

92
0.

00
08

0.
00

0.
00

0.
00

0.
00

0.
10

92
0.

00
0.
00

std
0.

03
27

0.
08

15
26

.8
58

8
0.

00
0.

00
0.

00
73

0.
00

0.
00

0.
03

02
0.

00
0.
00

R
an

k/
st

at
s

9
10

11
7

3.
5

3.
5

3.
5

3.
5

8
3.

5
3.

5

f a
8

M
ea

n
38

3.
61

52
19

3.
27

29
48

1.
18

75
22

3.
24

33
14

.2
66

7
0.

00
01

0.
00

00
0.

66
33

0.
00

43
0.

01
95

00
.0
0

std
26

.0
40

1
15

.5
61

9
14

.7
04

4
14

.2
45

2
12

.6
57

0
0.

00
0.

00
0.

85
13

0.
00

16
0.

13
79

0.
00

R
an

k/
st

at
s

10
8

11
9

7
3

1.
5

6
4

5
1.

5

f a
9

M
ea

n
39

6.
39

41
32

6.
34

18
58

3.
05

87
27

4.
49

10
10

.7
55
3

11
.1

63
9

13
.6

72
4

15
4.

00
06

15
4.

78
36

66
.9

56
1

19
.4

01
8

std
33

.1
12

0
33

.0
17

7
19

.9
18

8
10

6.
58

80
2.
05
13

2.
27

00
3.

19
71

9.
08

58
9.

98
86

8.
39

30
2.

52
09

R
an

k/
st

at
s

10
9

11
8

1
2

3
6

7
5

4

f a
1
0

M
ea

n
10

12
4.

10
08

61
66

.1
13

3
11

95
4.

76
99

13
25

0.
47

30
6.

52
74

0.
05

01
14

.9
01

5
45

.2
91

4
14

82
.4

85
8

0.
76

56
0.
04
71
2

std
55

9.
24

15
62

0.
30

98
32

0.
21

91
34

9.
91

08
3.

54
35

0.
02

09
21

.6
01

2
74

.2
88

4
13

3.
35

84
0.

82
23

0.
02
66



SN Computer Science           (2024) 5:771  Page 17 of 21   771 

SN Computer Science

Ta
bl

e 
6 

 (c
on

tin
ue

d)

Fu
nc

tio
n

M
et

ric
s

A
B

C
PS

O
D

E
C

M
A

ES
LS

H
A

D
E

iL
SH

A
D

E
jS

O
Sa

D
E

C
oD

E
EP

SD
E

dm
ss

-D
E-

pa
p

R
an

k/
st

at
s

9
8

10
11

4
2

5
6

7
3

1

f a
1
1

M
ea

n
10

77
4.

95
61

71
49

.5
59

8
13

75
3.

84
57

13
26

5.
59

33
46

50
.7

15
0

42
40

.1
92

4
47

20
.8

62
3

66
85

.3
62

7
63

93
.4

82
9

41
44

.1
37

6
41
80

.1
50
1

std
40

1.
76

28
88

8.
62

26
33

5.
05

19
44

4.
77

33
36

6.
19

24
30

6.
32

43
31

9.
18

67
33

9.
93

79
27

5.
36

26
52

3.
12

22
30
1.
43
93

R
an

k/
st

at
s

9
8

11
10

4
3

5
7

6
1

2

f a
1
2

M
ea

n
2.

70
61

1.
82

75
3.

61
95

3.
71

13
0.

48
81

0.
48

27
0.
42
61

2.
35

23
1.

46
71

1.
05

68
0.

46
28

std
0.

30
71

0.
55

32
0.

34
45

0.
30

39
0.

06
42

0.
06

97
0.
05
38

0.
22

12
0.

16
75

0.
15

04
0.

06
65

R
an

k/
st

at
s

9
7

10
11

4
3

1
8

6
5

2

f a
1
3

M
ea

n
0.

42
66

0.
52

29
0.

51
02

0.
23

58
0.

15
91

0.
15
11

0.
26

20
0.

33
66

0.
50

28
0.

34
48

0.
22

11
std

0.
03

97
0.

10
30

0.
24

68
0.

03
73

0.
01

73
0.
00
20

0.
03

22
0.

04
07

0.
05

52
0.

04
01

0.
02

54
R

an
k/

st
at

s
8

11
10

4
2

1
5

6
9

7
3

f a
1
4

M
ea

n
0.

32
67

0.
39

19
7.

20
84

0.
42

10
0.

26
37

0.
26

81
0.

28
03

0.
28

17
0.

28
30

0.
29

88
0.
25
21

std
0.

02
47

0.
11

73
6.

86
40

0.
07

38
0.

01
90

0.
01

67
0.

02
49

0.
02

73
0.

03
19

0.
04

51
0.
01
88

R
an

k/
st

at
s

8
9

11
10

2
3

4
5

6
7

1

f a
1
5

M
ea

n
42

.3
15

2
55

.5
54

8
13

53
.8

41
7

26
.7

11
0

5.
69

31
7.

45
09

5.
61
11

15
.3

36
1

18
.7

78
7

9.
68

45
5.

97
02

std
2.

31
94

9.
69

01
43

0.
60

32
3.

69
33

0.
63

41
1.

20
21

0.
57
40

0.
90

13
1.

40
59

1.
00

04
0.

63
44

R
an

k/
st

at
s

9
10

11
8

2
4

1
6

7
5

3

f a
1
6

M
ea

n
22

.0
80

1
20

.2
39

6
22

.3
96

0
22

.1
70

8
17

.2
54

0
17

.1
04

9
17

.0
09
1

12
.9

43
1

13
.0

12
3

11
.7

85
0

17
.1

09
8

std
0.

21
48

0.
92

19
0.

17
56

0.
51

60
0.

49
23

0.
62

31
0.
37
46

0.
19

25
0.

21
90

0.
31

74
0.

51
41

R
an

k/
st

at
s

9
8

11
10

7
5

4
2

3
1

6

f a
1
7

M
ea

n
95

10
0.

76
56

51
47

6.
45

81
76

79
0.

93
72

18
74

5.
15

72
15

15
.7

23
4

14
13

.1
33

5
28

04
.0

80
1

16
61

70
.3

15
7

38
96

14
7.

91
14

11
71

51
5.

88
25

99
5.
13
13

std
25

87
5.

05
85

45
81

.6
24

0
13

95
5.

48
06

44
08

.0
11

3
39

2.
35

32
38

8.
60

26
57

5.
32

20
79

36
8.

15
40

83
17

05
.2

11
1

59
58

86
.0

30
9

31
0.
73
41

R
an

k/
st

at
s

8
6

7
5

3
2

4
9

11
10

1

f a
1
8

M
ea

n
16

88
42

19
.0

45
0

41
90

.3
69

9
90

77
09

1.
21

67
16

12
27

.9
27

9
25

7.
28

20
23

0.
39

33
35

1.
24

41
30

29
61

9.
09

09
72

99
40

10
.5

32
8

14
29

28
.6

76
7

44
.9
16
5

std
64

29
4.

65
90

22
74

.2
98

9
15

14
53

8.
68

96
63

54
4.

16
88

71
.2

40
1

85
.3

56
9

40
.9

77
7

19
66

66
8.

22
81

23
68

77
09

.5
84

3
87

72
4.

66
76

13
.3
32
7

R
an

k/
st

at
s

10
5

9
7

3
2

4
8

11
6

1

f a
1
9

M
ea

n
46

.0
12

0
33

.3
52

2
14

7.
17

63
24

.4
77

5
15

.3
98

3
14

.4
01
0

16
.2

32
1

15
.5

76
3

18
.9

82
6

12
.9

81
6

15
.0

80
9

std
2.

54
47

12
.5

78
1

13
.1

00
0

1.
25

19
5.

00
07

5.
27

77
2.
32
01

2.
12

14
0.

84
31

1.
42

80
2.

79
95

R
an

k/
st

at
s

10
9

11
8

4
2

6
5

7
1

3



 SN Computer Science           (2024) 5:771   771  Page 18 of 21

SN Computer Science

Ta
bl

e 
6 

 (c
on

tin
ue

d)

Fu
nc

tio
n

M
et

ric
s

A
B

C
PS

O
D

E
C

M
A

ES
LS

H
A

D
E

iL
SH

A
D

E
jS

O
Sa

D
E

C
oD

E
EP

SD
E

dm
ss

-D
E-

pa
p

f a
2
0

M
ea

n
12

24
03

.5
94

2
24

63
.2

14
5

18
83

6.
67

29
14

65
22

.6
76

0
20

3.
16

41
17

.2
64

1
18

.2
53

1
25

7.
19

96
13

89
6.

74
64

29
16

.6
77

1
13

.2
92
5

std
36

19
8.

49
66

12
11

.3
03

0
66

50
.5

98
0

64
88

6.
57

58
38

.2
54

4
5.

23
00

7.
31

19
67

.6
37

6
54

98
.2

99
9

13
45

.0
55

7
3.
32
01

R
an

k/
st

at
s

10
6

9
11

4
2

3
5

8
7

1

f a
2
1

M
ea

n
45

65
03

.9
38

6
99

11
3.

47
03

11
22

39
.8

50
1

71
33

20
.1

30
7

52
4.

55
87

54
1.

30
72

14
60

.3
20

3
72

37
.9

62
3

12
09

34
2.

00
06

34
59

6.
98

60
31
9.
25
16

std
15

24
81

.0
08

6
79

76
3.

40
67

27
79

2.
62

46
29

03
40

.9
67

1
20

7.
33

93
20

8.
48

78
33

7.
17

48
18

22
.1

14
1

42
03

03
.3

92
3

21
02

8.
94

61
13
7.
97
05

R
an

k/
st

at
s

9
7

8
10

2
3

4
5

11
6

1

f a
2
2

M
ea

n
11

79
.0

48
7

11
75

.8
19

0
20

37
.0

17
4

16
74

.8
08

2
15

4.
35

45
49

.8
20

3
35

.0
10

4
43

3.
42

01
83

3.
30

47
11

3.
99

65
32

.1
61
4

std
13

8.
92

63
49

5.
46

30
19

1.
89

67
21

6.
30

77
33

.1
04

2
28

.6
17

7
6.

40
41

11
2.

40
60

14
9.

56
11

45
.6

99
3

4.
65
01

R
an

k/
st

at
s

9
8

11
10

5
3

2
6

7
4

1

f a
2
3

M
ea

n
33
8.
89
63

34
6.

84
62

43
0.

74
76

34
1.

66
22

34
4.

39
61

34
3.

03
35

34
1.

66
22

33
5.

57
95

33
0.

14
28

33
0.

14
25

34
4.

29
80

std
0.

56
90

2.
23

93
8.

46
71

3.
16

20
0.

00
18

0.
01

17
0.

03
15

0.
00

00
0.

00
13

0.
00

34
0.
00
17
3

R
an

k/
st

at
s

4
10

11
5.

5
9

7
5.

5
3

2
1

8

f a
2
4

M
ea

n
20

1.
32

27
22

9.
62

59
27

7.
71

68
22

5.
01

53
20

6.
05

02
20

3.
23

69
20

1.
53

90
20

0.
99

38
20

1.
26

16
20

0.
99

21
20
0.
01
53

std
0.

12
40

85
.0

71
2

7.
76

82
74

.5
50

6
50

.8
90

2
49

.2
56
7

94
.0

93
2

0.
12

09
0.

06
69

0.
05

57
67

.2
89

2
R

an
k/

st
at

s
5

10
11

9
8

7
6

3
4

2
1

f a
2
5

M
ea

n
23

6.
63

49
28

1.
31

94
35

4.
89

99
21

1.
02

97
20

6.
90

77
20

5.
88

11
20

8.
93

25
21

0.
96

19
22

8.
30

30
20

1.
84

62
20
5.
59
74

std
5.

45
33

34
.1

67
2

18
.2

23
5

2.
68

35
0.

27
21

0.
20

30
0.

24
99

2.
35

59
6.

42
52

0.
58

47
0.
27
90

R
an

k/
st

at
s

9
10

11
7

4
3

5
6

8
1

2

f a
2
6

M
ea

n
10

0.
40

68
10

0.
49

34
10

3.
70

11
10

0.
23

42
10

0.
15

52
10

0.
23

43
10

0.
27

66
10

0.
34

60
10

0.
47

84
10

0.
31

62
10
0.
14
76

std
0.

04
43

0.
01

10
0.

17
01

0.
03

66
0.

01
76

0.
01
57

0.
02

33
0.

03
43

0.
05

41
0.

04
47

0.
02

09
R

an
k/

st
at

s
8

10
11

3
2

4
5

7
9

6
1

f a
2
7

M
ea

n
13

46
.3

07
5

19
59

.2
80

4
20

03
.0

06
9

90
6.

84
31

30
0.

06
37

30
6.

69
27

30
2.

03
06

41
2.

74
78

11
00

.3
12

5
56

9.
71

13
30
0.
03
87

std
36

0.
98

44
71

8.
59

59
52

.6
07

3
87

1.
99

55
3.

45
17

9.
26

06
4.

68
01

72
.4

97
7

68
.9

99
0

13
8.

70
92

2.
13
10

R
an

k/
st

at
s

9
10

11
7

2
4

3
5

8
6

1

f a
2
8

M
ea

n
61

4.
92

89
24

83
.3

94
8

21
84

.7
68

6
44
4.
29
76

47
1.

34
73

47
4.

35
03

56
3.

94
06

42
0.

37
11

54
7.

00
72

39
5.

59
09

46
0.

63
51

std
39

.8
84

0
52

1.
93

26
13

5.
08

83
12

.5
91

1
8.

61
13

12
.5

30
1

4.
05

66
3.

62
51

29
.2

40
0

4.
18

14
4.
24
03

R
an

k/
st

at
s

9
11

10
3

5
6

8
2

7
1

4

f a
2
9

M
ea

n
26

4.
01

30
60

38
48

.7
28

1
71

67
11

.1
46

5
23
0.
25
99

37
8.

98
59

37
8.

84
65

55
5.

71
36

24
93

51
.7

77
2

22
6.

32
47

21
3.

65
60

36
8.

64
83

std
8.

24
00

23
23

63
.6

44
5

15
23

19
.4

93
7

3.
89

92
6.

47
10

11
.0

17
7

9.
31

48
17

36
82

1.
38

99
2.

65
32

1.
15

26
3.
48
11



SN Computer Science           (2024) 5:771  Page 19 of 21   771 

SN Computer Science

time complexity of the dmss-DE-pap algorithm on 30 and 
50-dimensional benchmark problems.

T0 is the time taken (in seconds) to compute the test 
problem given as following [33]:

The time taken to compute 200000 function evaluations 
of fa18 problem is denoted by T1, and T̂2 is the average time 
taken to compute 200000 function evaluations of benchmark 
function fa18 for five independent runs by dmss-DE-pap 
algorithm.

Discussion

The experimental findings concludes that the dmss-DE-
pap algorithm demonstrates competitive performance 
when compared with other state-of-the-art algorithms. It 
can be noted from Fig. 2 that dmss-DE-pap effectively 
manages the underlying operator pool. All the strategies 
participate in the optimization process. Strategy ST1 in 
the operator pool reports the maximum mean percent 
usage and hence can be considered a better strategy 
compared to other strategies in the pool. Similarly, Fig. 3 
depicts that the dmss-DE-pap algorithm effectively 
manages the exploration-exploitation trade-off. To 
compare the performance of the dmss-DE-pap algorithm 
with other underlying algorithms, Tables 5 and 6 reports 
the optimization performance of all underlying algorithms 
along with the dmss-DE-pap algorithm on CEC14 test 
suite. Better results are marked with bold entries  in 
the Tables  5 and 6, and the corresponding Friedman 
ranks are given below the test metrics mean and std. The 
comparative assessment of the dmss-DE-pap algorithm on 
the CEC14 test suite is given in the following subsections.

Comparison on 30D CEC14 Benchmark Problems

For 30D CEC14 benchmark problems, the dmss-DE-pap 
algorithm secures the lowest rank on 17 out of 30 problems. 
The performance of the dmss-DE-pap algorithm on uni-
modal problems fa1 − fa3 is better than all other underlying Ta

bl
e 

6 
 (c

on
tin

ue
d)

Fu
nc

tio
n

M
et

ric
s

A
B

C
PS

O
D

E
C

M
A

ES
LS

H
A

D
E

iL
SH

A
D

E
jS

O
Sa

D
E

C
oD

E
EP

SD
E

dm
ss

-D
E-

pa
p

R
an

k/
st

at
s

4
10

11
3

7
6

8
9

2
1

5

f a
3
0

M
ea

n
17
90

.5
49
8

22
91

5.
30

44
21

57
8.

86
20

27
04

.0
51

1
24

60
.2

24
8

24
78

.4
51

7
31

55
.5

70
0

70
3.

61
64

15
85

.5
99

8
44

8.
92

77
18

41
.6

20
1

std
20
3.
73
53

78
80

.1
78

0
48

76
.8

37
0

27
8.

24
50

54
1.

62
18

54
3.

17
80

57
6.

54
34

18
3.

18
53

21
9.

94
51

78
.6

32
1

28
2.

16
90

R
an

k/
st

at
s

4
11

10
8

6
7

9
2

3
1

5



 SN Computer Science           (2024) 5:771   771  Page 20 of 21

SN Computer Science

algorithms except the performance is similar to LSHADE, 
i-LSHADE, and jSO algorithms. For multi-modal problems 
fa4 − fa16 , the dmss-DE-pap algorithm outperforms all other 
algorithms on fa5, fa6, fa9, fa13, fa14 and fa15 . On function fa4 , 
the dmss-DE-pap algorithm secures the second rank outper-
forming all other algorithms except CMA-ES. The perfor-
mance of the dmss-DE-pap algorithm is similar to CMA-ES, 
i-LSHADE, jSO, SaDE, and EPSDE on function fa7 , and 
the performance of the dmss-DE-pap algorithm is similar 
to EPSDE on function fa8 . The dmss-DE-pap algorithm 
secures third rank on the functions fa11 and fa16 , fifth rank 
on the function fa12 , and sixth rank on the function fa10 . 
Similarly, on hybrid functions fa17 − fa22 , the dmss-DE-pap 
algorithm secures the best rank on fa17, fa19, fa20 , and fa21 , 
while it secures second rank on the function fa18 outper-
forming all other algorithms except LSHADE algorithm. 
The dmss-DE-pap algorithm secures the fourth rank on the 
function fa22 , behind LSHADE, i-LSHADE and jSO algo-
rithm. On composite functions fa23 − fa30 , the dmss-DE-pap 
algorithm secures the best rank in all the functions except on 
the function fa23 , where the performance of the dmss-DE-
pap algorithm is behind CoDE and EPSDE algorithm (See 
Table 5). The dmss-DE-pap received the best rank of 1.93 
over all 30D functions.

Comparison on 50D CEC14 Benchmark Problems

For 50D CEC14 benchmark problems, the dmss-DE-pap 
algorithm secures the lowest rank on 11 out of 30 problems 
outperforming all other underlying algorithms. For unimodal 
function group fa1 − fa3 , the dmss-DE-pap algorithm out-
performs all other algorithms on function fa1 . In contrast, 
the performance of the dmss-DE-pap algorithm is similar to 
i-LSHADE and jSO on fa2 , and the performance is similar 
to LSHADE, i-LSHADE, and jSO on function fa3 . Simi-
larly, for multi-modal function group fa4 − fa16 , the dmss-
DE-pap algorithm almost outperforms all other underlying 
algorithms. On function fa10, fa14 , the performance of dmss-
DE-pap is similar to LSHADE, i-LSHADE, jSO, SaDE, 
and EPSDE, and on function fa7 and fa8 , its performance is 
similar to the jSO algorithm. The dmss-DE-pap algorithm 
secures second rank, on the functions fa5 and fa12 behind 
the jSO algorithm and secures second rank. On the function 
fa11 , it is behind the EPSDE algorithm. In a similar manner, 
for hybrid function group fa17 − fa22 , the dmss-DE-pap algo-
rithm secures first rank on the functions fa17, fa19, fa20, fa21 , 
second rank on the function fa18 , and fourth rank on the 
function fa22 . For composite function group fa23 − fa30 , the 
dmss-DE-pap algorithm secures the first rank on the func-
tion except for function fa23 (refer Table 6) The experimental 
results confirm the competitive optimization capabilities of 
the proposed dmss-DE-pap algorithm.

Conclusion

The perturbation-based adaptive pursuit strategy is an effec-
tive strategy for operator selection from a given pool of oper-
ators. It manages the diversity of the pool better and enhances 
the robustness of the algorithm. In the proposed work, the 
mentioned strategy is employed on the pool of mutation 
operators of DE to exploit the various characteristics of 
multiple mutation operators in a single run of the optimi-
zation process. A success history-based parameter adaption 
scheme is employed to tune the control parameters F and 
CR. A linear population reduction mechanism is employed 
to check the computational cost of the algorithm. Experi-
mental results of the proposed dmss-DE-pap are promising 
when compared with other state-of-the-art evolutionary and 
swarm intelligence-based algorithms. However, the proposed 
approach may fail, if all the mutation operators in the opera-
tor pool are not capable of handling the given optimization 
problem or suffer from poor performance. The optimal size 
of the operator pool and content of the operator pool in dmss-
DE-pap is a matter of further research. More sophisticated 
advanced methods of reinforcement learning and machine 
learning can be incorporated. Apart from the adaptive pursuit 
strategies, upper confidence bound (UCB) methods can also 
be employed similarly and their effect on the performance 
of the current algorithmic framework can be studied in the 
future research.

Author Contributions Prathu Bajpai: Preparation of the original draft, 
and code implementation. Ogbonnaya Anicho: Review and Editing. 
Atulya K. Nagar: Conceptualization and supervision. Jagdish Chand 
Bansal: Conceptualization, proofreading, and supervision.

Data availability Not applicable.

Code Availability Code may be available on request for fair use/
research.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no Conflict of interest or Conflict of interest.

Ethical Approval and Consent to Participate No human/animal partici-
pants are involved in this study.

Consent for Publication All Authors give their consent for publication 
of this manuscript.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 



SN Computer Science           (2024) 5:771  Page 21 of 21   771 

SN Computer Science

the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Michalewicz Z, Dasgupta D, Le Riche RG, Schoenauer M. Evolu-
tionary algorithms for constrained engineering problems. Comput 
Ind Eng. 1996;30(4):851–70.

 2. Carvalho DR, Freitas AA. A hybrid decision tree/genetic algo-
rithm method for data mining. Inf Sci. 2004;163(1–3):13–35.

 3. Gobeyn S, Mouton AM, Cord AF, Kaim A, Volk M, Goethals PL. 
Evolutionary algorithms for species distribution modelling: a review 
in the context of machine learning. Ecol Model. 2019;392:179–95.

 4. Simon, D. Evolutionary optimization algorithms. John Wiley & 
Sons, 2013.

 5. Nocedal J, Wright S. Numerical optimization. Springer Science 
and Business Media. 2006.

 6. Bäck T, Schwefel H-P. An overview of evolutionary algorithms 
for parameter optimization. Evol Comput. 1993;1(1):1–23.

 7. Derrac J, García S, Hui S, Suganthan PN, Herrera F. Analyzing 
convergence performance of evolutionary algorithms: a statistical 
approach. Inf Sci. 2014;289:41–58.

 8. Storn R, Price K. A simple and efficient heuristic for global opti-
mization over continuous spaces. J Glob Optim. 1997;11:341–59.

 9. Slowik A, Bialko M. Training of artificial neural networks using 
differential evolution algorithm. In: 2008 Conference on human 
system interactions, 2008;pp. 60–65. IEEE

 10. Onwubolu G, Davendra D. Scheduling flow shops using differen-
tial evolution algorithm. Eur J Oper Res. 2006;171(2):674–92.

 11. Jebaraj L, Venkatesan C, Soubache I, Rajan CCA. Application of 
differential evolution algorithm in static and dynamic economic 
or emission dispatch problem: a review. Renew Sustain Energy 
Rev. 2017;77:1206–20.

 12. Das S, Suganthan PN. Differential evolution: a survey of the state-
of-the-art. IEEE Trans Evol Comput. 2010;15(1):4–31.

 13. Gämperle R, Müller SD, Koumoutsakos P. A parameter study for 
differential evolution. Adv intell Syst Fuzzy Syst Evol Comput. 
2002;10(10):293–8.

 14. Zaharie D. Control of population diversity and adaptation in dif-
ferential evolution algorithms. Proc of MENDEL. 2003;9:41–6.

 15. Das S, Konar A, Chakraborty UK. Two improved differential evo-
lution schemes for faster global search. In: Proceedings of the 7th 
annual Conference on Genetic and Evolutionary Computation, 
2005;pp. 991–998.

 16. Qin AK, Huang VL, Suganthan PN. Differential evolution algo-
rithm with strategy adaptation for global numerical optimization. 
IEEE Trans Evol Comput. 2008;13(2):398–417.

 17. Mallipeddi R, Suganthan PN, Pan Q-K, Tasgetiren MF. Differen-
tial evolution algorithm with ensemble of parameters and muta-
tion strategies. Appl Soft Comput. 2011;11(2):1679–96.

 18. Wang Y, Cai Z, Zhang Q. Differential evolution with composite 
trial vector generation strategies and control parameters. IEEE 
Trans Evol Comput. 2011;15(1):55–66.

 19. Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H. Differen-
tial evolution with multi-population based ensemble of mutation 
strategies. Inf Sci. 2016;329:329–45.

 20. Wu G, Shen X, Li H, Chen H, Lin A, Suganthan PN. Ensemble 
of differential evolution variants. Inf Sci. 2018;423:172–86.

 21. Qian W, Chai J, Xu Z, Zhang Z. Differential evolution algorithm 
with multiple mutation strategies based on roulette wheel selec-
tion. Appl Intell. 2018;48:3612–29.

 22. Li Y, Wang S, Yang B. An improved differential evolution algo-
rithm with dual mutation strategies collaboration. Expert Syst 
Appl. 2020;153: 113451.

 23. Deng W, Shang S, Cai X, Zhao H, Song Y, Xu J. An improved 
differential evolution algorithm and its application in optimization 
problem. Soft Comput. 2021;25:5277–98.

 24. Lampinen J, Zelinka I, et al. On stagnation of the differential 
evolution algorithm. In: Proceedings of MENDEL, 2000;vol. 6, 
pp. 76–83. Citeseer.

 25. Thierens D. An adaptive pursuit strategy for allocating operator 
probabilities. In: Proceedings of the 7th annual conference on 
genetic and evolutionary computation, 2005;pp. 1539–1546.

 26. Gong W, Fialho Á, Cai Z, Li H. Adaptive strategy selection in dif-
ferential evolution for numerical optimization: an empirical study. 
Inf Sci. 2011;181(24):5364–86.

 27. Goldberg DE. Probability matching, the magnitude of reinforce-
ment, and classifier system bidding. Mach Learn. 1990;5:407–25.

 28. Zhang S, Ren Z, Li C, Xuan J. A perturbation adaptive pursuit 
strategy based hyper-heuristic for multi-objective optimization 
problems. Swarm Evol Comput. 2020;54: 100647.

 29. Thierens D. Adaptive strategies for operator allocation. Parameter 
setting in evolutionary algorithms, 77–90, 2007.

 30. Mousavirad SJ, Rahnamayan S. Enhancing shade and l-shade 
algorithms using ordered mutation. In: 2020 IEEE symposium 
series on computational intelligence (SSCI), 2020;pp. 337–344. 
IEEE

 31. Tanabe R, Fukunaga AS. Improving the search performance of 
shade using linear population size reduction. In: 2014 IEEE con-
gress on evolutionary computation (CEC), 2014;pp. 1658–1665. 
IEEE

 32. Tanabe R, Fukunaga A. Success-history based parameter adapta-
tion for differential evolution. In: 2013 IEEE congress on evolu-
tionary computation, 2013;pp. 71–78. IEEE

 33. Liang JJ, Qu BY, Suganthan PN. Problem definitions and evalu-
ation criteria for the cec 2014 special session and competition on 
single objective real-parameter numerical optimization. Computa-
tional Intelligence Laboratory, Zhengzhou University, Zhengzhou 
China and Technical Report, Nanyang Technological University, 
Singapore 2013;635(2).

 34. Karaboga D, Akay B. A comparative study of artificial bee colony 
algorithm, applied mathematics and computation. Appl Math 
Comput. 2009;214:108–32.

 35. Kennedy J, Eberhart R. Particle swarm optimization. Proc IEEE 
Int Conf Neural Netw. 1995;4:1942–8.

 36. Hansen N, Ostermeier A. Adapting arbitrary normal mutation 
distributions in evolution strategies: the covariance matrix adap-
tation. In: Proceedings of IEEE international conference on evo-
lutionary computation, 1996;pp. 312–317. IEEE

 37. Brest J, Maučec MS, Bošković B. il-shade: Improved l-shade algo-
rithm for single objective real-parameter optimization. In: 2016 
IEEE congress on evolutionary computation (CEC), 2016;pp. 
1188–1195. IEEE

 38. Brest J, Maučec MS, Bošković B. Single objective real-parameter 
optimization: Algorithm jso. In: 2017 IEEE congress on evolu-
tionary computation (CEC), 2017;pp. 1311–1318. IEEE

 39. Goulet-Pelletier J-C, Cousineau D. A review of effect sizes and 
their confidence intervals, part I: the cohen’sd family. Quant Meth-
ods Psychol. 2018;14(4):242–65.

 40. Morales-Castañeda B, Zaldivar D, Cuevas E, Fausto F, Rodríguez 
A. A better balance in metaheuristic algorithms: does it exist? 
Swarm Evol Comput. 2020;54: 100671.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Dynamic Mutation Strategy Selection in Differential Evolution Using Perturbed Adaptive Pursuit
	Abstract
	Introduction
	Background
	Canonical Differential Evolution Algorithm
	DE Variants with Multiple Mutation Strategies

	The Adaptive Pursuit Strategy
	Perturbation Adaptive Pursuit Strategy

	Dynamic Mutation Strategy Selection in Differential Evolution Using Perturbed Adaptive Pursuit (dmss-DE-pap)
	Strategy Pool
	Reward-Assigning Mechanism
	Quality-Update Mechanism
	Perturbation-Based Weight Update Mechanism
	Associated Parameters

	Experimental Results
	Non-Parametric Tests
	Strategy Pool Analysis
	Exploration-Exploitation Analysis
	Algorithmic Time Complexity

	Discussion
	Comparison on 30D CEC14 Benchmark Problems
	Comparison on 50D CEC14 Benchmark Problems

	Conclusion
	References


