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Abstract

The human ability to infer others’ intent is innate
and crucial to development. Machines ought to
acquire this ability for seamless interaction with
humans. We propose an agent model for predicting
the intent of actors in human-human interactions. This
requires simultaneous generation and recognition of an
interaction at any time, for which end-to-end models
are scarce. The proposed agent actively samples its
environment via a sequence of glimpses. At each
sampling instant, the model infers the observation class
and completes the partially observed body motion.
It learns the sequence of body locations to sample
by jointly minimizing the classification and generation
errors. The model is evaluated on videos of two-skeleton
interactions under two settings: (first person) one
skeleton is the modeled agent and the other skeleton’s
joint movements constitute its visual observation, and
(third person) an audience is the modeled agent
and the two interacting skeletons’ joint movements
constitute its visual observation. Three methods for
implementing the attention mechanism are analyzed
using benchmark datasets. One of them, where attention
is driven by sensory prediction error, achieves the highest
classification accuracy in both settings by sampling less
than 50% of the skeleton joints, while also being the
most efficient in terms of model size. This is the first
known attention-based agent to learn end-to-end from
two-person interactions for intent prediction, with high
accuracy and efficiency.
Keywords: Agent, intent prediction, interaction
recognition and generation, attention, perception,
proprioception.

1 INTRODUCTION

The ability to perceive others as intentional agents is
innate and crucial to development [1]. Appropriate
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Figure 1: Rows 1–3 show the actual, generated first
and third person videos respectively for four interactions
from SBU Kinect Interaction dataset. Rows 4–6 show
the same for four interactions from K3HI dataset. Recent
frames are darker in shade than older frames. Best
viewed in color.

interpretation of others’ intentions is the key to
a successful interaction [2]. In AI, human intent
prediction has been extensively studied in the context
of different applications such as assistive robotics,
human-robot interaction, video and robotic surveillance,
and autonomous driving. We refer to “intent
prediction” as the problem of simultaneously inferring
the action/interaction class and generating the involved
persons’ future body motions.
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We propose an attention-based agent model that
learns to predict the intent of two-person interactions
from 3D skeletal data. Forecasting interaction motions
is a challenging problem as the model has to learn the
spatiotemporal dependencies among the skeletal joints
of the two persons. Training a model by minimizing
generation and classification errors in conjunction may
lead to more stability and less overfitting due to each
error acting as a regularizer for the other [3].

Contributions. The proposed attention-based agent
model actively predicts the intent of the persons in its
environment, interacts with them in a closed perception-
action loop, and is learned end-to-end. The novelties of
this work are as follows:
(1) The action (attention) is modeled as proprioception
in a multimodal setting. Reinforcement signal or
utilities/values of states are not required in the model.
(2) At each sampling instant, the model simultaneously
predicts the interaction class and the motion of both 3D
skeletons. This happens for both first person (FP) and
third person (TP) environments. Typically FP models,
such as [4, 5], generate the motion of only one skeleton.
(3) Three methods for implementing action selection
(or attention mechanism) are analyzed. Classification
accuracy is comparable when sampling locations
are determined from prediction error (without any
weighting) or from learned weights (without involving
prediction error); however, the latter is less efficient in
terms of model size.
(4) In our model, classification and generation pathways
share a subset of parameters, and hence depend on each
other. However, highest generation accuracy does not
necessarily lead to highest classification accuracy.
(5) The method, where attention is driven by sensory
prediction error (without any weighting), achieves the
highest classification accuracy in both FP and TP
environments. It samples less than 50% of the skeleton
joints from each frame on average, and is the most
efficient in terms of model size.

The proposed agent model is the first of its kind
to interact with and learn end-to-end from two-person
interaction environments in FP and TP for intent
prediction, with high accuracy and efficiency.

2 Related Work

A number of models have been reported for two-person
interaction generation (e.g., [6–8]), reaction generation
(e.g., [4, 5, 9, 10]), or two-person interaction recognition
(e.g., [11–16]) using 3D skeletal data. The problem of
interaction generation, i.e. generating the interaction
sequence of both skeletons, is more challenging than the
reaction generation problem where the goal is to generate
the reaction sequence of one skeleton given the action
sequence of another.

In these works, the environment is viewed from one

of two perspectives: first person (FP) where one of
the interacting persons is the observer while the other
constitutes his environment (e.g., [4, 5, 10]), or third
person (TP) where a person, such as an audience, is the
observer and the two interacting persons constitute his
environment (e.g., [7]).

Very few models perform both generation and
recognition. In a model, generation and recognition
can be performed either separately such as [9], or
simultaneously such as [10] and our current work. We
utilize a variational recurrent neural network (RNN)-
based model to generate both interacting skeletons in
both FP and TP, while [10] uses a generative adversarial
network to generate only the reacting skeleton in FP. We
are not aware of any model for simultaneous generation
and recognition of two-person interactions.

Some of these models are attention-based. They
utilize different attention mechanisms, such as temporal
(e.g., [10, 14, 17–19]), spatiotemporal (e.g., [12, 20]),
multimodal (e.g., [21, 22]), or multilayer (e.g., [13]). In
most models, attention is implemented by strategically
introducing additional learnable parameters. For
example, a transformer-based attention mechanism is
used in [9], and a sequence-to-sequence long short-term
memory (LSTM)-based attention layer is used in [10],
both of which introduce additional attention parameters
learned during training. In our model, attention is
computed directly from the generation error, which is
why generation is necessary. There is no attention
parameter in our model. Not only does our model yield
the state-of-the-art recognition accuracy while being
efficient, we show that introducing learnable attention
parameters to weigh the generation error does not
necessarily increase the accuracy on benchmark datasets.

3 Models and Methods

3.1 Preliminaries

Agent is anything that perceives its environment via
sensors and acts upon the environment using actuators
[23]. In this paper, the agent is simulated in software.
Perception is the mechanism that allows an agent
to interpret the state of its external environment from
sensory signals [24].
Proprioception is perception where the environment is
the agent’s own body. Proprioception allows an agent to
internally perceive the state (location, motion, etc.) of
its body [24].
Generative model. A generative model, pmodel,
maximizes the log-likelihood L(x; θ) of the data, where
θ is a set of parameters and x is a set of data points [25].
Evidence lower bound (ELBO). If z is a latent
continuous random variable generating the data x,
computing log-likelihood requires computing the integral
of the marginal likelihood,

∫
pmodel(x, z)dz, which

2



is intractable [26]. Variational inference involves
optimization of an approximation of the intractable
posterior by defining an evidence lower bound (ELBO)
on the log-likelihood, L(x; θ) ≤ log pmodel(x; θ).
Variational autoencoder (VAE) is a deep
generative model that assumes the data consists
of independent and identically distributed samples,
and the prior, pθ(z), is an isotropic Gaussian.
VAE maximizes the ELBO given by [26],
L(x; θ) ≤ Eqφ(z|x)[log pθ(x|z)] − DKL(qφ(z|x), pθ(z)),
where qφ(z|x) is a recognition model, pθ(x|z) is a
generative model, E denotes expectation, and DKL

denotes Kullback-Leibler divergence.
Saliency is a property of each location in an agent’s
environment that regulates his attention. We consider
multiple attention mechanisms, some of which are
functions of the agent’s prediction error while the others
are not.

3.2 Problem Statement

Let X = {X(1),X(2), . . . ,X(n)} be a set of observable
variables representing an environment in n modalities.
The variable representing the i-th modality is a sequence:

X(i) = 〈X(i)
1 , X

(i)
2 , . . . , X

(i)
T 〉, where T is the sequence

length. Let x≤t = {x(1)
≤t , . . . ,x

(n)
≤t } be a partial

observation of X such that x
(i)
≤t = 〈x(i)1 , . . . , x

(i)
t 〉, 1 ≤

t ≤ T . Let y = 〈y1, . . . , yT 〉 where yt represents the
true class label at time t. We define the problem of
pattern completion as generating X and y as accurately
as possible from the partial observation x≤t. At any
time t, the objective is to maximize the joint likelihood
of X and y given x≤t and a generative model pθ with
parameters θ, i.e., arg max

θ
pθ(X,y|x≤t).

3.3 Agent Architecture

The proposed agent architecture comprises of five
components: environment, observation, pattern
completion and classification, action selection, and
learning. See block diagrams in Fig. 2.

1. Environment. The environment is the source of
time-varying data. We consider first and third person
environments.
First person (FP): One of the two skeletons is modeled
as the first person (a.k.a. primary agent). His body
constitutes his internal environment while the other
skeleton constitutes his external (visual) environment.
Two modalities are used to model the primary agent
(see Fig. 2a): (i) visual perception which captures
the other skeleton’s 3D joint coordinates, and (ii) body
proprioception which captures his own (primary agent
skeleton’s) 3D joint coordinates.
Third person (TP): The agent is modeled as a
third person (e.g., an audience). The two interacting
skeletons constitute his external (visual) environment.

(a) First person (FP) perspective involving two modalities:
visual perception (superscript 1) and body proprioception
(superscript 2). Without loss of generality, the blue skeleton
is considered as the primary agent (first person) while the
red skeleton constitutes its visual observations. Best viewed
in color.

(b) Third person (TP) perspective involving only one
modality: visual perception. Hence, superscript indicating
the modality is not shown.

Figure 2: Block diagrams of our attention-based
agent applied to two-person interaction classification via
generation.

Only the visual perception modality is used to model
the third person, which captures both skeletons’ 3D joint
coordinates (see Fig. 2b).

2. Observation. The agent interacts with its
environment via a sequence of eye and body movements.
The observations, sampled from the environment at each
time instant, are in two modalities: perceptual and
proprioceptive. In the benchmark skeleton datasets,
there is no information regarding the appearance of
joints (shape, color, texture) but only their location. The
appearance constitutes visual perception (‘what’) while
location constitutes visual proprioception (‘where’).
There is only one visual modality in this model, referred
to as visual perception (could also be called visual
proprioception), in both FP and TP (Fig. 2).

3. Pattern completion. A multimodal variational
recurrent neural network (MVRNN) for variable length
sequences is used to complete the patterns for all
modalities. Recognition and generation are the two
processes involved in the operation of an MVRNN.

Recognition (Encoder). The recognition model
qφ(zt|x≤t, z<t) is a probabilistic encoder [26]. It
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produces a Gaussian distribution over the possible values
of the code zt from which the observations x≤t could have
been generated.

The MVRNN consists of two RNNs, each with
one layer of LSTM units. Each RNN generates the
parameters for the approximate posterior distribution
and the conditional prior distribution for each modality,
as in [27].

The distribution parameters from all modalities are
combined using product of experts (PoE), as in [28],
to generate the joint distribution parameters for the
conditional prior pθ(zt|x<t, z<t), and the approximate
posterior qφ(zt|x≤t, z<t). The recognition model is
formulated as:

[µ
(i)
0,t σ

(i)
0,t] = ϕpriorτ (h

(i)
t−1), [µ

(i)
z,t σ

(i)
z,t] = ϕencτ (x

(i)
t , h

(i)
t−1)

zt ∼ N (µ0,t, σ0,t), zt|xt ∼ N (µz,t, σz,t)

σ2
0,t =

(∑
i

σ
(i)
0,t

−2)−1
, σ2

z,t =
(∑

i

σ
(i)
z,t

−2)−1
µ0,t =

(∑
i

µ
(i)
0,tσ

(i)
0,t

−2)
σ2
0,t, µz,t =

(∑
i

µ
(i)
z,tσ

(i)
z,t

−2)
σ2
z,t

where h
(i)
t−1 is the hidden state at t − 1 for modality

i, ϕpriorτ generates the mean as a linear function of
its input, ϕencτ generates the logarithm of standard
deviation as a non-linear function of its input, ϕpriorτ

accepts the hidden state as input, and ϕencτ accepts the
hidden state and the current observation as input. See
Lines 2–10 of Algorithm 2 in Suppl.

Here, φprior generates the mean as a linear function
of its input, φenc generates the logarithm of standard
deviation as a non-linear function of its input, φprior

accepts the hidden state as input, and φenc accepts the
hidden state and the current observation as input.

Generation (Decoder). The generative model,

pθ(X
(1)
t , X

(2)
t , yt|x<t, z≤t), generates the perceptual and

proprioceptive data and the class label from the latent
variables, zt, at each time step.

Each RNN in the MVRNN generates the distribution
parameters of the sensory data for a modality. The
sensory data is sampled from this distribution. We
assume the perceptual and proprioceptive distributions
to be multivariate Gaussian as the skeletal joints are
real-valued. We assume the class label distribution to
be multivariate Bernoulli.

The generative model is formulated as:

h
(i)
t = RNNθ(zt, x

(i)
t , h

(i)
t−1), [µ

(i)

x(i),t
σ
(i)

x(i),t
] = ϕdecτ (zt, h

(i)
t ).

For generation, X
(i)
t+1|zt ∼ N (µ

(i)

x(i),t
, σ

(i)

x(i),t
). For

classification, ŷt = f(h
(n+1)
t , zt), where h

(n+1)
t =

fθ(zt,xt, h
(1:n)
t , h

(n+1)
t−1 ). HereRNNθ represents an LSTM

unit, ϕdecτ is the same function as ϕencτ , and f is a softmax
function. See Lines 11–15 of Algorithm 2 in Suppl.

The pattern, X, is completed at each time using an
iterative method. At any time t, the model predicts
x̂t+1 given the observations xk:t (1 ≤ k < t), then
predicts x̂t+2 given {xk+1:t, x̂t+1}, then predicts x̂t+3

given {xk+2:t, x̂t+1:t+2}, and so on till x̂T is predicted.
This method allows a fixed and finite model to predict a
variable or infinite length sequence. Since only the next
instant is predicted at any iteration, the model can be
size efficient.

4. Action selection. In the proposed model, action
selection is to decide the weight (attention) given to
each location in the environment in order to sample
the current observation. At any time t, a saliency map

S
(i)
t is computed for modality i from which the action

is determined. The saliency map assigns a salience

score S
(i)
t,l to each location l. There are 15 locations

corresponding to the 15 skeleton joints: Head (J1), Neck
(J2), Torso (J3), Left Shoulder (J4), Left Elbow (J5),
Left Hand (J6), Right Shoulder (J7), Right Elbow (J8),
Right Hand (J9), Left Hip (J10), Left knee (J11), Left
foot (J12), Right Hip (J13), Right knee (J14), Right foot
(J15). We compute the weights in three ways as follows.

Weights are determined by thresholding the
prediction error (pe). The threshold is statistically
estimated on the fly and is not predetermined.

S
(i)
t = ‖X(i)

t+1 − X̂
(i)
t+1‖1 , S

(i)
t,r = 1

|r|
∑
l∈r S

(i)
t,l

W
(i)
t,l =

{
1, if S

(i)
t,l ≥

1
nr

∑nr
i=1 S

(i)
t,r

0, otherwise

x
(i)
t+1 = W

(i)
t X

(i)
t+1 + (1−W (i)

t )X̂
(i)
t+1 (1)

where X
(i)
t+1, X̂

(i)
t+1 are the true and predicted data

(skeleton joint coordinates) respectively, ‖.‖1 denotes L1

norm, |.| denotes the cardinality of a set, nr = 5 is the
number of regions in the skeleton (J1-J3, J4-J6, J7-J9,

J10-J12, J13-J15) (see Fig. 4 in Suppl.), and S
(i)
t,r is the

mean saliency over the joints in region r.
At any time, at least one region will be salient. Our

experiments show that variable number of salient regions
at each time step is more effective. Fixing the number
of salient regions to a constant value occasionally leads
to selection of regions with low saliency or overlooking
regions with high saliency. In our model, the salient
joints are sampled while the observation from non-salient
joints at time t+ 1 is the predicted observation from t.

Weights are learned as coefficients of the
prediction error (lwpe).

S
(i)
t = Wa(X

(i)
t+1 − X̂

(i)
t+1)

W
(i)
t = σ(S

(i)
t ) , x

(i)
t+1 = W

(i)
t X

(i)
t+1 (2)

Weights are learned as coefficients of hidden
states (lw).

S
(i)
t = Wah

(i)
t , W

(i)
t = σ(S

(i)
t ), x

(i)
t+1 = W

(i)
t X

(i)
t+1 (3)
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In Eqs. 2 and 3, Wa is the weight matrix to be learned.
Eqs. 1, 2, 3 implement the functions g1, g2 in Fig. 2
(also see Lines 7, 8 of Algorithm 1 in Suppl.).

6. Learning. The objective is to maximize Eq. 4.
Its derivation is shown in Suppl.

Eqφ(z≤T |x≤T )

[ T∑
t=1

2∑
i=1

λi log pθ(X
(i)
t |z≤t,x<t)

+ λ3 log pθ(y|z≤T ,x<T )
]

− β
T∑
t=1

DKL

(
qφ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
(4)

where λ1, λ2, λ3, β are the weights balancing the terms.
Here i = 1, 2 for FP, and i = 1 for TP.

4 Experimental Results

4.1 Datasets

Our model is evaluated on two datasets:
SBU Kinect Interaction Dataset [29] consists of
videos of eight two-person interactions: departing,
approaching, pushing, hugging, kicking, exchanging
object, punching, and shaking hands. The data,
recorded from 7 participants, contains 21 sets. Each
set consists of a unique pair of participants performing
the eight interactions. The dataset has around 300
interaction videos, ranging from 9 to 46 frames. We
divide the dataset into five distinct train-test splits, as
in [29].
Kinect-based 3D Human Interaction (K3HI)
Dataset [30] consists of videos of eight two-person
interactions: departing, approaching, kicking, pointing,
punching, pushing, shaking hands, and exchanging
object. The data is recorded from 15 volunteers. Each
pair of participants performs the eight interactions. The
dataset has around 320 interaction videos, ranging from
20 to 104 frames. We divide the dataset into four distinct
train-test splits, as in [30].

4.2 Experimental setup

We use a recurrent hidden layer of 256 units and a
latent layer of 20 variables for each modality in the
MVRNN. These parameters are estimated empirically.
T is variable as interaction videos are of different lengths.
Stochastic gradient descent, with a minibatch size of 100,
is used to train the model. Adam optimization with
a learning rate of 0.001 and default hyperparameters
(β1 = 0.9, β2 = 0.999) are used. The objective function
parameters (β, λ1, λ2) are fixed to 1, and λ3 = α = 50.
To avoid overfitting, we use a dropout probability of 0.8
at the hidden layer for generation, and 0.1 at the hidden
layer for classification. All hyperparameters, except the

defaults, are estimated from the training set by cross-
validation.

The skeletal data in SBU is normalized. No further
preprocessing is done. We standardize the skeletal
data in K3HI. Training models on handcrafted features
defeats the purpose of learning. Hence we operate on
raw skeletal data.

Model variations: For each environment, FP and
TP, we experiment with the three action selection
methods (ref. “Action selection” in Section 3.3): pe,
lwpe, and lw.

Ablation study—Baseline, bs (w/o attention):
Due to lack of end-to-end models that simultaneously
generate and classify two-person interactions from 3D
skeletal data, our model’s performance is evaluated using
an ablation study which we refer to as the baseline, bs.
The goal is to understand the utility of attention in
our model. For that, we create a baseline model (bs)
by eliminating attention (Lines 7–8 in Algorithm 1 in
Suppl.) from our model and presenting the true skeletal
data as input. The MVRNN is modified such that the
observation is sampled from all the joints (i.e., weight
distribution is uniform over all joints) from both the
skeletons at any time. For a fair comparison, the number
of layers and the number of neurons in each layer are the
same for all variants, {bs, pe, lwpe, lw}, in FP and TP.

Evaluation metrics: We evaluate the generation
using results using average frame distance (AFD), as in

[4]: 1
T−1

∑
t ‖X

(i)
t − X̂

(i)
t ‖2, where X

(i)
t and X̂

(i)
t are the

true and predicted skeletal joint coordinates respectively
at time t for modality i and T is the sequence length.
We evaluate the classification using accuracy, recall,
precision and F-score.

4.3 Evaluation Results

4.3.1 Qualitative evaluation

Fig. 1 shows one time step ahead prediction of the
two skeletons (perception and body proprioception) for
four kinds of interactions from each dataset. These
figures are shown for both FP and TP, using pe action
selection method. The prediction over space and time
looks quite realistic for all cases. Figs. 5, 6, 7, 8 in
Suppl. show the visual and body proprioceptive pattern
completion when 30%, 50% and 70% of the frames have
been observed. Our model generates realistic predictions
over space and time for all the cases. As expected,
short-term predictions are more accurate than long-term
predictions. Even in the long-term, there is continuity
and the two predicted skeletons are well synchronized.
Our model’s predicted action/reaction at each time step
complies with the actual interactions.
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4.3.2 Evaluation for generation accuracy

The AFD from FP is lower than or comparable to TP in
most cases (ref. Table 1). Observing the two skeletons
as distinct modalities helps to learn a better latent
representation, resulting in more accurate generation.
FP models have more parameters than TP which also
explains the lower AFD from FP.

For both datasets, pe yields the highest AFD, while
lwpe and lw yield AFD very close to bs which is the
lowest. At each frame, pe samples less than 50% of the
skeleton joints on average (ref. Tables 6, 7 in Suppl.),
lwpe and lw weigh all the joints, while bs observes the
entire skeleton. The generation accuracy of all model
variants, {bs, pe, lwpe, lw}, in both FP and TP is
lower than that of our model in [8], which is similar to
pe but for two-skeleton interaction generation only. In
the current model, generation is not the primary goal
but is necessary to calculate attention from generation
error. Unlike some models, no bone length constraint is
explicitly used in any of our models, including that in [8].
Our models learn the spatiotemporal relations between
joint locations in each skeleton using the VRNN in each
modality and between the two skeletons using the PoE,
in an end-to-end manner.

Table 1: Generation accuracy (AFD) averaged over all
train-test splits (mean, std. dev.). Lowest AFD among
{pe, lwpe, lw} for each dataset is highlighted.

Action SBU dataset K3HI dataset

Selection FP TP FP TP

bs .045, .01 .059, .02 .027, .05 .036, .05

pe .148, .04 .137, .04 .040, .04 .056, .04

lwpe .044, .01 .073, .02 .027, .05 .037, .05

lw .045, .01 .062, .02 .029, .05 .033, .05

4.3.3 Evaluation for classification accuracy

The classification accuracy for our FP models is higher
than or comparable to our TP models. Also, the number
of trainable parameters for FP model (∼1.66M) is higher
than that of TP model (∼1.09M).

In all experiments, our top performing attention model
yields an accuracy very close to but not higher than
the baseline (bs). The goal of attention in our model
is to foster efficiency, discussed in the next section.
Also, our bs’ accuracy is higher than the state-of-the-
art on both datasets on raw skeleton. Among non-
attentional interaction classification models, the state-of-
the-art accuracy for SBU is 93.3% [31] from raw skeleton
while our non-attentional bs yields 93.7%. The state-
of-the-art accuracy for K3HI is 48.54% [32] from raw
skeleton while our bs yields 87.5%.

FP: For SBU, bs yields the highest classification
accuracy followed by pe and lwpe. For K3HI, bs yields
the highest accuracy followed by lw and pe.

TP: For SBU, bs yields the highest classification
accuracy followed by lw and pe. For K3HI, bs yields
the highest accuracy followed by pe and lwpe. See Table
3.

Thus, for both datasets and in both FP and TP, pe
is either the top performer or a close second, excluding
bs. Given that pe performs the worst in generation, we
conclude that, among the three action selection methods
in our model, highest generation accuracy does not
necessarily lead to highest classification accuracy even
though the generation and classification pathways share
a subset of parameters. Further, the top performing pe
is more efficient than lwpe and lw in terms of model
size (ref. Table 8 in Suppl.). Since implementation of
attention does not introduce any learnable parameter,
there is no improvement in accuracy in pe over bs.

Comparison to models that performed both
classification and generation: As stated in Section 2,
we are not aware of any model that performs generation
and recognition of two-person interactions. To the
best of our knowledge, only two models, [9] and [10],
perform generation and recognition. However, both of
them solve the problem of reaction generation, while our
model solves the more challenging problem of interaction
generation. In [9], classification accuracy is 80% and
46.4% for SBU and K3HI respectively, which are much
lower than ours (ref. Table 3). In [10], classification
accuracy is 79.2% for aggressive emotions (kick, push,
punch) and 39.97% for neutral emotions (hug, shake
hands, exchange objects) for SBU, which are much lower
than ours (ref. Table 3). This is summarized in Table 2.

Table 2: Comparison of classification accuracy (%)
between our model and existing models that performed
both generation and recognition. Detailed results from
our model are presented in Table 3. Note that in terms
of sampling efficiency, pe (attention-based) is twice as
efficient as bs (non-attentional).

Data
Interaction generation Reaction generation

Our model Our model
[9] [10]

(FP, bs) (FP, pe)

SBU 93.2 93.1 80.0 39.97–79.2
K3HI 87.5 85.9 46.4 –

4.3.4 Evaluation for efficiency

The purpose of attention in our model is to increase
sampling efficiency, evaluated as the average (over all
videos in each interaction class) of the proportion of
skeleton joints sampled from each frame. There is not
much variation in this average between the three action
selection methods for both the datasets and for both FP
and TP (ref. Tables 6, 7 in Suppl.). On average, for any
interaction class, pe samples less than 50% of the joints in
any frame. Our non-attentional bs yields slightly higher
classification accuracy because it observes 100% of the
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Table 3: Classification results averaged over all train-test
splits (mean, std. dev.). Highest accuracy among {pe,
lwpe, lw} for each dataset is highlighted.

Data Env. Action Accuracy Recall Precision F-score

SBU

FP

bs 93.2, 4.7 .934, .04 .931, .05 .928, .05
pe 93.1, 3.75 .940, .03 .924, .04 .925, .03

lwpe 93.1, 3.9 .939, .04 .929, .04 .929, .04
lw 91.5, 6.0 .920, .05 .902, .07 .903, .07

TP

bs 93.7, 6.1 .944, .05 .935, .05 .934, .06
pe 92.5,5.5 .930, .05 .927, .05 .922, .05

lwpe 91.3, 7.5 .915, .06 .907, .08 .906, .07
lw 92.9, 5.8 .951, .03 .921, .05 .924, .05

K3HI

FP

bs 87.5, 7.1 .865, .08 .859, .08 .856, .08
pe 85.9, 5.2 .854, .07 .838, .06 .839, .06

lwpe 84.9, 3.5 .850, .05 .818, .03 .818, .03
lw 86.9, 4.3 .865, .05 .852, .05 .853, .05

TP

bs 83.0, 6.6 .827, .07 .816, .08 .813, .08
pe 82.7, 7.3 .816, .08 .815, .08 .810, .08

lwpe 82.1, 4.5 .809, .04 .800, .06 .796, .05
lw 80.8, 6.3 .793, .07 .775, .08 .777, .08

joints in each frame, and hence is less efficient. Most
works, including [9,10], do not report sampling efficiency
or model size.

It is important that generation and recognition
accuracies vary with the proportion of ground truth
frames observed in the same way for our attention (pe,
lw, lwpe) and non-attention (bs) models. Fig. 3 shows
that, even though pe samples less than 50% of the
joints in each frame, it does not need to observe more
ground truth frames to reach the same accuracy as bs.
During the first few sampling instants, both generation
and classification accuracies improve exponentially. The
accuracies saturate after a certain percentage of frames,
which occurs faster for generation than classification.

5 Conclusions

A novel agent model is proposed that sequentially
samples and interacts with its environment constituted
of 3D skeletons. The agent operates as a closed-loop
system involving perceptual (‘what’) and proprioceptive
(‘where’) pathways which are learned end-to-end. At
each instant, it samples the skeleton joints to jointly
minimize its classification and generation errors in a
greedy manner. Three sampling methods (or attention
mechanisms) are analyzed of which one stands out
for achieving high classification accuracy while being
the most sample- and size-efficient. Experiments on
intent prediction (interaction classification and body
motion generation) using benchmark datasets reveal that
the model yields state-of-the-art classification accuracy
among those that operate on raw skeleton data. This
is the first work to report a model’s classification and
generation accuracy on two-skeleton interaction videos.
The superior accuracy and efficiency of our novel agent
model is expected to inspire research on the design,

(a) SBU classification accuracy (b) K3HI classification
accuracy

(c) SBU generation accuracy (d) K3HI generation accuracy

Figure 3: Generation and classification accuracy for
different percentage of ground truth given as input for
different environments and datasets.

analysis and experimentation with similar models.
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S Supplemental Material
(Suppl.)

S.1 Loss function derivation

Here we derive the objective function in Eq. 4 from
the objectives of multimodal VAE [28], variational RNN
[27], and VAE for classification [33]. The generative and
recognition models are factorized as:

pθ(X≤T , y≤T , z≤T |x≤T )

=

T∏
t=1

pθ(Xt, yt|z≤t,x<t)pθ(zt|x<t, z<t)

qφ(z≤T |x≤T ) =

T∏
t=1

qφ(zt|x≤t, z<t).

The variational lower bound (ELBO) on the joint log-
likelihood of the generated data, log pθ(X≤T , y≤T |x≤T ),
is derived as:

Eqφ(z≤T |x≤T )

[
log pθ(X≤T , y≤T |x≤T )

qφ(z≤T |x≤T )

qφ(z≤T |x≤T )

]
= Eqφ(z≤T |x≤T )

[
log

pθ(X≤T , y≤T , z≤T |x≤T )

pθ(z≤T |x≤T )

qφ(z≤T |x≤T )

qφ(z≤T |x≤T )

]
= Eqφ(z≤T |x≤T )

[ T∑
t=1

log
pθ(Xt, yt|z≤t,x<t)pθ(zt|x<t, z<t)

pθ(zt|x<t, z<t)

qφ(zt|x≤t, z<t)
qφ(zt|x≤t, z<t)

]
= Eqφ(z≤T |x≤T )

[ T∑
t=1

[
log pθ(Xt, yt|z≤t,x<t)

− log
qφ(zt|x≤t, z<t)
pθ(zt|x<t, z<t)

+ log
qφ(zt|x≤t, z<t)
pθ(zt|x<t, z<t)

]]
≥ Eqφ(z≤T |x≤T )

[ T∑
t=1

log pθ(Xt, yt|z≤t,x<t)
]

−
T∑
t=1

DKL

(
qφ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
.

We assume, the modalities are conditionally
independent given the common latent variables [28] and
all observations till the current time. Therefore,

log pθ(Xt, yt|z≤t,x≤t)

=

2∑
i=1

log pθ(X
(i)
t |z≤t,x<t) + log pθ(yt|z≤t,x<t).

Thus,

log pθ(X≤T , y≤T |x≤T )

≥ Eqφ(z≤T |x≤T )

[ T∑
t=1

2∑
i=1

log pθ(X
(i)
t |z≤t,x<t)

+ log pθ(yt|z≤t,x<t)
]

−
T∑
t=1

DKL

(
qφ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
≥ Eqφ(z≤T |x≤T )

[ T∑
t=1

2∑
i=1

λi log pθ(X
(i)
t |z≤t,x<t)

+ λ3 log pθ(yt|z≤t,x<t)
]

− β
T∑
t=1

DKL

(
qφ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
where λ1, λ2, λ3, β are the weights balancing the terms.
Assuming the class label does not change over time, we
simplify the above expression as:

Eqφ(z≤T |x≤T )

[ T∑
t=1

2∑
i=1

λi log pθ(X
(i)
t |z≤t,x<t)

+ λ3 log pθ(y|z≤T ,x<T )
]

− β
T∑
t=1

DKL

(
qφ(zt|x≤t, z<t), pθ(zt|x<t, z<t)

)
.

S.2 Pseudo code of algorithms

The five regions in the skeleton are shown in Fig. 4. The
pseudo codes are shown in Algorithms 1, 2.

Figure 4: Different regions in the skeleton.

S.3 Experimental results

Details of our experimental results are provided here.

S.3.1 Performance evaluation

See Tables 4, 5, 6, 7.
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Table 4: Generation accuracy (AFD) averaged over all train-test splits (mean, std. dev.) for SBU Kinect
Interaction dataset. bs, pe, lwpe and lw are the action selection methods (ref. Section 4 Action selection).
Interactions Approach, Shake Hands, Exchange Object are abbreviated as Appr., Sh. Hands, Exc. Obj.,
respectively.

Env. Action Appr. Depart Kick Push Sh. Hands Hug Exc. Obj. Punch Avg. AFD

FP

bs .031, .02 .034, .02 .072, .04 .044, .02 .032, .01 .060, .02 .037, .05 .053, .02 .045, .01
pe .102, .07 .125, .10 .244, .27 .129, .10 .112, .06 .171, .11 .132, .10 .170, .11 .148, .04
lwpe .028, .02 .033, .02 .071, .04 .043, .02 .032, .03 .059, .03 .035, .01 .052, .02 .044, .01
lw .032, .02 .035, .02 .072, .04 .045, .02 .032, .02 .057, .02 .036, .02 .052, .02 .045, .01

TP

bs .040, .03 .043, .03 .097, .05 .059, .03 .042, .03 .075, .04 .046, .01 .067, .03 .059, .02
pe .098, .04 .101, .04 .215, .08 .114, .07 .172, .07 .108, .04 .152, .04 .152, .04 .137, .04
lwpe .046, .04 .054, .05 .121, .06 .072, .03 .051, .03 .095, .04 .059, .02 .083, .03 .073, .02
lw .042, .03 .047, .03 .108, .07 .063, .03 .044, .04 .077, .04 .048, .01 .071, .03 .062, .02

Table 5: Generation accuracy (AFD) averaged over all train-test splits (mean, std. dev.) for K3HI Interaction
dataset. bs, pe, lwpe and lw are the action selection methods (ref. Section 4 Action selection). Interactions
Approach, Shake hands and Exchange object are abbreviated as Appr., Sh. Hands, Exc. Obj., respectively.

Env. Action Appr. Depart Exc. Obj. Kick Point Punch Push Sh. Hands Avg. AFD

FP

bs .153, .99 .015, .01 .006, .01 .011, .01 .007, .00 .010, .01 .010, .00 .006, .00 .027, .05
pe .135, .74 .037, .03 .020, .01 .033, .02 .025, .02 .026, .02 .027, .01 .019, .02 .040, .04
lwpe .143, .87 .017, .02 .007, .01 .013, .01 .010, .02 .011, .01 .011, .01 .007, .01 .027, .05
lw .164, 1.1 .016, .01 .006, .01 .012, .01 .007, .00 .009, .01 .009, .01 .006, .00 .029, .05

TP

bs .155, .96 .024, .01 .013, .01 .025, .02 .018, .02 .019, .02 .020, .01 .014, .01 .036, .05
pe .161, .75 .044, .02 .027, .02 .054, .03 .047, .04 .040, .02 .042, .02 .031, .02 .056, .04
lwpe .159, .94 .024, .02 .013, .01 .026, .02 .022, .03 .019, .01 .021, .01 .014, .01 .037, .05
lw .161, 1.0 .021, .02 .010, .01 .020, .01 .015, .02 .014, .01 .015, .01 .009, .01 .033, .05

Table 6: Percentage of skeleton joints (mean, std. dev.) sampled by our pe model from the ground truth in first
person environment. Since lwpe and lw weigh all the skeleton joints, and bs observes the entire skeleton, they
effectively sample 100% of the joints. Interactions Shake hands and Exchange object are abbreviated as Sh. Hands,
Exc. Obj., respectively.

Dataset Approach Depart Kick Push Sh. Hands Exc. Obj. Punch Hug Avg.
SBU 48.9, 4.2 48.7, 3.9 46.6, 2.8 49.3, 2.1 49.8, 2.3 48.9, 2.2 49.9, 3.2 48.3, 3.0 48.8, 1.0

Dataset Approach Depart Exc. obj. Kick Point Punch Push Sh. Hands Avg.
K3HI 47.9, 3.0 47.6, 2.4 47.8, 3.0 45.8, 2.6 46.8, 4.4 47.4, 2.4 47.6, 2.0 46.3, 2.9 47.2, 1.0

Table 7: Percentage of skeleton joints (mean, std. dev.) sampled by our pe model from the ground truth in third
person environment. Since lwpe and lw weigh all the skeleton joints, and bs observes the entire skeleton, they
effectively sample 100% of the joints. Interactions Shake hands and Exchange object are abbreviated as Sh. Hands,
Exc. Obj., respectively.

Dataset Approach Depart Kick Push Sh. Hands Exc. obj. Punch Hug Avg.
SBU 47.5, 3.8 45.8, 4.6 45.1, 3.2 48.4, 2.7 47.7, 3.2 47.6, 2.8 48.7, 3.8 47.4, 2.9 47.3, 1.2

Dataset Approach Depart Exc. Kick Point Punch Push Sh. Hands Avg.
K3HI 47.2, 2.9 47.9, 3.0 46.9, 2.9 41.1, 3.5 39.9, 7.2 45.5, 3.1 45.8, 3.7 46.8, 5.5 45.1, 3.0
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Algorithm 1 The proposed agent

1: Initialize parameters of the generative model θ, recognition
model φ, sequence length T .

2: Initialize optimizer parameters: β1 = 0.9, β2 = 0.99, η =
0.001, ε = 10−10.

3: Initialize W0 values as 1 and x
(1:n)
1 ← F (X

(1:n)
1 ,W

(1:n)
0 ),

where W
(1:n)
0 are the weights for the initial sampling and

the function F generates a sample x(i) from the environment

X(i) after assigning weights W
(i)
0 to modality i (ref. Action

selection in Section 3.3).
4: while true do
5: for τ ← 1 to T do
6: X̂

(1:n)
1:T , ŷ1:T ← PatternCompletion(x

(1:n)
1:τ )

Saliency Computation (Section 3.3 Action selection)

7: S
(1:n)
τ ← g1(X

(1:n)
τ+1 , X̂

(1:n)
τ+1 )

8: W
(1:n)
τ ← g2(S

(1:n)
τ )

9: x
(1:n)
τ+1 ← F (X

(1:n)
τ+1 ,Wτ )

Learning
10: Update {θ, φ} by maximizing Eq. 4.
11: end for
12: end while

Algorithm 2 PatternCompletion(x
(1:n)
1:τ )

1: for t← 1 to T do

Recognition Model
2: for i← 1 to n do
3: if t > τ then
4: x

(i)
t ← X̂

(i)
t

5: end if
6: [µ

(i)
0,t ;σ

(i)
0,t]← ϕprior(h

(i)
t−1)

7: [µ
(i)
z,t ;σ

(i)
z,t]← ϕenc([x

(i)
t , h

(i)
t−1])

8: end for

Product of Experts

9: zt ∼ N (µ0,t,diag(σ2
0,t)), where σ2

0,t =
( n∑
i=1

(σ
(i)
0,t)

−2)−1

and µ0,t =
( n∑
i=1

µ
(i)
0,t(σ

(i)
0,t)

−2)
σ2
0,t

10: zt|xt ∼ N (µz,t,diag(σ2
z,t)), where σ2

z,t =( n∑
i=1

(σ
(i)
z,t)

−2)−1
and µz,t =

( n∑
i=1

µ
(i)
z,t(σ

(i)
z,t)

−2)
σ2
z,t

Generative Model
11: for i = 1 to n do
12: h

(i)
t ← RNNθ(h

(i)
t−1, [zt, x

(i)
t ])

13: [µ
(i)

x(i),t
;σ

(i)

x(i),t
]← ϕdec([h

(i)
t−1, zt])

14: X̂
(i)
t ← µ

(i)

x(i),t

15: end for

Classification Model

16: h
(n+1)
t ← RNNθ(h

(n+1)
t−1 , [zt,xt, h

(1:n)
t ])

17: ŷt ← softmax([h
(n+1)
t−1 , zt])

18: end for

S.3.2 Examples of interaction generation by our
model

See Figs. 5, 6, 7, 8.

S.4 Discussion

S.4.1 Handling missing class labels

Our model requires true class labels to train for
classification. A subset of parameters is shared
between the classification and generation pathways. The
generation and class label are independent outputs.

When class labels are missing, the generative
parameters, including the shared parameters, are trained
to minimize the generative loss only. The model
continues to infer irrespective of whether labels are
present, noisy or missing, which makes it practical
for real-world applications. Since the generation and
classification pathways share parameters, even if the
class labels are missing, the shared parameters will be
updated by minimizing the generative error only which
might improve the classification accuracy.

S.4.2 Number of trainable parameters

Number of trainable parameters for all model variants
is shown in Table 8. TP variants have less trainable
parameters than FP. lwpe and lw have more parameters
than pe or bs.

Table 8: Number of trainable parameters.

Action FP TP

bs 1656348 1089996
pe 1656348 1089996
lwpe 1657728 1092726
lw 1657728 1092726

S.4.3 Training time

Our model is implemented using TensorFlow 1.3
framework in Python 3.5.4. All experiments are carried
out in HPC using PowerEdge R740 GPU nodes equipped
with Tesla V100-PCIE-16GB.

Training time is the total time required for training
the model on the trained set until the error converges.
The training time for our models is shown in Table 9.
We report the average (over n-fold cross validation)
convergence time in hours and the average number of
iterations in Table 9. In order to identify offline the
iteration at which convergence occurs, we smooth the
classification accuracy and the generation error curves
by calculating the moving average with a 50-iteration
window. For classification, we consider convergence
is reached at the iteration when the average accuracy
exceeds 90% of the highest accuracy.
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(a) Ground truth

(b) Generated interaction sequence (30% ground truth given)

(c) Generated interaction sequence (50% ground truth given)

(d) Generated interaction sequence (70% ground truth given)

Figure 5: Interaction generation in first person for exchanging object in SBU dataset. The top (or first)
row shows the true skeletal data. Each skeleton in second, third and fourth rows is one step ahead prediction until
30%, 50% and 70% of the ground truth respectively (demarcated by the black vertical line). Beyond that, the
model uses its own prediction as input for completing the interactions until the final time step. At each given time
step, the salient joints are marked red. Every other time step is shown.

Table 9: Training time (in hours), number of iterations.

Action SBU K3HI
Selection FP TP FP TP

bs 1.0, 7368 0.4, 4364 1.6, 5388 0.7, 2452
pe 1.8, 7146 0.5, 4166 5.2, 9154 1.8, 7199
lwpe 1.2, 5512 0.5, 2844 2.7, 5421 2.5, 5832
lw 1.4, 5203 1.3, 6889 4.6, 10519 2.0, 3350

S.4.4 End-to-end training

End-to-end training allows an entire model to be
optimized for a given task(s) and dataset. However, the
challenge is to search for the optimal set of parameter
values in a very large space. This is often circumvented
by pretraining selected components (layers, blocks,
functions) in isolation for a number of iterations to
initialize their parameters in a sub-optimal space. Then
the entire model is trained end-to-end. Our model is
trained end-to-end, without any pretraining.
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(a) Ground truth

(b) Generated interaction sequence (30% ground truth given)

(c) Generated interaction sequence (50% ground truth given)

(d) Generated interaction sequence (70% ground truth given)

Figure 6: Interaction generation in third person for exchanging object in SBU dataset. The top (or first)
row shows the true skeletal data. Each skeleton in second, third and fourth rows is one step ahead prediction until
30%, 50% and 70% of the ground truth respectively (demarcated by the black vertical line). Beyond that, the
model uses its own prediction as input for completing the interactions until the final time step. At each given time
step, the salient joints are marked black. Every other time step is shown.

(a) Ground truth

(b) Generated interaction sequence (30% ground truth given)

(c) Generated interaction sequence (50% ground truth given)

(d) Generated interaction sequence (70% ground truth given)

Figure 7: Interaction generation in first person for shaking hands in K3HI dataset. The top (or first) row
shows the true skeletal data. Each skeleton in second, third and fourth rows is one step ahead prediction until 30%,
50% and 70% of the ground truth respectively (demarcated by the black vertical line). Beyond that, the model
uses its own prediction as input for completing the interactions until the final time step. At each given time step,
the salient joints are marked red. Every third time step is shown.
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(a) Ground truth

(b) Generated interaction sequence (30% ground truth given)

(c) Generated interaction sequence (50% ground truth given)

(d) Generated interaction sequence (70% ground truth given)

Figure 8: Interaction generation in third person for shaking hands in K3HI dataset. The top (or first) row
shows the true skeletal data. Each skeleton in second, third and fourth rows is one step ahead prediction until 30%,
50% and 70% of the ground truth respectively (demarcated by the black vertical line). Beyond that, the model
uses its own prediction as input for completing the interactions until the final time step. At each given time step,
the salient joints are marked black. Every third time step is shown.
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