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Abstract. Convolutional Neural Networks (CNN) are one of the most popular 

and effective approaches for image recognition. They have been widely used in 

various medical imaging applications, such as identifying tumors, detecting le-

sions, and organ segmentation. The ability of CNNs to automatically learn and 

extract meaningful features from raw visual data makes them particularly well-

suited for medical imaging tasks, where accuracy and reliability are critical. This 

paper presents an experimental study focused on analyzing the structure and 

functionality of convolutional neural networks by building an operational model 

capable of identifying cases of pneumonia from X-ray scans. The CNN model is 

trained, validated and tested on a dataset of over 5000 images, and the final re-

sults show 99% precision and 98% accuracy, with a recall value of 98%. 

Keywords: convolutional neural networks; decision support system; intelligent 

system; medical image analysis; diagnostics. 

1 Introduction 

Centuries of collective learning and research have brought a solid knowledge of how 

the human brain works. Still, given its complexity, shaped by millions of years of nat-

ural evolution, this self-understanding endeavor is far from over, and it continues with 

the help of more powerful and advanced computers and algorithm models. When re-

duced to numbers, the vastness of the brain's structure can be beautiful but overwhelm-

ingly convoluted, formed by an estimated 86 billion neurons connected by around one 

quadrillion synapses, plus other less documented brain cells [1]. With its remarkable 

capabilities of processing and transmitting information, this multi-specialized and self-

organized neural system is used as a structural template for building artificial intelli-

gence computing systems that can enhance our collective knowledge. 

For the human mind, the ability to identify objects or collect information from im-

ages is an effortless and trivial process, while for a computer, this task can be trouble-

some and hard to implement. Machine learning algorithms, particularly deep learning 

models such as Convolutional Neural Networks (CNNs or ConvNets), focus on emu-

lating the works of the brain, enabling them to detect patterns and make predictions 

based on visual data. Being detached from human biases and exhaustion, these 
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supervised learning algorithms, trained on vast amounts of data, can achieve perfor-

mance levels similar to or even superior to any individual, making them ideal for quick 

and consistent tasks. CNNs have shown promising results in several medical imaging 

challenges, such as the ISIC Skin Lesion Classification Challenge with the work of 

Gouda and colleagues [2], Dalmau et al [3] or the RSNA Pneumonia Detection Chal-

lenges. 

This research demonstrates the performance of a convolutional neural network 

model in the process of medical analysis and disease diagnosis based on X-ray imagery. 

The study aims to support the potential use of this technology in conjunction with doc-

tors' expertise to validate and facilitate medical assessments in a responsible and trans-

parent manner. In practice, this work presents an implementation of a CNN model 

trained to identify and ultimately automate and speed up the process of diagnosing 

pneumonia infection from X-ray images. 

The paper is structured as it follows: in the following section, the CNNs Concept 

and Structure paragraph will analyze in detail the basic structure of the convolutional 

neural network and the working mechanism behind each layer. Furthermore, the dis-

cussion will corroborate the results of other relevant studies from the literature to ho-

mogenize the view related to the performance of different algorithm techniques. Then, 

the Implementation paragraph will examine the execution and building of the CNN 

model and present each dataset processing stage, including cleaning, loading, normali-

zation and scaling, and partitioning. The Results section elaborates on the training pro-

cess of the model and its performance and concludes by evaluating the trained network 

on unseen data. The final Conclusion reflects on the perspective and potential of using 

this technology, with advantages and limitations, while proposing some improvements. 

2 CNNs – Concept and Structure Review 

2.1 What are CNNs 

Convolutional Neural Networks (CNN) is a class of supervised Deep Learning ar-

chitecture emulating the visual cortex in the human brain, designed to analyze and pro-

cess high-dimensional visual data, predominantly images and videos. Typically, this 

type of neural network is composed of several sequential layers, including Input, Con-

volutional, Activation, Pooling, Flatten and Fully-Connected Layers, which work to-

gether to learn and identify hierarchical patterns, features, and relationships within a 

dataset. 

The input layer in a CNN consists of a series of operations that prepares the dataset 

for processing by the feature detection layers. In this stage, the input data is normaliza-

tion and standardized into specific formats and parameters, ensuring network stability 

and convergence. 

 

2.2 Convolutional Layer and Activation Function 

A fundamental component in any CNN is the Convolutional Layer, which is special-

ized in detecting local features like edges, texture or shapes within an input image. This 
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process starts with a user-defined number of kernels or filters, initially operating with 

random weights values. While the CNN is training, it uses backpropagation and loss 

optimization algorithms to update and refine the weights according to the labels within 

the dataset. 

In essence, the features refinement is achieved by performing a mathematical oper-

ation called convolution which takes place during each forward pass cycle of training. 

This procedure consists of sequentially sliding each kernel over the input image at a 

predefined stride value of pixels to produce a feature map. At each kernel spatial posi-

tion on the input data, a dot product is computed between the filter weights and the 

corresponding input values, forming an activation map which represents the spatial ar-

rangement of that learned feature. 

The convolutional layer operations continue by applying a non-linear transfer func-

tion to the activation maps, having the essential purpose of integrating non-linearity 

into the model and allowing it to learn complex patterns by regulating the neurons out-

put. 

The Rectified Linear Unit (ReLU) is one of the most widely used activation functions 

in CNNs development and it operates by setting all negative values within the feature 

maps to zero. 

Although other techniques, such as Sigmoid, Mish, Swish or other derived hybrid 

algorithms, can produce good results, as shown in the work of Dasgupta et al [4] and in 

the benchmark studies carried out by Dubey et al [5], ReLU algorithm remains the pre-

ferred option for image classification models due to simplicity and high yield accuracy-

time results. However, the choice of the transfer function really depends on the appli-

cation, the dataset and the intended properties of the CNN model. 

 

2.3 Pooling Layers 

When developing a convolutional neural network, the amount of data is a paramount 

aspect of generating performance, consequentially leading to the potential of over-

grown and overfitting models that can exhaust the computation powers of the system. 

These spatial dimensional issues can be controlled and reduced by using pooling layers. 

The modular advantage of these techniques is their capacity to operate independently 

on each feature map, where they can perform non-linear down-sampling while preserv-

ing most of the relevant features, essentially producing a newly condensed feature map. 

The two most commonly used pooling operations are Max Pooling and Average Pool-

ing. 

Although various CNN experiments focused on generalizing and trying to bench-

mark the performance of different traditional pooling techniques, like the work of 

Galanis et al, Nirthika et al, Zafar et al [6-8], the general conclusion seems to be that 

the pooling method is just another refinement option determined by the scope and pri-

ority of the model. The choice depends on the specific problem and the desired trade-

offs, and it is often determined through experimentation. 

Max pooling is preferred in the context of preserving the most prominent infor-

mation of the local regions, which often corresponds to the presence of specific patterns 

or features. These abilities favor the mapping of edges, corners and textures and are 

particularly useful in image classification, object detection, facial and gesture recogni-

tion, autonomous driving or image segmentation applications. In contrast, the average 
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pooling retains a uniform local representation of the input feature, resulting in a 

smoother activation map that preserves more information and is less sensitive to noise. 

The average pooling may be preferred in the applications that need more contextual 

space, like satellite image analysis, handwriting recognition, artistic style transfer or 

medical image segmentation. Additionally, max pooling generates fewer learning pa-

rameters than average pooling, resulting a faster training and fewer computational re-

sources. 

 

2.4 Flatten Layer 

The Flatten layer is an essential component in the classification process of a standard 

CNN model that bridges the transition from the convolution-activation-pooling stage, 

responsible for the feature detection tasks, to the Fully-Connected Layers. In essence, 

a Flatten Layer performs a multidimensional-to-unidimensional transformation by tak-

ing the output of the feature detection block, which is a stack of feature maps, and 

converting it into a one-dimension linear array format. In this process, the linearization 

operation preserves the spatial relationship within the activation maps, which eventu-

ally become spatial context used by the Fully-Connected Layers. 

The scope of this linearization process is to simplify the data representation to allow 

the Fully-Connected Layers to process the information and perform high-level predic-

tions for classification or regression tasks based on the identified features. 

 

 
 

Fig. 1. The CNN layer by layer final structure design 

 

2.5 Fully-Connected layers and SoftMax 

After the Flatten Layer linearizes the data, it is then passed through one or more 

Fully-Connected or Dense Layers. These are sequentially organized and specialized in 

combining the high-level features extracted in the convolutional-pooling block to learn 

how to recognize the patterns and their relationship. This mechanism determines the 

combination of features and their weights to generate the final prediction, which can 

either be a class probability for classification tasks or continuous numerical values in 

the case of regression tasks. 

Often, a CNN model ends with a Fully-Connected Layer, but when dealing with 

multi-class classification challenges, the final layer can be a SoftMax Activation Func-

tion that uses the output values of the last fully-connected layer to calculate the multi-

class probability distribution that sums up to one. 
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2.6 Additional CNN Layers 

Because of their powerful abilities and the capacity to handle visual variations like 

changes in orientation, scale, illumination, and distortion, CNNs have become widely 

used in various computer vision tasks. This is also the case of Naveen et al [9] with 

their work in training a CNN image recognition model to accurately identify cherries 

for a machine picking system. Similar is the work of Sun et al [10] in developing an 

image segmentation model to identify and recognise human palm veins or the work of 

Jinchuan et al [11] and Yona et al [12] to accurately identify dangerous objects from 

X-ray security screening. 

Apart from the standard structure, Convolutional Neural Networks can also incor-

porate other different types of layers with a variety of benefits. Integrating Normaliza-

tion layers into the CNN model can help stabilize and improve convergence during 

training by homogenising the data, as Zhijie et al [13] and Suzuki et al [14] proved in 

their studies. Additionally, Dropout layers can be used to regulate the data by randomly 

deactivating a portion of neurons. This process prevents overfitting and promotes gen-

eralization, advantages shown by Tingting et al [15] and Farhadi et al [16]. Further-

more, as Xiaofeng et al [17-18] illustrate, the Deconvolution Layers can also be utilised 

to perform image reconstruction or generative modelling of new data, which ultimately 

could be used for additional training of the model, although improper usage of this 

feature can lead to image artefacts and error propagation within the model, as Odena et 

al [19] and Kirchhoff [20] identified. In addition, Depthwise Separable Convolution 

layers can be integrated into the CNN structure to reduce the computation demand of 

operations, a benefit also shown in the work of Lin et al [21]. The general modular 

characteristics of CNNs allow for easily expanding the structure of the model with other 

more exotic or specialised layers. 

3 Implementation of the CNN 

3.1 The Data Set 

Pneumonia is a contagious viral or bacterial lung infection that can be life-threaten-

ing if not discovered early and quickly treated with antibiotics. Usually, this condition 

is diagnosed and evaluated with a chest X-Ray (WHO - Bernadeta Dadonaite, 2019 – 

[22]). In the effort to tackle this issue, AI technologies like CNNs trained models can 

offer a significant advantage to unburden any medical system and assist medical pro-

fessionals in the diagnosing process. 

In this study, the CNN model is trained, evaluated, and tested using a dataset com-

prised of approximately 5,200 X-Ray Lung Images available for public use with the 

effort of Kermany and his colleagues [23]. The dataset content is divided between nor-

mal scans and pneumonia-identified scans. 

 

3.2 Software Implementation 

The CNN model developed in this research can be executed and retrained in Jupyter 

Lab IDE - on a local machine or using the online Google Colab environment. In either 

https://colab.research.google.com/
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case, the algorithm is designed to perform on GPU runtime memory. Although CPU 

execution is also possible, this aspect is out of the scope of the study. Additionally, the 

training dataset needs to be downloaded, in both cases, by the user. 

For a Google Colab implementation, the CNN model can be downloaded from 

GitHub. The train in Colab takes roughly 30 min, while on a local machine with 16 GB 

VRAM, the process requires about 3 min, although the initial setup is more complex. 

 

 
Fig. 2. Set up of the model with its dependencies (left panel) and pre-processing pro-

cedure for cleaning the data (right panel). 

 

3.2.1 Dependencies Installation and GPU Setup 

 

The initial step for building the CNN model is to install all the necessary libraries 

and dependencies using the python’s package manager pip. This should include Ten-

sorFlow - which is part of the CNN training pipeline, opencv-python – the library that 

will facilitate the interaction with images, making sure the dataset is operational and 

compatible with python format, and matplotlib – used for graphical representation of 

the end results and performance. Training a CNN model on GPU graphics card tends 

to expand the VRAM available, which can lead to Out Of Memory errors. This issue is 

managed by initializing the GPU and enabling the experimental.set_memory_growth 

function, which will gradually increase the VRAM as the training requires. As debug 

measure, the setup stage ends with checking the TensorFlow version and also checking 

whether IDE recognizes GPU device (Fig. 2, left panel). 

 
3.2.2 Data Cleaning 

 
The interaction with the CNN dataset is possible by using the cv2 Python Optimiza-

tion Library for Computer Vision that offers great support for image-based tasks like 
read, write, filter. Also, the imghdr module is used for fast file extension detection. 

https://github.com/deemano/ML_cnn
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Most of the time, the dataset can be messy, with different unusable formats that can 
interfere with the CNN training, for that reason a data cleaning process is mandatory. 
This is implemented by first defining a data_dir variable to hold the files path folder, 
and an image_exts list to hold the allowed extensions. Next, for loops are used to go 
through folders, open each image and check its extension. If any image cannot be open 
or is bad format, they will be removed using the remove function from python OS mod-
ule (Figure 2, right panel). 

 
3.2.3 Data Loading 
 

TensorFlow relies on the Keras API to re-format its dataset as a pipeline, and in 
practice the framework is implemented as a generator to pre-process and fast-load data 
in small batches during training and evaluation (Figure 3, right panel). Precisely, the 
function tf.keras.utils.image_dataset_from_directory returns a variable data as a la-
belled object of tf.data.Dataset (Figure 3, left panel). In this format each element of the 
dataset is basically a tuple of a batch of images and a batch of labels. Furthermore, 
images are represented as tensors of shape (i.e. the batch_size, image_height, im-
age_width and num_channels), while the labels are represented as tensors of shape (i.e. 
batch_size and num_classes).  

 

 
Fig. 3. The Keras Utils method attributes (left panel) and the Input Layer for Data 

Loading (right panel). 
 

The order of the images in each batch is random and changes from batch to batch 
during training, in order to reduce bias and improve the performance of the CNN model. 
This random ordering ensures that the model does not memorize the order of the images 
in the dataset and instead learns to generalize new examples. Next, the tf.data.Dataset 
function as_numpy_iterator(), provides a sequence of batches of data and allows access 
to the generator by iterating over elements of the dataset and converts it into NumPy 
arrays. Then, the data batch is retrieved one by one using batch = data_iterator.next() 
which catches a batch from the iterator and advances the iterator to the next batch. This 
strategy can be a way to adapt the dataset’s parameters like batch_size, image_size to 
the VRAM capabilities of the system, and then control the workflow. 
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Additionally, label_titles define a dictionary to assign the batch labels to the string 
titles, for a better human interpretation of the results, while subplots and a for loop 
function is used to generate a batch sample by visualizing the first eight images and 
their labels using the Matplotlib functions. 

 

 
 

Fig. 4. Data Normalization & Scaling (top panel) and Partitioning (bottom panel). 

 
3.2.4 Data Normalization and Scaling 

 
The dataset normalization process is executed in the dataset pipeline and consists of 

scaling the image values from 0-to-255 into 0-to-1. This method helps the deep learning 
model to generalize faster and superior results. In practice, while the data is being pre-
processed in the pipeline, the map() function executes the scaling by dividing each pixel 
value by the maximum pixel value in the batch (x/255). This is a commonly used tech-
nique to improve the training stability of the CNN, improving the convergence rate of 
the optimization algorithm and the speed of processing the data (Figure 4, top panel). 

 

3.2.5 Data Set Partitioning 

 
Partitioning the dataset is an essential process in building a stable and accurate CNN 

model. Properly allocating non-overlapping data subsets for training, validation and 
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testing help to assess performance and to prevent overfitting, ultimately leading to an 
increase ability to generalize on new data. The training subset is used for parameters 
optimization through back propagation and gradient descent. The validation subset is 
used for tunning the hyperparameters like learning rate, number of layers or regulari-
zation parameters, while the testing data subset is used for evaluation. 

 
 

Fig. 5. CNN training result charts using different optimization algorithms 
 

The CNN dataset contains 164 batches, which are divided into:  

• 70% for training (train_size) 

• 20% for validation (val_size)  

• 10% for testing (test_size) 

The partition is implemented using the Tensorflow data.Dataset pipeline methods 
take and skip (Figure 4, bottom panel). 

 
3.3 The CNN Model 

The CNN architecture is designed by means of the Keras Sequential API, a deep 

learning model builder suitable for one-input one-output data flow projects. The final 

architecture of the CNN model is composed of three convolutional blocks, one Flatten 
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Layer, one Fully-Connected Layer with ReLU Activation and another single unit Dense 

Layer with a Sigmoid Activation Function. Additionally, the input block integrates a 

Batch-Normalization Layer to minimize the loss function during training, which other-

wise will result in a spike of noise during validation. 

The 1st and 3rd Convolutional Layer have 16 filters, while the 2nd one has 32 filters. 

The rest of their hyper-parameters are the same, with a kernel size of 3x3 pixels and a 

one-pixel stride. All layers are sequentially stacked together using add() function. 

In the last stage before training, the CNN model is compiled using the Adagrad Op-

timizer, the BinaryCrossentropy() loss function and the accuracy tracking metrics for 

later evaluation. In addition, the summary() function reviews how the model transforms 

the data within each block. 

4 Results 

4.1 CNN Training and Performance Visualization 

The training data is stored in a logs directory, while the tensorflow_callback tool 

allows the visualisation and monitor various parameters. Next, the fit() method initiates 

the training process in which the train dataset is passed through the CNN model for 20 

epochs. Additionally, the hist variable holds the training history returned by the fit() 

function, together with all the metrics information, validation_data, and callback logs. 

The training performances are plotted using Matplotlib visualisation tools provided 

through TensorFlow. A comprehensive comparison table with the results of other opti-

mizers is briefly presented in Figure 5, this includes Adam, AdamW, AdamMax, PMP-

prop, SGD and AdaDelta. 

 

 
 

Fig. 6. Accuracy and loss charts from the training results. 
 

In the final results of the research, the developed CNN model shows its best perfor-

mance when integrating the Adagrad Optimiser (Figure 6). 
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4.2 Performance Evaluation 

The performance of the newly trained CNN model is finally evaluated using the un-

seen Test dataset partition. This process is carried out by the Keras Metrics Functions, 

namely the Precision, Recall and BinaryAccuracy functions. Usually, for classification 

problems, these are the most relevant. Once the metrics instances are stored into varia-

bles, a for loops iterates through the test dataset using as_numpy_iterator() method 

which returns batches in sequence in a numpy format. Furthermore, the x and y variables 

unpack the input features and the true labels of the current batch. The model.predict(x) 

technique uses the freshly trained CNN model to predict the input features x and com-

pare it with the true labels y. The result is getting stored in the yhat variable. In the final 

step, all metrics variables are updated, and the evaluation result is printed: 

Precision  =  0.9907 

Recall  =  0.9839 

Accuracy  =  0.9804 

In conclusion, the CNN model developed in this research shows 99% precision and 

98% accuracy, with an effectiveness of 98% given by the recall value. 

In the final stage, the CNN trained model is saved and ready to be deployed as an 

API or used on compatible edge devices, like Nvidia Jetson Systems or other similar. 

The saving process is basically a serialization or archiving in a .h5 format, a process 

executed by the model.save() function, giving a path (‘models’ folder) and a model 

name (‘cnnXray_pneumonia_LHU.h5’). Additionally, load_model() can be used to re-

load the trained network anytime and it can directly take data for prediction or inference 

with the help of predict() function. 

5 Conclusion 

The CNN model built and trained in this research has proved the speed and reliability 

that can be achieved by these deep learning algorithms in identifying pneumonia 

infections from X-Ray Imagery. The experimentation results are a compelling argument 

showing the technology is trustworthy to assist medical personnel in their diagnosing 

procedure, offering remarkable advantages of endurance, consistency, and accuracy. 

Additionally, the success of this model in detecting pneumonia infections suggests that 

training the network on additional datasets of other types of health issues can further 

expand its capabilities. These automation systems have the potential to become highly 

efficient diagnostic tools that can address real-world clinical needs while reducing the 

workload on medical professionals, allowing them to focus on different critical tasks 

[24-26. Furthermore, once trained, the model has the flexibility to be deployed at a 

minimum cost using the existing computational infrastructure or edge devices, making 

it an accessible solution to isolated communities worldwide. 
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