
Convolutional Neural Network Applied to X-Ray Medical

Imagery for Pneumonia Identification

Denis Manolescu1,2, Neil Buckley1, and Emanuele Lindo Secco2 [0000-0002-3269-6749]

1AI Lab, School of Mathematics, Computer Science & Engineering, Liverpool Hope University
2Robotics Lab, School of Mathematics, Computer Science & Engineering, Liverpool Hope

University
20203547@hope.ac.uk, bucklen@hope.ac.uk, seccoe@hope.ac.uk

Abstract. Convolutional Neural Networks (CNN) are one of the most popular

and effective approaches for image recognition. They have been widely used in

various medical imaging applications, such as identifying tumors, detecting le-

sions, and organ segmentation. The ability of CNNs to automatically learn and

extract meaningful features from raw visual data makes them particularly well-

suited for medical imaging tasks, where accuracy and reliability are critical. This

paper presents an experimental study focused on analyzing the structure and

functionality of convolutional neural networks by building an operational model

capable of identifying cases of pneumonia from X-ray scans. The CNN model is

trained, validated and tested on a dataset of over 5000 images, and the final re-

sults show 99% precision and 98% accuracy, with a recall value of 98%.

Keywords: convolutional neural networks; decision support system; intelligent

system; medical image analysis; diagnostics.

1 Introduction

Centuries of collective learning and research have brought a solid knowledge of how

the human brain works. Still, given its complexity, shaped by millions of years of nat-

ural evolution, this self-understanding endeavor is far from over, and it continues with

the help of more powerful and advanced computers and algorithm models. When re-

duced to numbers, the vastness of the brain's structure can be beautiful but overwhelm-

ingly convoluted, formed by an estimated 86 billion neurons connected by around one

quadrillion synapses, plus other less documented brain cells [1]. With its remarkable

capabilities of processing and transmitting information, this multi-specialized and self-

organized neural system is used as a structural template for building artificial intelli-

gence computing systems that can enhance our collective knowledge.

For the human mind, the ability to identify objects or collect information from im-

ages is an effortless and trivial process, while for a computer, this task can be trouble-

some and hard to implement. Machine learning algorithms, particularly deep learning

models such as Convolutional Neural Networks (CNNs or ConvNets), focus on emu-

lating the works of the brain, enabling them to detect patterns and make predictions

based on visual data. Being detached from human biases and exhaustion, these

mailto:20203547@hope.ac.uk,%20bucklen@hope.ac.uk
mailto:seccoe@hope.ac.uk

2

supervised learning algorithms, trained on vast amounts of data, can achieve perfor-

mance levels similar to or even superior to any individual, making them ideal for quick

and consistent tasks. CNNs have shown promising results in several medical imaging

challenges, such as the ISIC Skin Lesion Classification Challenge with the work of

Gouda and colleagues [2], Dalmau et al [3] or the RSNA Pneumonia Detection Chal-

lenges.

This research demonstrates the performance of a convolutional neural network

model in the process of medical analysis and disease diagnosis based on X-ray imagery.

The study aims to support the potential use of this technology in conjunction with doc-

tors' expertise to validate and facilitate medical assessments in a responsible and trans-

parent manner. In practice, this work presents an implementation of a CNN model

trained to identify and ultimately automate and speed up the process of diagnosing

pneumonia infection from X-ray images.

The paper is structured as it follows: in the following section, the CNNs Concept

and Structure paragraph will analyze in detail the basic structure of the convolutional

neural network and the working mechanism behind each layer. Furthermore, the dis-

cussion will corroborate the results of other relevant studies from the literature to ho-

mogenize the view related to the performance of different algorithm techniques. Then,

the Implementation paragraph will examine the execution and building of the CNN

model and present each dataset processing stage, including cleaning, loading, normali-

zation and scaling, and partitioning. The Results section elaborates on the training pro-

cess of the model and its performance and concludes by evaluating the trained network

on unseen data. The final Conclusion reflects on the perspective and potential of using

this technology, with advantages and limitations, while proposing some improvements.

2 CNNs – Concept and Structure Review

2.1 What are CNNs

Convolutional Neural Networks (CNN) is a class of supervised Deep Learning ar-

chitecture emulating the visual cortex in the human brain, designed to analyze and pro-

cess high-dimensional visual data, predominantly images and videos. Typically, this

type of neural network is composed of several sequential layers, including Input, Con-

volutional, Activation, Pooling, Flatten and Fully-Connected Layers, which work to-

gether to learn and identify hierarchical patterns, features, and relationships within a

dataset.

The input layer in a CNN consists of a series of operations that prepares the dataset

for processing by the feature detection layers. In this stage, the input data is normaliza-

tion and standardized into specific formats and parameters, ensuring network stability

and convergence.

2.2 Convolutional Layer and Activation Function

A fundamental component in any CNN is the Convolutional Layer, which is special-

ized in detecting local features like edges, texture or shapes within an input image. This

3

process starts with a user-defined number of kernels or filters, initially operating with

random weights values. While the CNN is training, it uses backpropagation and loss

optimization algorithms to update and refine the weights according to the labels within

the dataset.

In essence, the features refinement is achieved by performing a mathematical oper-

ation called convolution which takes place during each forward pass cycle of training.

This procedure consists of sequentially sliding each kernel over the input image at a

predefined stride value of pixels to produce a feature map. At each kernel spatial posi-

tion on the input data, a dot product is computed between the filter weights and the

corresponding input values, forming an activation map which represents the spatial ar-

rangement of that learned feature.

The convolutional layer operations continue by applying a non-linear transfer func-

tion to the activation maps, having the essential purpose of integrating non-linearity

into the model and allowing it to learn complex patterns by regulating the neurons out-

put.

The Rectified Linear Unit (ReLU) is one of the most widely used activation functions

in CNNs development and it operates by setting all negative values within the feature

maps to zero.

Although other techniques, such as Sigmoid, Mish, Swish or other derived hybrid

algorithms, can produce good results, as shown in the work of Dasgupta et al [4] and in

the benchmark studies carried out by Dubey et al [5], ReLU algorithm remains the pre-

ferred option for image classification models due to simplicity and high yield accuracy-

time results. However, the choice of the transfer function really depends on the appli-

cation, the dataset and the intended properties of the CNN model.

2.3 Pooling Layers

When developing a convolutional neural network, the amount of data is a paramount

aspect of generating performance, consequentially leading to the potential of over-

grown and overfitting models that can exhaust the computation powers of the system.

These spatial dimensional issues can be controlled and reduced by using pooling layers.

The modular advantage of these techniques is their capacity to operate independently

on each feature map, where they can perform non-linear down-sampling while preserv-

ing most of the relevant features, essentially producing a newly condensed feature map.

The two most commonly used pooling operations are Max Pooling and Average Pool-

ing.

Although various CNN experiments focused on generalizing and trying to bench-

mark the performance of different traditional pooling techniques, like the work of

Galanis et al, Nirthika et al, Zafar et al [6-8], the general conclusion seems to be that

the pooling method is just another refinement option determined by the scope and pri-

ority of the model. The choice depends on the specific problem and the desired trade-

offs, and it is often determined through experimentation.

Max pooling is preferred in the context of preserving the most prominent infor-

mation of the local regions, which often corresponds to the presence of specific patterns

or features. These abilities favor the mapping of edges, corners and textures and are

particularly useful in image classification, object detection, facial and gesture recogni-

tion, autonomous driving or image segmentation applications. In contrast, the average

4

pooling retains a uniform local representation of the input feature, resulting in a

smoother activation map that preserves more information and is less sensitive to noise.

The average pooling may be preferred in the applications that need more contextual

space, like satellite image analysis, handwriting recognition, artistic style transfer or

medical image segmentation. Additionally, max pooling generates fewer learning pa-

rameters than average pooling, resulting a faster training and fewer computational re-

sources.

2.4 Flatten Layer

The Flatten layer is an essential component in the classification process of a standard

CNN model that bridges the transition from the convolution-activation-pooling stage,

responsible for the feature detection tasks, to the Fully-Connected Layers. In essence,

a Flatten Layer performs a multidimensional-to-unidimensional transformation by tak-

ing the output of the feature detection block, which is a stack of feature maps, and

converting it into a one-dimension linear array format. In this process, the linearization

operation preserves the spatial relationship within the activation maps, which eventu-

ally become spatial context used by the Fully-Connected Layers.

The scope of this linearization process is to simplify the data representation to allow

the Fully-Connected Layers to process the information and perform high-level predic-

tions for classification or regression tasks based on the identified features.

Fig. 1. The CNN layer by layer final structure design

2.5 Fully-Connected layers and SoftMax

After the Flatten Layer linearizes the data, it is then passed through one or more

Fully-Connected or Dense Layers. These are sequentially organized and specialized in

combining the high-level features extracted in the convolutional-pooling block to learn

how to recognize the patterns and their relationship. This mechanism determines the

combination of features and their weights to generate the final prediction, which can

either be a class probability for classification tasks or continuous numerical values in

the case of regression tasks.

Often, a CNN model ends with a Fully-Connected Layer, but when dealing with

multi-class classification challenges, the final layer can be a SoftMax Activation Func-

tion that uses the output values of the last fully-connected layer to calculate the multi-

class probability distribution that sums up to one.

5

2.6 Additional CNN Layers

Because of their powerful abilities and the capacity to handle visual variations like

changes in orientation, scale, illumination, and distortion, CNNs have become widely

used in various computer vision tasks. This is also the case of Naveen et al [9] with

their work in training a CNN image recognition model to accurately identify cherries

for a machine picking system. Similar is the work of Sun et al [10] in developing an

image segmentation model to identify and recognise human palm veins or the work of

Jinchuan et al [11] and Yona et al [12] to accurately identify dangerous objects from

X-ray security screening.

Apart from the standard structure, Convolutional Neural Networks can also incor-

porate other different types of layers with a variety of benefits. Integrating Normaliza-

tion layers into the CNN model can help stabilize and improve convergence during

training by homogenising the data, as Zhijie et al [13] and Suzuki et al [14] proved in

their studies. Additionally, Dropout layers can be used to regulate the data by randomly

deactivating a portion of neurons. This process prevents overfitting and promotes gen-

eralization, advantages shown by Tingting et al [15] and Farhadi et al [16]. Further-

more, as Xiaofeng et al [17-18] illustrate, the Deconvolution Layers can also be utilised

to perform image reconstruction or generative modelling of new data, which ultimately

could be used for additional training of the model, although improper usage of this

feature can lead to image artefacts and error propagation within the model, as Odena et

al [19] and Kirchhoff [20] identified. In addition, Depthwise Separable Convolution

layers can be integrated into the CNN structure to reduce the computation demand of

operations, a benefit also shown in the work of Lin et al [21]. The general modular

characteristics of CNNs allow for easily expanding the structure of the model with other

more exotic or specialised layers.

3 Implementation of the CNN

3.1 The Data Set

Pneumonia is a contagious viral or bacterial lung infection that can be life-threaten-

ing if not discovered early and quickly treated with antibiotics. Usually, this condition

is diagnosed and evaluated with a chest X-Ray (WHO - Bernadeta Dadonaite, 2019 –

[22]). In the effort to tackle this issue, AI technologies like CNNs trained models can

offer a significant advantage to unburden any medical system and assist medical pro-

fessionals in the diagnosing process.

In this study, the CNN model is trained, evaluated, and tested using a dataset com-

prised of approximately 5,200 X-Ray Lung Images available for public use with the

effort of Kermany and his colleagues [23]. The dataset content is divided between nor-

mal scans and pneumonia-identified scans.

3.2 Software Implementation

The CNN model developed in this research can be executed and retrained in Jupyter

Lab IDE - on a local machine or using the online Google Colab environment. In either

https://colab.research.google.com/

6

case, the algorithm is designed to perform on GPU runtime memory. Although CPU

execution is also possible, this aspect is out of the scope of the study. Additionally, the

training dataset needs to be downloaded, in both cases, by the user.

For a Google Colab implementation, the CNN model can be downloaded from

GitHub. The train in Colab takes roughly 30 min, while on a local machine with 16 GB

VRAM, the process requires about 3 min, although the initial setup is more complex.

Fig. 2. Set up of the model with its dependencies (left panel) and pre-processing pro-

cedure for cleaning the data (right panel).

3.2.1 Dependencies Installation and GPU Setup

The initial step for building the CNN model is to install all the necessary libraries

and dependencies using the python’s package manager pip. This should include Ten-

sorFlow - which is part of the CNN training pipeline, opencv-python – the library that

will facilitate the interaction with images, making sure the dataset is operational and

compatible with python format, and matplotlib – used for graphical representation of

the end results and performance. Training a CNN model on GPU graphics card tends

to expand the VRAM available, which can lead to Out Of Memory errors. This issue is

managed by initializing the GPU and enabling the experimental.set_memory_growth

function, which will gradually increase the VRAM as the training requires. As debug

measure, the setup stage ends with checking the TensorFlow version and also checking

whether IDE recognizes GPU device (Fig. 2, left panel).

3.2.2 Data Cleaning

The interaction with the CNN dataset is possible by using the cv2 Python Optimiza-

tion Library for Computer Vision that offers great support for image-based tasks like
read, write, filter. Also, the imghdr module is used for fast file extension detection.

https://github.com/deemano/ML_cnn

7

Most of the time, the dataset can be messy, with different unusable formats that can
interfere with the CNN training, for that reason a data cleaning process is mandatory.
This is implemented by first defining a data_dir variable to hold the files path folder,
and an image_exts list to hold the allowed extensions. Next, for loops are used to go
through folders, open each image and check its extension. If any image cannot be open
or is bad format, they will be removed using the remove function from python OS mod-
ule (Figure 2, right panel).

3.2.3 Data Loading

TensorFlow relies on the Keras API to re-format its dataset as a pipeline, and in
practice the framework is implemented as a generator to pre-process and fast-load data
in small batches during training and evaluation (Figure 3, right panel). Precisely, the
function tf.keras.utils.image_dataset_from_directory returns a variable data as a la-
belled object of tf.data.Dataset (Figure 3, left panel). In this format each element of the
dataset is basically a tuple of a batch of images and a batch of labels. Furthermore,
images are represented as tensors of shape (i.e. the batch_size, image_height, im-
age_width and num_channels), while the labels are represented as tensors of shape (i.e.
batch_size and num_classes).

Fig. 3. The Keras Utils method attributes (left panel) and the Input Layer for Data

Loading (right panel).

The order of the images in each batch is random and changes from batch to batch
during training, in order to reduce bias and improve the performance of the CNN model.
This random ordering ensures that the model does not memorize the order of the images
in the dataset and instead learns to generalize new examples. Next, the tf.data.Dataset
function as_numpy_iterator(), provides a sequence of batches of data and allows access
to the generator by iterating over elements of the dataset and converts it into NumPy
arrays. Then, the data batch is retrieved one by one using batch = data_iterator.next()
which catches a batch from the iterator and advances the iterator to the next batch. This
strategy can be a way to adapt the dataset’s parameters like batch_size, image_size to
the VRAM capabilities of the system, and then control the workflow.

8

Additionally, label_titles define a dictionary to assign the batch labels to the string
titles, for a better human interpretation of the results, while subplots and a for loop
function is used to generate a batch sample by visualizing the first eight images and
their labels using the Matplotlib functions.

Fig. 4. Data Normalization & Scaling (top panel) and Partitioning (bottom panel).

3.2.4 Data Normalization and Scaling

The dataset normalization process is executed in the dataset pipeline and consists of

scaling the image values from 0-to-255 into 0-to-1. This method helps the deep learning
model to generalize faster and superior results. In practice, while the data is being pre-
processed in the pipeline, the map() function executes the scaling by dividing each pixel
value by the maximum pixel value in the batch (x/255). This is a commonly used tech-
nique to improve the training stability of the CNN, improving the convergence rate of
the optimization algorithm and the speed of processing the data (Figure 4, top panel).

3.2.5 Data Set Partitioning

Partitioning the dataset is an essential process in building a stable and accurate CNN

model. Properly allocating non-overlapping data subsets for training, validation and

9

testing help to assess performance and to prevent overfitting, ultimately leading to an
increase ability to generalize on new data. The training subset is used for parameters
optimization through back propagation and gradient descent. The validation subset is
used for tunning the hyperparameters like learning rate, number of layers or regulari-
zation parameters, while the testing data subset is used for evaluation.

Fig. 5. CNN training result charts using different optimization algorithms

The CNN dataset contains 164 batches, which are divided into:

• 70% for training (train_size)

• 20% for validation (val_size)

• 10% for testing (test_size)

The partition is implemented using the Tensorflow data.Dataset pipeline methods
take and skip (Figure 4, bottom panel).

3.3 The CNN Model

The CNN architecture is designed by means of the Keras Sequential API, a deep

learning model builder suitable for one-input one-output data flow projects. The final

architecture of the CNN model is composed of three convolutional blocks, one Flatten

10

Layer, one Fully-Connected Layer with ReLU Activation and another single unit Dense

Layer with a Sigmoid Activation Function. Additionally, the input block integrates a

Batch-Normalization Layer to minimize the loss function during training, which other-

wise will result in a spike of noise during validation.

The 1st and 3rd Convolutional Layer have 16 filters, while the 2nd one has 32 filters.

The rest of their hyper-parameters are the same, with a kernel size of 3x3 pixels and a

one-pixel stride. All layers are sequentially stacked together using add() function.

In the last stage before training, the CNN model is compiled using the Adagrad Op-

timizer, the BinaryCrossentropy() loss function and the accuracy tracking metrics for

later evaluation. In addition, the summary() function reviews how the model transforms

the data within each block.

4 Results

4.1 CNN Training and Performance Visualization

The training data is stored in a logs directory, while the tensorflow_callback tool

allows the visualisation and monitor various parameters. Next, the fit() method initiates

the training process in which the train dataset is passed through the CNN model for 20

epochs. Additionally, the hist variable holds the training history returned by the fit()

function, together with all the metrics information, validation_data, and callback logs.

The training performances are plotted using Matplotlib visualisation tools provided

through TensorFlow. A comprehensive comparison table with the results of other opti-

mizers is briefly presented in Figure 5, this includes Adam, AdamW, AdamMax, PMP-

prop, SGD and AdaDelta.

Fig. 6. Accuracy and loss charts from the training results.

In the final results of the research, the developed CNN model shows its best perfor-

mance when integrating the Adagrad Optimiser (Figure 6).

11

4.2 Performance Evaluation

The performance of the newly trained CNN model is finally evaluated using the un-

seen Test dataset partition. This process is carried out by the Keras Metrics Functions,

namely the Precision, Recall and BinaryAccuracy functions. Usually, for classification

problems, these are the most relevant. Once the metrics instances are stored into varia-

bles, a for loops iterates through the test dataset using as_numpy_iterator() method

which returns batches in sequence in a numpy format. Furthermore, the x and y variables

unpack the input features and the true labels of the current batch. The model.predict(x)

technique uses the freshly trained CNN model to predict the input features x and com-

pare it with the true labels y. The result is getting stored in the yhat variable. In the final

step, all metrics variables are updated, and the evaluation result is printed:

Precision = 0.9907

Recall = 0.9839

Accuracy = 0.9804

In conclusion, the CNN model developed in this research shows 99% precision and

98% accuracy, with an effectiveness of 98% given by the recall value.

In the final stage, the CNN trained model is saved and ready to be deployed as an

API or used on compatible edge devices, like Nvidia Jetson Systems or other similar.

The saving process is basically a serialization or archiving in a .h5 format, a process

executed by the model.save() function, giving a path (‘models’ folder) and a model

name (‘cnnXray_pneumonia_LHU.h5’). Additionally, load_model() can be used to re-

load the trained network anytime and it can directly take data for prediction or inference

with the help of predict() function.

5 Conclusion

The CNN model built and trained in this research has proved the speed and reliability

that can be achieved by these deep learning algorithms in identifying pneumonia

infections from X-Ray Imagery. The experimentation results are a compelling argument

showing the technology is trustworthy to assist medical personnel in their diagnosing

procedure, offering remarkable advantages of endurance, consistency, and accuracy.

Additionally, the success of this model in detecting pneumonia infections suggests that

training the network on additional datasets of other types of health issues can further

expand its capabilities. These automation systems have the potential to become highly

efficient diagnostic tools that can address real-world clinical needs while reducing the

workload on medical professionals, allowing them to focus on different critical tasks

[24-26. Furthermore, once trained, the model has the flexibility to be deployed at a

minimum cost using the existing computational infrastructure or edge devices, making

it an accessible solution to isolated communities worldwide.

12

Acknowledgments

This work was presented in coursework form in fulfilment of the requirements for

the BEng in Robotics for the student Vasile Denis Manolescu from the AI and Robotics

Labs, School of Mathematics, Computer Science & Engineering, Liverpool Hope

University..

References

1. Tompa, R., 2022. Why is the human brain so difficult to understand? (Allen Institute).
[Online] Available at: https://alleninstitute.org/news/why-is-the-human-brain-so-difficult-
to-understand-we-asked-4-neuroscientists/ [Accessed 2023].

2. Walaa Gouda, N. U. S. G. A.-W. M. H. N. Z. J., 2022. Detection of Skin Cancer Based on
Skin Lesion Images Using Deep Learning. [Online] Available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324455/ [Accessed 2023].

3. Marta Cullell Dalmau, S. N. M. O.-V. I. M. C. M., 2021. Convolutional Neural Network
for Skin Lesion Classification: Understanding the Fundamentals Through Hands-On
Learnin. [Online] Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969634/
[Accessed 2023].

4. Rupshali Dasgupta, Y. S. C. S. N., 2021. Performance Comparison of Benchmark Activa-
tion Function ReLU, Swish and Mish for Facial Mask Detection Using Convolutional Neu-
ral Network. [Online] Available at: http://dx.doi.org/10.1007/978-981-16-2248-9_34 [Ac-
cessed 2023].

5. Shiv Ram Dubey, S. K. S. B. B. C., 2022. Activation Functions in Deep Learning: A Com-
prehensive Survey and Benchmark. [Online] Available at:
https://arxiv.org/pdf/2109.14545.pdf [Accessed 2023].

6. Nikolaos-Ioannis Galanis, P. V. K.-G. M. G. A. P., 2022. Convolutional Neural Networks:
A Roundup and Benchmark of Their Pooling Layer Variants. [Online] Available at:
https://www.mdpi.com/1999-4893/15/11/391 [Accessed 2023].

7. Rajendran Nirthika, S. M. A. R. R. W., 2022. Pooling in convolutional neural networks for
medical image analysis: a survey and an empirical study. [Online] Available at:
https://link.springer.com/article/10.1007/s00521-022-06953-8#Sec32 [Accessed 2023].

8. Afia Zafar, M. A. N. M. N. A. A. S. R. A. A. A. K. D. S. A., 2022. A Comparison of
Pooling Methods for Convolutional Neural Networks. [Online] Available at:
https://www.mdpi.com/2076-3417/12/17/8643 [Accessed 2023].

9. P Naveen, B. D., 2021. Pre-trained VGG-16 with CNN Architecture to classify X-Rays
images into Normal or Pneumonia. [Online] Available at: https://ieeexplore.ieee.org/doc-
ument/9396997 [Accessed 2023].

10. Sun, B., Tao, X., li, J. & Luo, X., 2020. Research on Palm Vein Recognition Algorithm
Based on Improved Convolutional Neural Network. [Online] Available at: https://ieeex-
plore.ieee.org/document/9289736 [Accessed 2023].

11. Jinchuan Li, Y. L. Z. C., 2020. Segmentation and Attention Network for Complicated X-
Ray Images. [Online] Available at: https://ieeexplore.ieee.org/document/9337635 [Ac-
cessed 2023].

12. Yona Falinie Gaus, N. B. T. P. B., 2020. On the Use of Deep Learning for the Detection of
Firearms in X-ray Baggage Security Imagery. [Online] Available at: https://ieeex-
plore.ieee.org/document/9032917 [Accessed 2023].

13. Zhijie, Y. et al., 2022. Bactran: A Hardware Batch Normalization Implementation for CNN
Training Engine. [Online] Available at: https://ieeexplore.ieee.org/document/9003257
[Accessed 2023].

13

14. Suzuki, Y. & Ichige, K., 2021. High Accuracy Video Foreground Segmentation Based on
Feature Normalization. [Online] Available at: https://ieeexplore.ieee.org/docu-
ment/9590583 [Accessed 2023].

15. Tingting, C., Jianlin, X. & Huafeng, C., 2021. Improved Convolutional Neural Network
Fault Diagnosis Method Based on Dropout. [Online] Available at: https://ieeex-
plore.ieee.org/document/9356698 [Accessed 2023].

16. Farhadi, Z., Bevrani, H. & Feizi-Derakhshi, M.-R., 2022. Combining Regularization and
Dropout Techniques for Deep Convolutional Neural Network. [Online] Available at:
https://ieeexplore.ieee.org/document/9986657 [Accessed 2023].

17. Xiaofeng Gu, J. L. X. Z. P. K., 2017. Using checkerboard rendering and deconvolution to
eliminate checkerboard artifacts in images generated by neural networks. [Online] Availa-
ble at: https://ieeexplore.ieee.org/document/8301478 [Accessed 2023].

18. Xiaofeng Gu, J. L. X. Z. P. K., 2017. Using checkerboard rendering and deconvolution to
eliminate checkerboard artifacts in images generated by neural networks. [Online] Availa-
ble at: https://ieeexplore.ieee.org/document/8301478 [Accessed 2023].

19. Augustus Odena, B. V. C. O., 2016. Deconvolution and Checkerboard Artifacts. [Online]
Available at: https://distill.pub/2016/deconv-checkerboard/ [Accessed 2023].

20. Kirchhoff, D., 2021. Deconvolutions and what to do about artifacts. [Online] Available at:
https://www.neuralception.com/convs-deconvs-artifacts/ [Accessed 2023].

21. Lin, Y. et al., 2021. A High-speed Low-cost CNN Inference Accelerator for Depthwise
Separable Convolution. [Online] Available at: https://ieeexplore.ieee.org/docu-
ment/9332057 [Accessed 2023].

22. WHO - Bernadeta Dadonaite, M. R., 2019. Pneumonia. [Online] Available at: https://our-
worldindata.org/pneumonia#number-of-people-dying-from-pneumonia-by-age [Accessed
2023].

23. Daniel Kermany, K. Z. ,. M. G., 2018. Labeled Optical Coherence Tomography (OCT) and
Chest X-Ray Images for Classification (University of California San Diego). [Online]
Available at: https://data.mendeley.com/datasets/rscbjbr9sj/2

24. D McHugh, N Buckley, EL Secco, A low-cost visual sensor for gesture recognition via AI
CNNS, Intelligent Systems Conference (IntelliSys) 2020, Amsterdam, The Netherlands

25. Buckley N, Sherrett L, Secco EL, A CNN sign language recognition system with single &
double-handed gestures, IEEE 45th Annual Computers, Software, and Applications Con-
ference (COMPSAC), 1250-1253, 2021 - 10.1109/COMPSAC51774.2021.00173

26. EL Secco, DD McHugh, N Buckley, A CNN-based Computer Vision Interface for Pros-
thetics’ application, EAI MobiHealth 2021 - 10th EAI International Conference on Wire-
less Mobile Communication and Healthcare, 41-59, 2022, DOI: 10.1007/978-3-031-
06368-8_3

https://data.mendeley.com/datasets/rscbjbr9sj/2
https://www.springer.com/gp/book/9789813345812
https://www.springer.com/gp/book/9789813345812
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9529449
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9529449
https://doi.org/10.1007/978-3-031-06368-8_3
https://doi.org/10.1007/978-3-031-06368-8_3

