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Abstract— Scientific creativity refers to natural/automated 

genesis of innovations in science, propelling scientific, 

technological, industrial and/or societal progress. Mental paper 

folding (MPF) requires spatial reasoning, which is an important 

attribute to determine creative-potential of people. The paper 

proposes a novel approach to determine creative potential of 

people from their brain-connectivity network (BCN) during their 

participation in MPF tasks using functional Near-Infrared 

Spectroscopy (fNIRS). The work involves three phases. The first 

phase includes construction of BCN using Pearson's correlation 

method. The centrality features of the nodes in the network are 

assessed in the second phase, and transferred to a proposed 

Graph Convolutional-Interval Type-2 Fuzzy Network (GC-

IT2FN) in the third phase to classify the creative potential of 

individuals in four grades. The novelty of the work includes i) a 

novel self-attention mechanism in the network to guide graph 

convolution layers to focus on the most relevant nodes, ii) 

selection of a new activation function, Logish, after graph 

convolution to enhance classifier-accuracy, and iii) utilizing the 

promising region in the Footprint of Uncertainty (FOU) of the 

used fuzzy sets of IT2FN-based classifier to reduce the effect of 

uncertainty in brain data on classifier-performance. Experiments 

conducted demonstrate the efficacy of the proposed framework 

in contrast to traditional approaches. 
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I. INTRODUCTION  

Historically, creativity [1-2] has been intertwined with the 

domain of art, spanning the origination and realization of a 

myriad of artistic expressions, from music and painting to 

poetry, as well as encompassing a broad spectrum of fine arts, 

culinary pursuits, and performance arts. In contrast, scientific 

creativity emerges as a distinct facet within the broader 

conceptual framework of creativity, highlighting its unique 

focus on unveiling innovation within the scientific domain. 

Within this context, various cognitive skills play a pivotal role 

in shaping creative outcomes, such as divergent thinking [3], 
inductive learning [4], convergent analysis [5], analogical 

reasoning [6], and the like. Beyond the afore-mentioned 

cognitive skills, the ability to mentally reshape an object’s 

different attributes (such as shape, orientation, pattern, size 

etc.) emerges as a pivotal element in the process of creative 

ideation. This cognitive process, commonly denoted as spatial 

reasoning [7], has demonstrated its essential role in 

influencing creative thinking across a spectrum of scientific 

domains such as mathematics [8-10], engineering [11-12], 

chemistry [13], medicine [14] etc. The current paper seeks to 

examine the creative potential of individuals in scientific 

domain by assessing their spatial reasoning ability through the 

utilization of functional Near Infrared Spectroscopy (fNIRS). 

     The spatial reasoning ability of an individual can be 

evaluated through various cognitive tasks [15], including 

mental rotation of 2D or 3D figures and mental paper folding 

(MPF) (which involves visualizing the resulting pattern after a 

series of folding operations on a piece of paper). The current 

study focuses on the MPF task to evaluate the spatial 
reasoning proficiency of subjects. This task involves intricate 

mental rotations and a sequence of complex visual 

transformations, thereby providing a comprehensive measure 

of spatial reasoning [16].  

     Current literature [17-20] on the MPF task explores the 

connection between MPF activity and mathematical problem-

solving skills. Recently, Dahm et al. [21] attempted to 

investigate the role of action imagery during MPF task. 

Goumopoulos et al., in a very recent study [22], focused on 

detecting the cognitive load in MPF problem solvers using 

Electrocardiogram (ECG) signals. In neuroscience studies 

related to MPF tasks, research predominantly centers on 
exploring the active regions of the brain during said cognitive 

activity using functional Magnetic Resonance Imaging (fMRI) 

[23]-[26], Electroencephalogram (EEG) [27]-[28], or Positron 

Emission Tomography (PET) scans [16]. There exists hardly 

any literature on the inter-relationship between creative 

potential of a subject and his/her brain-connectivity during 

solving a MPF task. This paper attempts to determine the 

brain-connectivity involved in a spatial reasoning problem, 

such as MPF, to assess the creative potential of the subject.  In 

a very recent study, Ghosh et al. [29] focused on assessing 

individuals' creative potential by analyzing EEG signals 
associated with paper folding skills. Nevertheless, the high 

cost of brain scanning devices (such as fMRI, MRI, PET, etc.) 

and the limited spatial resolution of EEG due to volume 

conductivity [30] preclude their utilization for the current 

application. In contrast, the fNIRS device provides moderately 

high spatial resolution at a lower cost and entails minimal 

computational overhead. Hence, the selection of such a device 

aligns with the practical considerations for the present 

application. 

    The primary aim of the present study is to evaluate the 

varying levels of creative ability in individuals based on their 
proficiency in paper folding, employing a classifier built on 

fNIRS data. This objective is accomplished through a two-

stage process. In the initial stage, fNIRS signals collected from 

subjects engaged in a MPF task are subjected to pre-

processing and transformation into a brain connectivity 



network (BCN). This network is constructed using the 

Pearson’s Correlation (PC) technique [31]. The selection of 

the PC technique is motivated by its simplicity, interpretability 

[32], and demonstrated efficacy across diverse domains [31], 

[33]-[34]. Following afore-said transformation, the obtained 
brain networks undergo feature abstraction using three 

centrality measures (degree, closeness, and betweenness) [35]-

[36] to identify the Brodmann Areas (BAs) of the brain that 

play a central role in coordinating the overall brain network 

during the MPF based cognitive task. The second stage of the 

study involves classifying the abstracted features into four 

distinct degrees of creative potential: High Creative (HCR), 

Medium Creative (MCR), Low Creative (LCR), and Non-

Creative (NCR). 

     The key contribution of the present research lies in the 

formulation of a suitable classifier model capable of handling 

the afore-mentioned classification task. Since the current 
problem deals with brain connectivity-based features, the 

classifier is meticulously designed on the principles of a Graph 

Convolution Network (GCN) [37]-[40], which converts node 

representations into graph embeddings through the first-order 

approximation of spectral graph convolutions [37]-[38]. The 

GCN model comprises two main components where the first 

part involves an automatic feature learning process using 

graph convolution and pooling operations, while the second 

part classifies the pooled vectors using a fully connected (FC) 

network. However, the fNIRS response acquired from a given 

source is prone to variations within and across sessions due to 
undesirable parallel thoughts and various technical and/or 

physiological artifacts [41]-[42], thereby introducing 

uncertainty among the pooled feature vectors. To address this 

issue, the present work introduces a Type-2 Fuzzy Network 

(T2FN) [43] in conjunction with the GCN. A T2FN adeptly 

manages the uncertainty among feature vectors by handling 

intra and inter-session variations [43]-[44]. Consequently, the 

combined approach of GCN and T2FN aims to enhance 

classifier performance by mitigating the limitations associated 

with uncertainties introduced during sessional variations.  

     In this paper, a novel classifier model, referred to as Graph 

Convolutional-Interval Type-2 Fuzzy Network (GC-IT2FN) 
has been designed to categorize individuals with varying 

spatial problem-solving skills into 4 distinct classes (HCR, 

MCR, LCR, and NCR) by leveraging the synergies of GCN 

and T2FN. The novelties of the GC-IT2FN model involves i) 

introduction of a self-attention mechanism in the GCN that 

guides the subsequent graph convolution layers to focus on the 

most significant nodes within the BCN, ii) employment of 

Logish [45] activation function (due to its inherent negative 

activation response to signals of small negative amplitude) 

after the graph convolution operation to enhance the classifier 

performance, and iii) introduction of a new policy to utilize 
the most promising region in the Footprint of Uncertainty 

(FOU) [46]-[47] of the used fuzzy sets of IT2FN to minimize 

the effect of uncertainty on classifier performance. The policy 

stated above is accomplished by incorporating a new mapping 

function to uplift the Lower Membership Function (LMF) of 

individual type-2 fuzzy sets, thereby utilizing the relatively 

promising upper region of the FOUs to improve classification 

accuracy. The efficacy of the proposed GC-IT2FN has been 

demonstrated through rigorous performance analysis, 

establishing its superiority over existing state-of-the-art 

(SOTA) techniques.  

     The subsequent sections of the paper encompass the 

following content. Section II details the principles and 

methodologies adopted to address the current classification 
problem. Sections III elaborates the architecture of the 

proposed classifier and the technique employed to rank 

individuals based on their creative ability. Section IV presents 

the experiments and results of the current cognitive 

experiment. Section V showcases the performance of the 

proposed classifier in comparison to state-of-the-art 

techniques. Finally, Section VI offers the inferences drawn 

from the present work. 

II. PROPOSED FRAMEWORK 

This section provides a concise overview of the experimental 

paradigm, with Fig. 1 illustrating the schematic diagram of the 

entire system. The experiment initiates by capturing fNIRS 
signals from the participants' scalp during their engagement in 

the MPF task. The visual stimuli structure for the current 

application pertaining to a single session is depicted by Fig. 2. 

A single session comprises 5 trials where each trial begins by 

3-second presentation of a fixation cross. Subsequently, a 15-

second time-window follows, presenting the mental problem 

that participants are required to solve. For the present 

application, the MPF task involves participants to view 

diagrams depicting the folding of a paper and the punching of 

a hole (of any shape) within it. The challenge then prompts 

participants to mentally envision the spatial arrangement of the 
holes after unfolding the paper [48]-[49]. An example of such 

a problem is illustrated in Fig. 3. After this phase, the visual 

stimuli consist of a 30-second time-window during which 

participants communicate their answers to the experimenter by 

drawing their attempted solution to the MPF task on a sheet of 

paper. The afore-mentioned process is repeated for 20 

different problem sets within a single trial. Notably, a 30-

second time gap is preserved between consecutive trials to 

alleviate the potential residual effect of the preceding stimulus. 

The entire experiment is composed of 5 sessions, each 

encompassing 5 trials. Across 10 experimental days, a total of 
5000 experimental instances per subject are generated for the 

present scenario, calculated as follows: 20 problems/trial × 5 

trials/session × 5 sessions/day × 10 days.  

Fig. 1 Schematic overview of the proposed framework 
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     The fNIRS signals acquired from the acquisition phase 

undergo normalization, pre-processing, and transformation 

into a brain connectivity network for an in-depth analysis of 
inter-lobe interactions during the ongoing cognitive task. 

Subsequently, brain connectivity based centrality features are 

derived and employed as input to a novel GC-IT2FS classifier, 

designed to categorize subjects' creative abilities into 4 distinct 

classes.  

     The 4 categories of class labels (HCR, MCR, LCR, NCR) 

were determined based on a scoring policy framed by 10 

spatial reasoning experts. Here, each paper folding task 

involves 3 steps of folding and a run-through punching of the 

paper, where the results of unfolding the 4 segments of the 

paper is independent of the order of folding the paper. After a 

detailed discussion among the experts, a consensus about the 
following scoring policy was decided.  For each segment of a 

paper-folding task, 25 marks are assigned.  Again, within each 

segment, 5 points are reserved for correctly identifying 

number and type (e.g., circular/triangular) of cuts, 8 points for 

correctly identifying the order of type of cuts (e.g., circle 

followed by triangle in left-to-right order), and 12 marks for 

correctly identifying the orientation of the shaped cuts (e.g., 

inverted/upright triangles). The sub-score for each segment of 

a paper is evaluated first by adding the scores for above 3 

items and the final score out of 100 is the sum of the sub-totals 

for four segments of a paper. A few samples of solutions 
provided by the subjects and their corresponding scores have 

been included in Section A.3 of the Appendix [93].  

     The detailed procedures involved in the present 

classification task are elucidated below.  

A. Normalization of Raw fNIRS data 

The raw fNIRS signals acquired from the scalp of subjects 
consists of two types of blood concentrations: oxy-hemoglobin 

blood concentration (in mmol/L) and deoxy-hemoglobin blood 

concentration (in mmol/L). Let the oxy-hemoglobin blood 

concentration and deoxy-hemoglobin blood concentration for 

the th channel corresponding to a given montage during a 

time-interval   be denoted as )(CHbO and )(CHbR

respectively. Since, )()(  CHbOCHbR  for all   from a brain 

region corresponding to the given montage [44], the 

normalization of fNIRS signals is performed by first 

computing (1) and (2). 

),:)(()(   esCHbOMaxCHbOMax           (1) 

),:)(()(   esCHbRMinCHbRMin             (2) 

where, s and e represent the starting and ending time of an 

experimental trial respectively corresponding to a given 

stimuli for a particular subject. Next, in order to evaluate the 

oxygen consumption during a time instant ,  the difference 

between the values of oxy-hemoglobin and deoxy-hemoglobin 

blood concentration is considered. The afore-said evaluation is 
represented by (3). 

)()()(  CHbRCHbOd                          (3) 

The normalized value of the difference signal in (3) within the 

range of [0,1] during a time instant  is computed using (4). 

)()(

)()(
)(ˆ

CHbRMinCHbOMax

CHbRCHbO
d







                           (4) 

B. Pre-Processing Stage 

The data acquired from a fNIRS device, like any measurement 

method, it is susceptible to various forms of artifacts. The 

prevalent types of artifacts that deserve special consideration 

are: i) physiological artifacts and ii) technical artifacts [41]-

[42]. Physiological artifacts are related to biological processes 

within the human body and can be categorized into 3 main 
classes [41], [50]-[52]: a) Motion Artifacts: they are caused by 

head movements, muscle contractions, or other bodily 

motions, b) Systemic Physiological Artifacts: they arise due to 

the fluctuations in blood pressure, heart rate, and respiration 

and c) Skin Blood Flow Artifacts: they occur due to changes 

in blood flow within the skin, such as those related to skin 

temperature and emotional responses like blushing. Technical 

artifacts in fNIRS signals are related to different aspects of 

instrumentation, data acquisition, and the environment in 

which the measurements are taken. In other words, they arise 

due to fluctuations in light intensity, interference from other 

nearby electrical devices, optode placement instability etc. 
[42].  

     To eliminate the afore-mentioned artifacts from the raw 

fNIRS signal, a rigorous signal processing approach is 
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employed. Initially, the normalized difference signal )(ˆ d  for 

 1 to H channels undergoes filtering using an Elliptical 

band-pass filter of order 4, with a pass band range set at 0.1-2 

Hz. The selection of the Elliptical band-pass filter is made due 

to its sharp roll-off characteristics around the cut-off 

frequency, ensuring precise isolation of the desired frequency 

components while effectively attenuating noise and artifacts 

[53]. Subsequent to the filtering stage, Independent 

Component Analysis (ICA) [54] is applied to the filtered 

signals. This technique helps to restore the independent 
hemodynamic components corresponding to each channel.  

C. Formulation of Brain Connectivity Network (BCN) 

In this sub-section, the pre-processed fNIRS signals are 

transformed into a connectivity graph to explore the 

interaction between the different BAs involved in the current 

cognitive task. The afore-said exploration begins by 
computing the Pearson’s correlation coefficient for every pair 

of fNIRS channel using (5). 
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In (5), XY
 
represents the correlation coefficients values for a 

pair of fNIRS channels X and Y, h represents the number of 

data points pertaining to a given fNIRS channel, Xyx ,, and 

Y  represent the mean and standard deviation values of the 

data points of fNIRS channels X and Y respectively. 

     The above computation yields a KK matrix representing 
the correlation between a pair of fNIRS channels. In the next 

step, the correlation coefficients are normalized using max-

min normalization technique [55]. The normalized coefficients 

are utilized to construct an undirected (binary) graph or BCN 

by adopting the following strategy. 





 


otherwise

if ij
ij

,0

ˆ,1 
                                       (6) 

where ij represents the adjacency matrix values of the graph, 

ij̂  denotes the normalized Pearson’s correlation coefficients 

and   indicates a pre-defined threshold. The pre-defined 

threshold has been carefully chosen to ensure that all the 

connectivity networks/graphs share the same mean degree, 
facilitating their straight-forward comparability [56]. 

D. Feature Extraction of Brain Connectivity Network 

The brain connectivity networks acquired using PC technique 

needs to be quantified to explore the hub nodes controlling the 

entire brain network. The afore-mentioned quantification is 
performed by abstracting three features: degree centrality 

(DC), closeness centrality (CC) and betweenness centrality 

(BC) [35]-[36].     

     The abstracted features are ultimately classified into four 

distinct classes using the GC-IT2FN classifier, the intricate 

architecture of which is thoroughly explained in the following 

section.                                

III. PROPOSED GRAPH CONVOLUTIONAL-INTERVAL TYPE-2 

FUZZY NETWORK (GC-IT2FN) 

The architectural overview of the proposed GC-IT2FN model 

is illustrated in Fig. 4 which comprises two main modules: i) a 

graph convolutional block and ii) IT2FS classifier. The 
functionality of each layer is elucidated below.   

A. Attention Induced First Graph Convolution Layer with 
Logish Activation Function 

The initial layer of the proposed model involves two primary 

operations: an attention-induced graph convolution operation 

and the application of the Logish activation function. The 
detailed aspects of the aforementioned operations are 

discussed below and illustrated in Fig. 5. 

 

A.1.  Attention Induced Graph Convolution  

The traditional graph convolution operation [37] abstracts the 

necessary features from the input graph EKP  and 

transforms it into low dimensional vectors of size EK 

(where, )EE   or graph embeddings using (7). 
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where, EKlZ  denotes the input graph in the lth layer  and 

.0 PZ 
2/12/1 ~~~ˆ  DADA  represents the normalized graph 

Laplacian [37] that consists of the structural information 

inherent in the graph. IAA 
~

indicates the adjacency matrix 

comprising self-loops while KKI  signifies the identity 

matrix. ,
~

IDD  where D represents the diagonal degree 

matrix and 
j

ijii AD .
~~

,

l
ijW  denotes the input to hidden layer 

trainable weight matrix. )( signifies an activation function 

that adds non-linearity within the given neural network. 

     However, the present work introduces a self-attention 

mechanism before graph convolution operation that helps the 

subsequent graph convolution layers to focus on the most 

relevant nodes. Such a self-attention mechanism computes the 

attention coefficients between adjacent nodes i and j with 

feature vectors ip and jp using (8). 

 
)||||exp(

1

1ji
ij

pp 
                                  (8) 

where, ij  denotes the attention coefficients between adjacent 

nodes i and j while 1||||   represents the L1 norm operation. In 

(8), the L1 norm operation assesses the similarity or proximity 

of feature vectors for two nodes. Consequently, a lower L1 

norm value suggests greater similarity between nodes, while a 

higher value indicates dissimilarity. Nevertheless, to assign 

greater attention weights to similar nodes, the reciprocal of the 

L1 norm operation is considered. Furthermore, in (8), the 

result of the L1 norm undergoes an exponential operation prior 

to the afore-said reciprocal operation. This process ensures 

that the attention coefficient for the self-node ii  attains the 

maximum attention value i.e., 1, while attention coefficients 

among other nodes ij are confined within the range (0, 1). For 

the current scenario, if a node m is not a neighbor of node ,i  

then (8) is not applicable and thus 0im  
is considered.  

     The attention coefficient values for node i with respect to 

all the nodes within the graph forms a coefficient vector 

.].....,,,[ 21
T

iKiii  


The coefficient vectors for all the nodes 

within the graph collectively constitute a KK  matrix 

].....,,,[ 21 K


 which is symmetric i.e., .jiij     

     In order to make the graph convolution layers focus on the 

most important nodes, the matrix  is utilized to modify the 

graph Laplacian using (9). 

 AM ˆˆ                                         (9) 

where, M̂ represents the modified graph Laplacian and 

denotes the Hadamard product. After this, the modified graph 

Laplacian is employed in the graph convolution operation as 

shown in (10). 

)ˆ(
1 


i

l
ij

l
i

l
j WZMZ 

                           

(10)

   

 

Thus, the modified Laplacian matrix enables the convolution 

layers to concentrate on specific aspects of the graph structure. 

This, in turn, serves as a mechanism to enhance the encoding 

of the underlying relationships and patterns within the graph.  

 

A.2.  Utilization of Logish Activation Function  

Although various conventional activation functions could have 

been employed to introduce non-linearity to the classifier, the 

authors have specifically chosen to use the Logish [45] 
activation function for the current scenario. This particular 

activation function is preferred for several reasons. Its non-

linear nature ensures that the neural network does not reduce 

to a mere linear operation, enhancing its capacity to capture 

complex patterns in the data. Another distinctive feature of 

Logish is its unbounded nature above, effectively addressing 

Fig. 6. The GAP features acquired from 5 sessions, each containing 5 trials (every trial containing 20 MPF problems), repeated over 10 experimental days.  
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the vanishing gradient problem and promoting a faster 

convergence rate for the classifier. Furthermore, the activation 

function is bounded below, contributing to a robust 

regularization effect that aids in preventing over-fitting.  

Additionally, the non-monotonic behavior of the Logish 
function (i.e., imparting small negative magnitude for small 

negative input value) plays a crucial role in stabilizing the 

training of negative values, thereby increasing the overall 

stability of the network. This unique set of properties 

associated with the Logish activation function serves as a 

strong motivation for its utilization in the current application, 

enhancing the expressive capabilities of the neural network 

while addressing common challenges in training and 

convergence. The mathematical expression of Logish is 

indicated by (11). 

))(1(ln)()( xsigmoidxxLogishx 
               

(11)
   

 

B. Second Graph Convolution Layer with Logish Activation 
Function 

To capture higher-level features, another graph convolution 

operation (as shown in Fig. 5) is applied to the convolved 
output from the initial layer using equations (7) and (11). This 

strategic choice enables the network to extract and learn more 

complex features, enhancing its capability to understand 

intricate patterns within the data [57]. 

C. Global Average Pooling Layer 

Global average pooling (GAP) is a pooling operation that 
reduces the spatial dimensions of a feature map to a single 

value per feature channel by taking the average of all values in 

that channel [57]. Let NKV  1


 be the feature map that has 

been computed by the second graph convolution operation 

where 1K denotes the size of each feature map while N

represents the number of feature channels. Let the thi  feature 

vector of V


having size 1K  be denoted as 

.]...,,,[ 21
T

Ki vvvV 


 The GAP operation for iV


is represented 

by (12). 

KvvvV Ki /)....()( 21 


                      (12) 

where, )(  represents the GAP function.  

D. Interval Type-2 Fuzzy layer 

The GAP operation produces a feature vector of size 1N

(where 64N ) for every MPF problem as shown in Fig. 6. 

The management of uncertainty introduced within these GAP 

vectors due to sessional variations is accomplished through an 

Interval Type-2 Fuzzy Network (IT2FN), the details of which 

are elaborated below. 

 

D.1.  Antecedent Construction of IT2FS 

Let, Nfff ,....,, 21  be N number of features acquired after the 

GAP operation. Let iA
~

 for i=1 to N represent an IT2FS 

defined as ],[ ~~
ii AA

 for a given linguistic variable if  as the 

upper and lower membership function of .
~

iA
 
For the present 

scenario, iA
~

 
has been constructed considering both inter-

session (5 sessions in an experimental day) as well as intra-

session (5 trials within a session) variations in if  

(representing one average pooled feature). For the afore-said 
formulation, the initial step involves constructing one Type-1 

Gaussian MF by determining the mean (m) and variance ( 2 ) 

among all the if  values obtained in an experimental day as 

illustrated in Section A.1. of the Appendix [93]. The 

constructed Gaussian MF has the center of the base positioned 

at m and the two extremities situated at 3m  [58]. Since 

the experiment has been conducted for 10 days, 10 such Type-

1 Gaussian MFs are obtained, and these are utilized for the 

construction of IT2FS, as depicted in Fig. 7(a).  

(d) 

Fig.7. Formulation of IT2FS with modified FOU (a) Type-1 MFs for 10 

days (b) Curvilinear-top based IT2FS produced by union of Type-1 MFs 

(c) Curvilinear-top based IT2FS with modified FOU (d) IT2FS with flat-

top approximation 
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Fig. 8. The formulation of IT2FN classifier 
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     An interval type-2 membership function (IT2MF) iA
~

 
is 

developed by computing the union of 10 Type-1 MFs as 

depicted in Fig. 7(b). The UMF and LMF of iA
~

 
is constructed 

by employing the mathematical operations denoted by (13-14). 
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However, the promising contribution of embedded T1-fuzzy 

sets to the FOU lies in the local neighborhood region of the 
UMF inside the FOU. To utilize this promising region of the 

FOU, a mapping function is introduced to level up the LMF 

towards the UMF, thereby reducing the area under the 

modified FOU as depicted in Fig. 7(c). The mapping function 

for constructing the refined LMF is denoted by (15). 
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where, 1  indicates a hyper-parameter that is fine-tuned 

during the training process. The term 
))(exp(

~
~
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i

iA
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f
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
  in 

equation (15) reduces the area under the FOU, with   acting 

as a reduction ratio. In other words, the term
))(exp(

~
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f
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functions to decrease the area under FOU while the hyper-

parameter   governs the extent of this reduction. Thus, by 

adjusting ,  the classifier can control the effective 

management of variations within and across sessions to 

achieve improved performance. The UMF of the modified 

FOU remains same as (13) i.e., ).()( ~~ iAiA
ff

ii
 

  It can be 

verified from (15) that ),()( ~~ iAiA
ff

ii


  for all .if        

     However, during the computation of the UMF for IT2FS, a 

curvilinear top is generated by taking the maximum of the 10 

Type-1 MFs, as illustrated in Fig. 7(b) and (c). To ensure the 

convexity of the constructed Type-2 fuzzy sets, a flat-top 

approximation is applied to the obtained IT2FS. This process 

involves connecting the peaks of the individual Type-1 MFs 

with a straight line characterized by a zero slope [4], [43]. The 

resulting flat-top approximated IT2FS is depicted in Fig. 7(d). 

 
D.2.  Classifier Rule 

The classifcation rule jR is presented below. 

If 1f is ,
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CC Here, jB
~

denotes the consequent MF of the 

jth interval type-2 fuzzy class having class centroid within 

upper and lower class boundary U
jb

C and L
jb

C respectively. 

The consequent MF jB
~

 is formulated based on the intra-

session and inter-sesssion variations of the scores assigned to 

each written response as discussed in Section II. The 

subsequent steps in the IT2FS construction for the consequent 

part follow the same process as outlined for the antecedent 

part in the preceding sub-subsection D.1.  
 

D.3.  Design of IT2FS Classifier  

The architecture of the IT2FS based classifier is demonstrated 

in Fig.8. Let the measurements points be

.,...,, 2211 NN ffffff 
 
The Upper Firing Strength (UFS) 

and Lower Firing Strength (LFS) of rule j is evaluated by (16) 

and (17) respectively.  
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Now, the IT2 inference )](),([ ~~ gg
jj BB 

  is acquired using the 

computation denoted by (18) and (19). 
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However, in the event that multiple rules associated with 

either identical or different class labels in the consequent are 

fired, the final inference B 
~

is assessed by computing the 

union of IT2 inferences using (20). 

Fig. 9. Subject participating in the MPF based cognitive task 

 

 

Fig. 10. Montage utilized for the MPF task 
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where,   denotes the union operator.  

     Finally, the type-reduction and defuzzification of B 
~

is 

executed using the Enhanced Karnik-Mendel (EKM) [59] 

algorithm to obtain Ub
C  and .Lb

C  Subsequently, the centroid 

eC  is determined by calculating the mean of Ub
C  and .Lb

C  

     It is crucial to highlight that due to the presence of overlap 

among the data points of 2 or more classes, the acquired 
cluster centroids must lie in disjoint contiguous intervals for 

accurate classification of the input features ]....,,,[ 21 Nfff   into 

one of the S distinct classes (here, S = 4). Let, the interval for 

the 
thj class centroid be ].[
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CC Similarly, let the class 

centroids for neighboring classes j-1 and j+1 be denoted by 
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 respectively. To ensure 

contiguous class boundaries, the following criteria are 

maintained for S-class classification.  

i) 
,11

U
j

L
j bb

CC



 

ii) 
,1

U
j

L
j

U
j bbb

CCC 
  

iii) U
j

L
j

U
j bbb

CCC
11 


 

The optimal class boundaries are acquired using random 

search algorithm [60] and their values are denoted in Section 

IV-D. Once, the contiguous class boundaries are maintained, 

the class inferred is j if the centroid value eC acquired from 

EKM algorithm lies within the range ][
, L

j
U
j bb

CC  (vide 

Appendix A.2). 

 

D.4.  Rank Assignment to Individuals with Respect to Different 

Levels of Creative Potential  

 

Participants in the current cognitive task are categorized based 
on the number of experimental instances classified as High 

Creative (HCR). In other words, if a subject has r 

experimental instances identified as HCR, their ranking is 

determined using the following Creativity Potential Measure 

(CPM).  

                                    %100
R

r
CPM                               (21) 

where, R denotes the total number of experimental instances 

for a specific participant. Once the CPM scores for all subjects 

are obtained, they are sorted in descending order. Then, each 

subject is assigned a rank based on its CPM score, with the 

highest score receiving the top rank. 

 

IV. EXPERIMENTS AND RESULTS OF BRAIN CONNECTIVITY 

BASED COGNITIVE ASSESSMENT OF CREATVITY  

A. fNIRS Data Acquisition 

The experiment was conducted at the Artificial Intelligence 

Laboratory of Jadavpur University in Kolkata, India. To 

capture the hemodynamic response of subjects during the 

current cognitive experiment, a whole-brain fNIRS device 

(NIRScout TM) manufactured by NIRx Medical 

Technologies, LLC, was employed. This device utilizes 8 

infrared (IR) sources and 8 detectors, operating at a sampling 

rate of 7.81 Hz. The placement of the source-detector pairs, or 
optodes, on the subjects' scalps adhered to the 10-10 

 
 

  

(a) (b) 

(c) (d) 

Fig. 11. Brain connectivity network of participants performing the MPF task: (a) Brain network of subject ID: 02 who could correctly solve the presented 

problem, (b) Brain network of subject ID: 23 who could moderately solve the presented problem, (c) Brain network of subject ID: 07 who could hardly solve 
the presented problem and (d) Brain network of subject ID: 20 who could not solve the presented problem 



international placement system as shown in Fig. 9. The 

architecture of the montage for optode placement is portrayed 

in Fig. 10 and encompasses the pre-frontal, temporal, and 

parietal lobes. The rationale for opting for the afore-said 
montage architecture is derived from the acknowledgment that 

a spatial reasoning task engages the working memory and 

executive functions of the brain [61]-[62]. A total of 64 

channels were generated by the optodes, and 14 channels were 

chosen based on the nearest-neighbor source-detector 

combination. 

B. Participants 

The said cognitive task involved the participation of 32 

(engineering student) volunteers, consisting of 15 males and 

17 females, all falling within the age range of 18 to 33 years. It 

is worth noting that all participants possessed normal or 

corrected-to-normal vision and had no previous history of 

neuropsychiatric or motor disorders. In accordance with the 

ethical guidelines and safety protocols related to the 

experiment, adherence to the Helsinki Declaration of 1970, 

revised in 2004, was maintained [63]. 

C. Cognitive Aspect of Brain Connectivity Features 

The brain connectivity graphs for the current cognitive task 

have been obtained by the utilization of PC technique, to 

capture the interactions among different brain lobes. The 

connectivity patterns associated with each class label were 

extracted using the Networkx package [64] of Python 3 and 

are depicted in Fig. 11. To gauge the topological significance 

of specific lobes, a quantitative assessment has been 

conducted using centrality measures including degree, 

closeness, and betweenness. These measures facilitate the 

recognition of topologically central or hub lobes within the 
acquired brain graphs. The examination of brain topographic 

networks using individual centrality features is outlined below. 

(a) DC Analysis: The Fig. 12 (a) illustrates the DC values of 

four subjects pertaining to HCR, MCR, LCR, and NCR classes 

for a single trial. Notably, for subject ID: 02 in the HCR class, 

the DC values are elevated over the right frontal (channel 2), 

right temporal (channel 12), and bilateral parietal (channels 13 

and 14) regions. Additionally, a discernible trend is observed 

where the DC values decrease from HCR to LCR class for 

these specified regions. In contrast, for subjects in the NCR 

class, exemplified by subject ID: 20, there is no significant 
activation observed in the mentioned channels of the frontal, 

parietal, and temporal lobes. Nevertheless, moderately high 

DC values are evident in other nodes, such as channels 6 and 9 

for MCR and channels 3 and 5 for LCR. This analysis 

suggests that relying solely on the DC measure provides only a 

partial understanding of the functional importance of nodes. 

Consequently, incorporating additional measures is essential 

to comprehensively quantify the distinct networks. 

(b) CC Analysis: In Fig. 12 (b), the CC values for the same 

subjects utilized in the DC analysis are presented. Notably, for 

a subject in the HCR class, elevated CC values are evident 

over the right frontal (channel 2), right temporal (channel 12), 
and bilateral parietal (channels 13 and 14) regions. 

Furthermore, CC values for subjects in the MCR and LCR 

classes also show heightened values in these specified 

channels, with a discernible decrease in values from HCR to 

LCR classes. Conversely, subjects in the NCR class exhibit no 

significant activation in the aforementioned channels, as 

indicated by lower CC values. The CC analysis supports the 

conclusion that the regions with elevated values can be 

considered topologically central. This centrality implies that 

these regions can effectively interact with other nodes within 

the network through a small number of links [35]. 
(c) BC Analysis: The results of the BC analysis, as illustrated 

in Fig. 12 (c), underscore the same regions for each class as 

identified through CC-based evaluation. The manifestation of 

high BC values in these identified lobes suggests their 

effective functional integration among various brain regions 

[35]-[36]. 

     Hence, the centrality-based feature analysis mentioned 

above supports the proposition that, for spatial reasoning, the 

actively engaged brain regions include the right anterior 

prefrontal cortex (BA 10 corresponding to channel 2), right 

posterior middle temporal gyrus (BA 21 corresponding to 

channel 12), and bilateral regions of the posterior 

 
(a) 

 
(b) 

 

(c) 

Fig. 12. Centrality based feature comparison for 4 degrees of creative 

ability (a) degree centrality analysis (b) closeness centrality analysis 
(c) betweenness centrality analysis 



supramarginal gyrus (BA 40 corresponding to channels 13 and 

14). These findings align with existing literature [23], [29], 

[61]-[62]. Additionally, a noticeable trend emerges, indicating 

a diminishing activation in the aforementioned Brodmann 

Areas (BAs) as the level of creative ability decreases from 

high to low levels. 

D.  Optimization of Classifier Parameters 

Fine-tuning various parameters of the GC-IT2FN classifier 

model is essential for ensuring both its robustness and 

classification accuracy. This process is achieved by employing 

the random search algorithm, known for efficiently exploring 

the search space with minimal computational cost [60]. The 

model's performance has been evaluated by a 10-fold cross-

validation across various sets of parameter configurations, 

where the dataset for each subject is partitioned into 10 

disjoint sets or folds. For each combination of parameters, the 

model is trained on 9 folds and tested on the remaining 1 fold. 
This process is repeated in 10 iterations, rotating the test fold. 

Hence, both the training and testing sets for each subject 

comprise samples from the same individual, although they are 

distinct in each iteration. Upon attaining the highest accuracy 

level with all candidate settings, the best configuration is 

subsequently applied to the test set. The optimal parameter 

values of GC-IT2FN classifier utilized for the current 

experiment include: ,2E ,128T ,64N ,8.1
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V. PERFORMANCE ANALYSIS OF THE PROPOSED 

CLASSIFIER MODEL 

A. Relative Performance Analysis of the Proposed GC-IT2FN 
Classifier with Respect to Traditional Algorithms 

The performance of the GC-IT2FN classifier is analyzed with 

the traditional algorithms using i) classification accuracy (CA) 
and ii) F1-score whose mathematical equations are illustrated 

by (22-23). 

NPNP

NP

FFTT

TT
CA




                      (22)

recallprecision

recallprecison
F






2
1                       (23) 

where, NPNP FFTT ,,, represents the number of true positives, 

true negatives, false positives and false negatives respectively, 
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     Table I clearly demonstrates the remarkable precision with 

which the proposed algorithm classifies the desired class 

labels. Notably, the results achieved by GC-IT2FN far surpass 

those of the traditional techniques. Moreover, Table I 

highlights the run-time complexity of the proposed classifier, 

which stands at an impressively low 99.06 ms, making it 

notably faster than the majority of competitive techniques. 

TABLE I 

COMPARATIVE STUDY OF CLASSIFIER PERFORMANCE WITH RESPECT TO 

TRADITIONAL METHODS 

 

Classifiers with 

optimal parameter 

settings 
 

CA (%) F1 (%) Run time 

complexity 

(ms) 

DCNN [65] 76.32 75.26 192.36 

Chebnet [66] 78.02 78.32 156.20 

GCN [37] 80.83 81.47 87.46 

DGCN [67] 83.28 83.86 120.34 

CayleyNet [68] 85.12 85.05 158.87 

GAT [69] 88.70 89.27 96.12 

AGCN [70] 91.95 92.50 95.46 

Proposed GC-IT2FN 97.54 97.72 99.06 

 

TABLE II 

COMPARATIVE STUDY OF CLASSIFIER PERFORMANCE WITH RESPECT TO 

STATE-OF-THE-ART-METHODS 

 

Classifiers with optimal 

parameter settings 

 

CA 

(%) 

F1 

(%) 

Run time 

complexity 

(ms) 

GCNN-LSTM [71] 87.78 88.11 302.86 

ASGCNN [72] 90.23 89.70 372.45 

GAT + BiLSTM [73] 91.34 91.63 421.23 

CapsualGNN [74] 92.97 92.74 134.70 

CNN-AE + IT2FR-GWO [75] 94.56 94.83 125.60 

AEGCN [76] 93.25 93.61 248.27 

NCGNN [77] 95.12 95.36 143.18 

Proposed GC-IT2FN 97.54 97.72 99.06 

 

TABLE III 

ABLATION STUDY OF THE PROPOSED CLASSIFIER  

 

Variation in Classifier 

Modules 

 

CA (%) F1 (%) 

GCN 89.47 90.03 

IT2FS 88.78 88.55 

Attention + GCN 92.50 92.83 

GCN + IT2FS 94.36 94.64 

Proposed GC-IT2FN 97.54 97.72 

 
TABLE IV 

COMPARATIVE STUDY OF DIFFERENT FORMULATIONS OF BRAIN 

CONNECTIVITY NETWORKS WITH RESPECT TO CA (%) 

 

Formulations of brain 

connectivity network  

Class Labels 

HCR MCR LCR NCR 

MSC  89.52 90.04 89.73 90.11 

PLV  91.36 92.46 91.60 92.29 

PLI 92.08 91.22 91.54 92.16 

KNN 94.20 93.75 93.85 94.32 

 MI 95.67 95.43 95.91 95.76 

PC 97.87 97.32 96.92 98.03 

 



B. Relative Performance Analysis of the Proposed GC-IT2FN 

Classifier with respect to State-of-the-Art (SOTA) 
Algorithms 

The performance evaluation of the GC-IT2FN classifier has 

been conducted by comparing it with recent SOTA techniques, 

which include various hybrid models utilized for classifying 

brain connectivity features. The outcomes of this comparative 

analysis are presented in Table II. The results clearly 
demonstrate that the proposed classifier surpasses the 

performance of the SOTA techniques by a substantial margin. 

Additionally, the run time complexity of the proposed 

technique is notably lower in comparison to all the hybrid 

methods. 

C. Ablation Study of the Proposed GC-IT2FN Classifier  

A comprehensive ablation study has been conducted on the 

proposed GC-IT2FN classifier to assess the influence of its 

individual modules on overall performance. In this analytical 

process, the architecture of the proposed model underwent 

systematic modifications through the removal of specific 

modules, and the corresponding results are detailed in Table 

III. It is apparent from this table that both the CA and F1-score 

values decline when either the GCN or IT2FS classifier is 

utilized in isolation for the classification task. Conversely, the 

inclusion of the attention mechanism to the GCN model leads 

to a significant improvement in both CA and F1-score. 
Furthermore, employing both GCN and IT2FS results in 

noticeable enhancement in CA and F1-score. Notably, the 

highest CA and F1-score values are achieved when all three 

modules of GC-IT2FN (i.e., attention, GCN, and IT2FN) are 

utilized together. Thus, the findings from this table underscore 

that excluding any single unit results in a noteworthy decrease 

in the overall performance of the proposed model. 

D. Effect of Different Formulations of Brain Connectivity 
Network on Classifier Performance 

The performance of the proposed classifier is assessed in 

comparison to brain connectivity network construction based 

on the PC method. This evaluation includes several standard 

methods for constructing brain connectivity networks, such as 
Magnitude Squared Coherence (MSC) [78], Phase Locking 

Value (PLV) [79], Phase Lag Index (PLI) [80], K-Nearest 

Neighbor (KNN) [81], and Mutual Information (MI) [82]. The 

outcomes of this comparative analysis are detailed in Table 

IV, revealing a noteworthy improvement in the proposed 

classifier's performance when employing PC-based brain 

connectivity network construction in contrast to the competitor 

techniques. 

E. Influence of Different Activation Functions on Classifier 
Performance 

Table V presents the outcomes of CA and F1-score variations 

in GC-IT2FN concerning different activation functions. The 

table clearly indicates that the proposed classifier achieves 

optimal results when the Logish activation function is 
employed. 

F. Effect of Reducing the Area under the FOU on Classifier 
Performance 

The effect of reducing the FOU using the modified LMF (as 

discussed in Section III-D) is compared against the traditional 

FOU formulation produced by considering the union of 10 

Type-1 MFs obtained from 10 experimental days. The results 

of this comparison are tabulated in Table VI. It is evident from 

the table that the proposed approach of FOU reduction 

significantly improves both the CA and F1-score compared to 

the classical approach. 

G. Influence of Different Brain Connectivity Features on 
Classifier Perfromance 

The performance of the proposed classifier is evaluated with 

respect to the variation in three centrality based features: DC, 

CC and BC. It is observed from Table VII that though 

CC+BC, DC+BC and BC are able to provide a fairly high F1-

score value, DC+CC+BC yields the highest F1-score in 

comparison to the other feature combinations.   

H. Ranking of Subjects on the Basis of Scientific Creative 
Potential 

Each subject's rank is determined by initially calculating their 

CPM score, denoted in (21), and arranging them in descending 

order. Following this arrangement, ranks are assigned to each 

subject based on their CPM score, with the highest CPM score 

receiving the top rank. In Table VIII, the ranks of the 10 
subjects are presented instead of the entire cohort due to space 

constraints. 

TABLE V 

EFFECT OF DIFFERENT ACTIVATION FUNCTIONS ON THE PROPOSED MODEL 

WITH RESPECT TO CA (%) 

 

Activation 

Functions  

Class Labels   

HCR MCR LCR 

 

NCR 

 

Sigmoid [83] 79.60 79.48 80.03 79.76 

Tanh [84] 81.05 80.87 80.96 81.12 

ReLU [85] 82.90 83.36 82.82 83.20 

Leaky ReLU [86] 84.55 85.14 85.06 84.61 

 ELU [87] 86.34 86.17 85.78 85.97 

SELU [88] 87.16 87.38 87.42 87.52 

Swish [89] 89.11 88.97 89.20 88.83 

ELiSH [90] 92.07 91.88 92.15 91.72 

Mish [91] 93.63 93.47 94.03 93.68 

Logish 97.87 97.32 96.92 98.03 

 TABLE VI 

EFFECT OF REDUCING THE AREA UNDER THE FOU ON CLASSIFIER 

PERFORMANCE 

 

Class 

Labels 

Varying Classifier Architecture 

GCN + IT2FS with 

original FOU 

GCN + IT2FS with 

modified FOU 

CA (%) F1 (%) CA (%) F1 (%) 

HCR 92.83 93.25 97.87 98.12 

MCR 93.14 92.90 97.32 97.08 

LCR 92.56 92.77 96.92 97.25 

NCR 93.12 93.23 98.03 98.43 

 



I. Statistical Validation of the Proposed GC-IT2FN Using 
Friedman's Test 

To statistically validate the proposed algorithm, the Friedman's 

2-way non-parametric statistical test [92] has been utilized for 

the present application. This test assigns the lowest rank to the 

best-performing algorithm. The Friedman statistic, denoted by 
2
F  is computed for (k-1) degrees of freedom using the 

following equation. 
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where, N represents the number of datasets (i.e., the number 

of creative classes), k indicates the number of classifier 

algorithms and aR
 
portrays the mean rank of the pth algorithm 

pertaining to the qth dataset. The results of the Friedman's test 

with respect to all classification metrics for N = 4 and k = 8 

has been portrayed in Table IX. It is apparent from this table 

that the Friedman statistic ,07.1427.20 2
95.0,7

2  F  
which 

depicts the chi-square value at 95% confidence level with 7 

degrees of freedom. The outcomes of the Friedman test reveal 

the rejection of the null hypothesis, which asserts that all the 

algorithms exhibit equivalent performance. Consequently, the 

comparison of the algorithms must be performed by taking 

into account their respective ranks. 

VI. CONCLUSION 

Unraveling the creative capacities of individuals in the 

scientific domain poses a significant challenge within the 

realm of cognitive neuroscience. The present study makes a 

noteworthy contribution to this domain by utilizing fNIRS 

data, with a focus on evaluating the levels of creative aptitude 

through brain connectivity analysis. Such an analysis, centered 

on centrality features (i.e., degree, closeness, and 

betweenness), reveals the active engagement of the right 

anterior prefrontal cortex (BA 10), right posterior middle 

temporal gyrus (BA 21), and bilateral regions of the posterior 

supramarginal gyrus (BA 40) during the performance of a 
paper folding task. Subsequently, the centrality based features 

are classified using a novel GC-IT2FN classifier, 

demonstrating precise identification of desired class labels 

related to creative ability and superior performance compared 

to its competitors.  

     A captivating application of the proposed scheme involves 
identifying creative individuals for potential placement in 

various research-oriented departments in industrial sectors 

based on their different ranks of creative ability. For example, 

an individual exhibiting high creativity could be appointed to 

roles such as Advanced Data Analyst or Innovation Manager, 

where the demand for groundbreaking ideas and inventive 

problem-solving is paramount. A person with medium creative 

abilities might find a fitting role as a Research Assistant, 

contributing to the execution of research projects with a 

balance of structured methodologies and adaptable problem-

solving. Meanwhile, someone with lower creative inclinations 
could be well-suited for a position like Quality Control 

Analyst, where attention to established protocols and 

meticulous adherence to quality standards is essential. 

Furthermore, the current study also nurtures the possibility of 

drawing biological inspiration for the creation of 

computational models of scientific creativity. The future scope 

of the proposed work may involve assessing the creative 

potential of individuals by exploring other cognitive 

phenomena that influence creative ideation in the scientific 

domain, such as inductive learning, analogical reasoning, and 

the like. 

TABLE VII 

COMPARATIVE STUDY OF DIFFERENT CONNECTIVITY FEATURES WITH 

RESPECT TO F1-SCORE (%) 

 

Centrality Features  Class Labels 

HCR MCR LCR NCR 

DC 93.62 92.87 93.30 93.08 

CC 94.03 93.40 94.21 94.15 

BC 95.27 95.74 95.45 95.92 

DC+CC 94.88 94.51 94.72 94.60 

 DC+BC 96.20 96.02 96.11 96.33 

CC+BC 96.75 96.81 96.25 97.42 

DC+BC+CC 98.12 97.08 97.25 98.43 

 

TABLE VIII 

RANK OF 10 SUBJECTS BASED ON CLASSIFICATION RESULTS 

 

Subject ID CPM (%) Rank 

S27 83.50 1 

S02 78.45 2 

S11 76.52 3 

S05 69.27 4 

S08 69.11 5 

S30 65.50 6 

S23 59.47 7 

S18 59.38 8 

S09 55.29 9 

S03 51.05 10 

 
TABLE IX 

STATISTICAL VALIDATION OF THE PROPOSED GC-IT2FN USING 

FRIEDMAN'S TEST 

 

Classifiers Algorithms 
 

Ra 𝝌𝑭
𝟐 

 

DCNN 8  

 

27.20 

(Null Hypothesis  

is Rejected) 

Chebnet  6.75 

GCN 6 

DGCN  3.87 

CayleyNet  5.25 

GAT 3 

AGCN 2.12 

Proposed GC-IT2FN 1 
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