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Abstract

In this paper, a deep learning algorithm based on Deep Galerkin method (DGM) is presented for
the approximate solution of the generalized Burgers-Huxley equation (gBHE), and generalized Hux-
ley’s equation (gHE). In this method, a deep neural network (DNN) is used for approximating the
solution without generating mesh grid, which satisfies the differential operator, boundary and initial
conditions. DNN is trained on randomly selected batches of time and space points, thus helping to
avoid forming a mesh. Adam optimizer is used for optimizing the parameters of the DNN. Further,
the convergence of the cost function and convergence of the neural network to the exact solution
is demonstrated. This method shows very encouraging results which have been compared with re-
cent methods such as: A fourth order improved numerical scheme(FDS4), Adomain-decomposition
method (ADM), Modified cubic B-spline differential quadrature method (MCB- DQM), Variational
iteration method(VIM), and others.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are used to model the majority of physical phe-
nomenon that arises in numerous sectors of science and engineering. The gBHE is one of the well-
known NPDE. It describes the interaction between the reaction mechanism, the convective effect,
and diffusion transport . It came into existence due to the joint efforts of Bateman [1, 2] and Burger
[3] for the Burger equation, and Hodgkin and Huxley [4] for the Huxley equation. H. Bateman
first proposed the Burger equation in 1915, and Johannes M. Burgers explored it in 1948. It is the
most straightforward paradigm for comprehending the physical features of phenomenon such as hy-
drodynamic turbulence, vorticity transportation, heat conduction, wave processes in thermoelastic
medium, elasticity, mathematical modeling of turbulent fluid, gas dynamics, sound and shock wave
theory, dispersion in porous media, and so on. A. Hodgkin and A. Huxley in 1952, proposed a model
to explain the ionic mechanisms underlying the initiation and propagation of action potentials in the
squid giant axon, and they got the Nobel Prize in Physiology in 1963 for this model. Satsuma et al.[5]
discovered applications of gBHE in biology, combustion, chemistry, nonlinear acoustics, mathematics
and engineering, metallurgy, in 1986.
Let D ⊂ Rd be a bounded set and ∂D denotes its boundary, and assume DT = D × (0, T ] and
∂DT = ∂D× (0, T ]. The most general form of the gBHE [6] is defined as follows:

L[Ψ(x, t)] = Ψt −Ψxx + pΨs Ψx + qΨ (Ψs − 1) (Ψs − r) = 0, (x, t) ∈ DT (1)

with the initial and boundary conditions
Ψ(x, 0) =

(
r
2

+ r
2

tanh [B1x]
)1/s

= Ψ0(x)(say), x ∈ D

Ψ(0, t) =
(
r
2

+ r
2

tanh [−B1B2t]
)1/s

= f1(x, t)(say), (x, t) ∈ ∂DT

Ψ(1, t) =
(
r
2

+ r
2

tanh [B1 (1−B2t)]
)1/s

= f2(x, t)(say), (x, t) ∈ ∂DT

(2)

The exact solution of gBHE i.e., Eq. (1) - Eq. (2) is given by Eq.(3) :

Ψ(x, t) =
(r

2
+
r

2
tanh [B1 (x−B2t)]

)1/s

(3)
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where 
B1 =

−p s+ s
√
p2+4q(1+s)

4(1+s)

&

B2 = r p
1+s
−

(1+s−r)
(
−p+
√
p2+4q(1+s)

)
2(1+s)

(4)

where, p > 0 represents advection coefficient, q > 0 represents reaction coefficient, r ∈ (0, 1)

and s > 0 are real coefficients, while Ψxx is the diffusive term, ΨsΨx is the advection term, and
Ψ (Ψs − 1) (Ψs − r) is the reaction term.
At s = 1, p = 0, Eq. (1) becomes the Huxley equation which describe wall motion in liquid crystals
and nerve pulse propagation in nerve fibres [7]:

Ψt −Ψxx + qΨ(Ψ− 1)(Ψ− r) = 0 (5)

At s = 1, q = 0, Eq. (1) becomes the Burger’s equation which describe the far field of wave propaga-
tion in non-linear dissipative systems [2].

Ψt −Ψxx + pΨΨx = 0 (6)

Non-linear diffusion equations such as Eq. (5) and Eq. (6) are well-known in non-linear physics. Eq.
(1) becomes the modified Burger’s equation when q = 0, and becomes the Burgers-Huxley equation
(BHE) at s = 1 and p 6= 0, q 6= 0 as:

Ψt −Ψxx + pΨΨx + qΨ(Ψ− 1)(Ψ− r) = 0 (7)

and finally at p = 0, Eq. (1) becomes the Fitzhugh-Nagoma equation [8, 4, 9] respectively.
Many researchers have made several attempts in recent years to obtain analytical and numerical
solutions for gBHE. By using nonlinear transformation, Wang et al. [10] finds the kink wave and
solitary solutions of the gBHE. Ismail et al. [6] and Hashim et al. [11, 12] used the Adomian
decomposition method (ADM), Wazwaz [13] used the tanh-coth method, Bataineh et al. [14] used the
homotopy analysis method, and Khami and Molabahrami [15] used the homotopy analysis method
to find the solitary wave solution of BHE. Batiha et al [16] used the variational iteration method
(VIM), Efimova and Kudryashov [17] used Hope-Cole transformation, and Gao and Zhao [18] used
He’s Exp-function method to find the traveling wave solutions of the gBHE, Griffiths and Schiesser
[19] presented a traveling wave analysis for the BHE.
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For obtaining the approximation solution of gBHE over the variety of the domain, several types
of approaches have been devised such as a fourth-order finite difference scheme (FDS4) [20], Hybrid
B-Spline Collocation Method [21], Chebyshev spectral collocation with the domain decomposition
[22], high order finite difference schemes [23], domain decomposition algorithm based on Chebyshev
polynomials (DDAC) [24], differential quadrature method (DQM)[25], optimal Homotopy asymptotic
method (OHAM) [26], Homotopy analysis method [15], B-spline collocation method [27]. In higher
dimensions, many of these methods, particularly grid-based methods such as FDS4 [20], Chebyshev
spectral collocation with the domain decomposition [22], DDAC [24], and others are plagued by
concerns of instability and computing expense. Other efficient numerical methods are also developed
in recent literature for various type of differential equation problems [28, 29, 30, 31, 32, 33].

Several machine learning-based methods have been proposed in recent years to address the issue of
large dimensionality faced by mesh-based methods [34, 35, 36, 37]. Recently, Sirignano and Spiliopou-
los [38] presented a mesh-free deep learning algorithm called ‘Deep-Galerkin-Method(DGM)’ to get
approximate solutions of high-dimensional PDEs. The Galerkin technique is a widely used numerical
approach for finding a reduced-form solution to a PDE by combining basis functions in a linear com-
bination. DGM is similar to the Galerkin method, with few significant differences based on machine
learning approaches. In DGM, compare to the Galerkin method, linear combination of basis functions
is replaced by a DNN. In this method, there is no need to generate a mesh since the random sampling
technique is used for generating spatial points. At randomly sampled spatial points, the stochastic
gradient descent (SGD) technique is used to train DNN so that it satisfies the differential operator,
initial and boundary conditions. Galerkin’s method and machine learning come together naturally in
DGM. Because of its simple and uncomplicated implementation, DGM approach has gotten a lot of
attention.

Keeping in view the application/importance of gBHE and advantages of DGM algorithms the goal
of this study is to obtain the approximate solution of the gBHE using DGM and a different type of
architecture that is comparable to the Gated Recurrent Unit(GRU) network[39], without using Monte
Carlo Method. GRU is an advanced version of the standard recurrent neural network (RNN) or it
may be considered as a refined version of the Long-Short-Term-Memory(LSTM) network[40], this
seeks to tackle the vanishing gradient problem that comes with standard RNN. The main difference
between GRU and LSTM is that while LSTM has three gates: input, output, and forget, GRU only
has two gates: reset and update. GRU is simpler than LSTM since it contains fewer gates. Unlike
an LSTM, a GRU does not have an output gate or any internal memory, thus uses fewer training
parameters, less memory, and operates more quickly than LSTM. In the proposed method given
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nonlinear PDE is converted into a machine learning problem using a cost function based on the L2-
norm error function, and an approximating function given by a DNN is employed to approximate the
unknown solution.The suggested method is easy to use and implement, and it provides an approximate
solution for any value in the solution domain. The suggested method’s efficiency and reliability are
demonstrated by successful solution of gBHE and Huxley’s equations. Convergence analysis of cost
function and convergence of neural network to the gBHE solution is also discussed.

Further in this paper, we describe the Methodology in Section 2., and implementation details
for the algorithm in Section 2.1. In Section 3., we describe the Convergence of the method, and
Numerical results and Discussion are described in Section 4. Finally, we analyze our findings in the
Conclusions part in Section 5.

2. Methodology

In this section, we present the methodology of DGM to approximate the solution of gBHE. Recall
the form of gBHE from Eq(1, 2), i.e.,

L[Ψ(x, t)] = 0, (x, t) ∈ DT

Ψ(x, 0) = Ψ0(x), x ∈ D

Ψ(x, t) = f(x, t), (x, t) ∈ ∂DT

(8)

where Ψ be a function of space (x) and time (t) defined on the region DT , and x ∈ D ⊂ Rd. By using
DGM, our aim is to approximates Ψ(x, t) with approximating function Ψ̂(x, t; θ) given by a DNN,
where θ ∈ Rk are the parameter of DNN. Firstly, we construct a cost function as follows:

C(Ψ̂) = ‖L[Ψ̂(x, t; θ)]‖2
DT ,ρ1︸ ︷︷ ︸

differential operator

+
∥∥∥Ψ̂(x, t; θ)− f(x, t)

∥∥∥2

∂DT ,ρ2︸ ︷︷ ︸
boundary condition

+ +
∥∥∥Ψ̂(x, 0; θ)−Ψ0(x)

∥∥∥2

D,ρ3︸ ︷︷ ︸
initial condition

(9)

Here, ‖g(w)‖2
ω,ρ=

∫
ω
|g(w)|2ρ(w)dw i.e., we use L2-norm function to calculate the error in above Eq.(9)

with ρ(r) is a density defined on ω. Now, we have to find a set of parameter ‘θ’ of the functions
Ψ̂(x, t; θ) s.t. it minimizes the cost function C(Ψ̂). If the optimized value of C(Ψ̂) is very small then
the approximating function Ψ̂(x, t; θ) will close to satisfied the PDE’s differential operator, boundary
and initial condition. If we directly integrate on DT to determine the cost function’s minimum, the
calculation grows exponentially as the dimension d grows. To avoid the problem described above, we
use the DGM instead of typical numerical techniques and this avoids the necessity of forming a mesh.
The DGM is delivered in the following format and consists of the following five steps:
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Step 1. Initialize the parameter set θ0 and the learning rate αn.
Step 2. Generate random points Rn = {(Xn, Tn) , (Zn,Γn) ,Wn} from the domain’s interior and
time/spatial boundaries according to their probability densities(ρ), i.e. generate (Xn, Tn) from DT

according to ρ1, (Zn,Γn) from ∂DT according to ρ2, and Wn from D according to ρ3.
Step 3. Calculate the squared error E (Rn; θn) at the randomly sampled points Rn .

E (Rn, θn) =
(
L[Ψ̂(Xn, Tn; θn)]

)2

+
(

Ψ̂(Zn,Γn; θn)− f(Zn,Γn)
)2

+
(

Ψ̂(Wn, 0; θn)−Ψ0(Wn)
)2

Step 4. Take a descent step at the random point Rn

θn+1 = θn − αn∇θ E (Rn; θn)

Step 5. Repeat until the convergence criterion is satisfied.

lim
n→∞

∇θE (Rn; θn) = 0

Here, learning rate αn ∈ (0, 1) decrease an n→∞ and ∇θE (Rn; θn)|θn is the unbiased estimation of
∇θC (Rn; θn) i.e., E

[
∇θE (Rn; θn)|θn

]
= ∇θC (Rn; θn) In fact,

E
[
∇θE (Rn; θn)|θn

]
=E

[
∇θ

((
L[Ψ̂(Xn, Tn; θn)]

)2

+
(

Ψ̂(Zn,Γn; θn)− f(Zn,Γn)
)2

+
(

Ψ̂(Wn, 0; θn)−Ψ0(Wn)
)2
)]

=∇θ

[∫
DT

(
L[Ψ̂(Xn, Tn; θn)]

)2

ρ1(Xn, Tn) d(Xn, Tn) +

∫
∂DT

(
Ψ̂(Zn,Γn; θn)− f(Zn,Γn)

)2

ρ2(Zn,Γn) d(Zn,Γn)

+

∫
D

(
Ψ̂(Wn, 0; θn)−Ψ0(Wn)

)2

ρ3(Wn) d(Wn)

]

=∇θ

[∫
DT

∣∣∣L[Ψ̂(Xn, Tn; θn)]
∣∣∣2 ρ1(Xn, Tn) d(Xn, Tn) +

∫
∂DT

∣∣∣Ψ̂(Zn,Γn; θn)− f(Zn,Γn)
∣∣∣2 ρ2(Zn,Γn) d(Zn,Γn)

+

∫
D

∣∣∣Ψ̂(Wn, 0; θn)−Ψ0(Wn)
∣∣∣2 ρ3(Wn) d(Wn)

]

=∇θ

[
‖L[Ψ̂(Xn, Tn; θn)]‖2

DT ,ρ1
+
∥∥∥Ψ̂(Zn,Γn; θn)− f(Zn,Γn)

∥∥∥2

∂DT ,ρ2
+
∥∥∥Ψ̂(Wn, 0; θn)−Ψ0(Wn)

∥∥∥2

D,ρ3

]
=∇θ C (Rn; θn) .
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Thus, we can use ∇θ E (Rn; θn) instead of ∇θ C (Rn; θn). In order to describe the DGM more vividly,
we represent following Figure 1. Further in the next Section 2.1, we present the implementation of
DGM algorithm.

Figure 1: Entire process of DGM
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2.1. Description of the algorithm’s implementation

The implementation of the algorithm is described in this section, including the DGM’s network
design, hyper-parameters, and computing strategy. Sirignano and Spiliopoulos [38] used an archi-
tecture which is comparable to LSTM network [40]. While, here we use an architecture (see; Fig. 2)
which is similar to GRU network [39] . It is made up of three layers: an input layer, a hidden layer,
and an output layer, all of which are referred to as the DGM layer, however it may easily be expanded
to include more hidden layers.

H1 = σ
(
w1~x+ b1

)
,

Im = σ
(
ui,m ~x+ wi,mHm + bi,m

)
, m = 1, . . . ,M

Jm = σ
(
uj,m ~x+ wj,mHm + bj,m

)
, m = 1, . . . ,M

Km = σ
(
uk,m ~x+ wk,m (Hm � Jm) + bk,m

)
, m = 1, . . . ,M,

Hm+1 = (1− Im)�Km + Im �Hm, m = 1, . . . ,M,

Ψ̂(x, t; θ) = wHL+1 + b,

(10)

where ~x = (x, t), M + 1 represents the number of hidden layers in the network, and � represents
Hadamard (element-wise multiplication), and θ = {w1, b1, (ui,m, wi,m, bi,m)

M
m=1 , (u

j,m, wj,m, bj,m)
M
m=1,(

uk,m, wk,m, bk,m
)M
m=1

, w, b} are the DNN’s parameters, N represents number of units in each layer, σ
represents element-wise nonlinearity i.e., σ(k) = (φ (k1) , φ (k2) , . . . , φ (kN)) , φ represents non-linear
activation function such as sigmoidal, relu, tanh and others. Dimensions of DNN’s parameters (θ) are
given as: w1 ∈ RN×(d+1), b1 ∈ RN , ui,m ∈ RN×(d+1), wi,m ∈ RN×N , bi,m ∈ RN , uj,m ∈ RN×(d+1), wj,m ∈
RN×N , bj,m ∈ RN , uk,m ∈ RN×(d+1), wk,m ∈ RN×N , bk,m ∈ RN , w ∈ R1×N , and b ∈ R.
For our work, we choose the hyperparameters, M = 2 (i.e., three hidden layers), N = 50 (i.e., nodes
per layer), and φ(y) = tanh(y)/relu(y) . Parameters of the DNN (Eq.(10)) were initialized by using
the Xavier initialization [41], and Adam optimizer[42] is used for updating the parameters of DNN
(Eq.(10)).

3. Convergence Analysis

The cost function C(Ψ̂) can measure how well Ψ̂(x, t; θ) satisfies the differential operator, boundary
and initial condition. The approximation capabilities of neural network architectures have recently
been investigated by many authors. Especially, in [43], they have ascertained that the standard multi-
layer feed-forward networks with activation function (φ) can approximate any continuous function
define on arbitrary compact subset of D, whenever activation function (φ) is continuous, bounded
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Figure 2: A single DGM layer’s operations

and non-constant. Further, convergence analysis of cost function & neural network to the solution of
gBHE is performed in a similar context [44, 45]. To show this, first we will prove that there exists
Ψ̂n ∈ Cn such that C

(
Ψ̂n
)
→ 0, as n → ∞ i.e., convergence of the cost function C(Ψ̂), and then

discuss the convergence of the neural network to the solution of gBHE i.e., Ψ̂n → Ψ, as n→∞.
where, Ψ̂n is a neural network with n hidden units, and Cn is a class of neural networks with n hidden
units. From theorem 3 of [26], we can define Cn as follows:

Cn(φ) =

{
Ξ(x, t) : R1+d 7→ R : Ξ(x, t) =

n∑
i=1

Bi φ

(
w1,i t+

d∑
j=1

wj,i xj + cj

)}
(11)

where
- φ : the activation function of sigmoid type
- cj : the threshold of the jth hidden unit;
- wj,i : the connection weight of the ith hidden unit and the jth input unit;
- Bi : the connection weight of the ith hidden unit and the output unit.
where θ = (b1, · · · , bn, w1,1, · · · ,wd,n, c1, · · · , cn) ∈ R2n+n(1+d) are the parameter space’s elements.

3.1. Convergence of the cost function C(Ψ̂)

In this subsection, a theorem is presented to show the existence of neural networks Ψ̂, that makes
the cost function C(Ψ̂) arbitrary small, based on the results of [28] and few assumptions. First, we
define the assumptions A1 −A3:

A1. Let D ⊂ Rd be a bounded set and ∂D is its smooth boundary, and we set DT = D × (0, T ]

and ∂DT = ∂D × (0, T ], and let parameters ρ1, ρ2 and ρ3 be the measures of the DT , D and ∂D,
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respectively.
A2. Let Cn(φ) given by Eq. (11) is bounded and non-constant, where φ ∈ C2(D) is a common

function of hidden units. Moreover C(φ) = {Cn(φ)}∞n=1 is the set implemented by Cn(φ), where n is
an arbitrarily large number of multiple hidden layer units.

A3 Assume that the following non-linear terms Ψ̂xx and pΨsΨx + qΨ (Ψs − 1) (Ψs − r) be locally
Lipschitz in (Ψ,Ψx) with Lipschitz constant which has at most polynomial growth on Ψ and Ψx

uniformly with respect to x, t. i.e.,

|Ψ̂xx −Ψx|≤
(
|Ψ̂x|b1/2+|Ψx|b2/2

)
|Ψ̂x −Ψx| (12)

∣∣∣pΨ̂sΨ̂x − pΨsΨx

∣∣∣ ≤ (∣∣∣Ψ̂s
∣∣∣b1/2 +

∣∣∣Ψ̂x

∣∣∣b2/2 + |Ψs|b3/2 + |Ψx|b4/2
)(∣∣∣Ψ̂s −Ψs

∣∣∣+
∣∣∣Ψ̂x −Ψx

∣∣∣) (13)

∣∣∣Ψ̂(Ψ̂s − 1
)

(Ψ̂s − r)−Ψ (Ψs − 1) (Ψs − r)
∣∣∣ ≤ (∣∣∣Ψ̂∣∣∣b1/2 +

∣∣∣Ψ̂s
∣∣∣b2/2 + |Ψ|b3/2 + |Ψs|b4/2

)(
|Ψ̂−Ψ|+

∣∣∣Ψ̂s −Ψs
∣∣∣)

(14)
where 0 ≤ b1, b2, b3, b4 <∞ are some constants.

Theorem 1. Under the assumptions of (A1) − (A3), there exists a positive constant J > 0 and a
function Ψ̂ ∈ C(φ) such that

C(Ψ̂) ≤ J ε

for ∀ε > 0, where J may depend on ρ1, ρ2, ρ3 and DT .

Proof: From Theorem 3 of [43] we can conclude that there exists a function Ψ̂ ∈ C(φ) which is
uniformly 2-dense on compact subset of C2

(
R1+d

)
. This means that for Ψ̂ ∈ C1,2

(
Rd × [0, T ]

)
and

ε > 0, there is Ψ̂ ∈ C(φ) such that

sup
(x,t)∈DT

∣∣∣∂tΨ(x, t)− ∂tΨ̂(x, t; θ)
∣∣∣+ max

|a|≤2
sup

(x,t)∈D̄T

∣∣∣∂(a)
x Ψ(x, t)− ∂(a)

x Ψ̂(x, t; θ)
∣∣∣ < ε (15)

Under assumption A3 and applying the Hölder inequality with indices e1 and e2 satisfying 1
e1

+ 1
e2

= 1,
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we have first non-linear term as:∫
DT

|Ψ̂xx −Ψxx|2dρ1(x, t)

≤
∫

DT

(
|Ψ̂x|b1+|Ψx|b2

)(
|Ψ̂x −Ψx|2

)
dρ1(x, t)

≤
[∫

DT

(
|Ψ̂x|b1+|Ψx|b2

)e1
dρ1(x, t)

]1/e1 (∫
DT

(
|Ψ̂x −Ψx|

)2e2
dρ1(x, t)v

)1/e2

≤
[∫

DT

(
|(Ψ̂x −Ψx)|b1+|Ψx|b1∨b2

)e1
dρ1(x, t)

]1/e1 (∫
D

(
|Ψ̂x −Ψx|

)2e2
dρ1(x, t)

)1/e2

≤J
(
εb1 + sup|Ψx|b1∨b2

)
ε2

(16)

Similarly, second non-linear term as:∫
DT

∣∣∣pΨ̂sΨ̂x − pΨsΨx

∣∣∣2 dρ1(x, t)

≤
∫

DT

(∣∣∣Ψ̂s
∣∣∣b1 +

∣∣∣Ψ̂x

∣∣∣b2 + |Ψs|b3 + |Ψx|b4
)
×
(∣∣∣Ψ̂s −Ψs

∣∣∣2 +
∣∣∣Ψ̂x −Ψx

∣∣∣2) dρ1(x, t)

≤
(∫

DT

(∣∣∣Ψ̂s
∣∣∣b1 +

∣∣∣Ψ̂x

∣∣∣b2 + |Ψs|b3 + |Ψx|b4
)e1

dρ1(x, t)

)1/e1

×
(∫

DT

(∣∣∣Ψ̂s −Ψs
∣∣∣2 +

∣∣∣Ψ̂x −Ψx

∣∣∣2)e2 dρ1 (x, t)

)1/e2

≤ J
(∫

D

(∣∣∣Ψ̂s −Ψs
∣∣∣b1 +

∣∣∣Ψ̂x −Ψx

∣∣∣b2 + |Ψs|b1∨s3 + |Ψx|b2∨b4
)e1

dρ1(x, t)

)1/e1

×
(∫

DT

(∣∣∣Ψ̂s −Ψs
∣∣∣2 +

∣∣∣Ψ̂x −Ψx

∣∣∣2)e2 dρ1 (x, t)

)1/e2

≤ J
(
εb1 + εb2 + sup

DT

|Ψs|b1∨b3+ sup
DT

|Ψx|b2∨b4
)
ε2

(17)
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and third non-linear term is:∫
DT

∣∣∣Ψ̂(Ψ̂s − 1
)

(Ψ̂s − r)−Ψ (Ψs − 1) (Ψs − r)
∣∣∣2 dρ1(x, t)

≤
∫

DT

(
|Ψ̂|b1+

∣∣∣Ψ̂s
∣∣∣b2 + |Ψ|b3 + |Ψs|b4

)
×
(
|Ψ̂−Ψ|2+

∣∣∣Ψ̂s −Ψs
∣∣∣2) dρ1(x, t)

≤
(∫

DT

(
|Ψ̂|b1+

∣∣∣Ψ̂s
∣∣∣b2 + |Ψ|b3 + |Ψs|b4

)e1
dρ1(x, t)

)1/e1

×
(∫

DT

(
|Ψ̂−Ψ|2+

∣∣∣Ψ̂s −Ψs
∣∣∣2)e2 dρ1(x, t)

)1/e2

≤ J
(∫

DT

(
|Ψ̂−Ψ|b1+

∣∣∣Ψ̂s −Ψs
∣∣∣b2 + |Ψ|b1∨b3+ |Ψs|b2∨b4

)e1
dρ1(x, t)

)1/e1

×
(∫

DT

(
|Ψ̂−Ψ|2+

∣∣∣Ψ̂s −Ψs
∣∣∣2)e2 dρ1(x, t)

)1/e2

≤ J
(
εb1 + εb2 + sup

DT

|Ψ|b1∨b3+ sup
DT

|Ψs|b2∨b4
)
ε2

(18)
where b1 ∨ b3 = max {b1, b3}, and J may vary from line to line.

From Equations (15, 16, 17 and 18) we can conclude that the cost function C(Ψ̂) ≤ Pε2. i.e.,

C(Ψ̂) = ‖L[Ψ̂(x, t; θ)]‖2
DT ,ρ1

+
∥∥∥Ψ̂(x, t; θ)− f(x, t)

∥∥∥2

∂DT ,ρ2
+
∥∥∥Ψ̂(x, 0; θ)−Ψ0(x)

∥∥∥2

DT ,ρ3

= ‖L[Ψ̂(x, t; θ)]− L[Ψ(x, t)]‖2
DT ,ρ1

+
∥∥∥Ψ̂(x, t, θ)− f(x, t)

∥∥∥2

∂DT ,ρ2
+
∥∥∥Ψ̂(x, 0; θ)−Ψ0(x)

∥∥∥2

DT ,ρ3

=

∫
DT

∣∣∣Ψ̂t −Ψt

∣∣∣2 dρ1(x, t) +

∫
DT

∣∣∣Ψ̂xx −Ψxx

∣∣∣2 dρ1(x, t) +

∫
DT

∣∣∣pΨ̂sΨ̂x − pΨsux

∣∣∣2 dρ1(x, t)

+

∫
DT

∣∣∣Ψ̂(Ψ̂s − 1
)

(Ψ̂− r)−Ψ (Ψs − 1) (Ψs − r)
∣∣∣2 dρ1(x, t) +

∫
∂DT

∣∣∣Ψ̂(0, t, θ)− f1(x, t)
∣∣∣2 dρ2(x, t)

+

∫
∂DT

∣∣∣Ψ̂(1, t, θ)− f2(x, t)
∣∣∣2 dρ2(x, t) +

∫
D

∣∣∣Ψ̂(0, x, θ)−Ψ0(x)
∣∣∣2 dρ3(x, t)

≤ J ε2
(19)

for an appropriate constant J <∞. After re-scaling ε, the final step completes Theorem 1’s proof.
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3.2. Convergence of the neural network to the gBHE solution

The convergence of the cost function C(Ψ̂) was examined in the previous subsection. We don’t go
into detail about non-homogeneous problems in this part because non-homogeneous problems can be
handled using the homogeneous method (e.g.: Section 4 of Chapter V in [46] or Chapter 8 of [47]).
In this subsection we will show how the neural network Ψ̂ converges to the exact solution Ψ(x, t) as
n→∞ of the gBHE with homogeneous boundary condition.

L[Ψ(x, t)] = 0, (x, t) ∈ DT

Ψ(x, 0) = Ψ0(x), x ∈ D

Ψ(0, t) = Ψ(1, t) = 0 on ∂DT

(20)

Now our cost function become as Eq (21)

C(Ψ̂) =
∥∥∥L[Ψ̂(x, t; θ)]

∥∥∥2

DT ,ρ1
+
∥∥∥Ψ̂(x, t; θ)

∥∥∥2

∂DT ,ρ2
+
∥∥∥Ψ̂(x, 0, θ)−Ψ0(x)

∥∥∥2

D,ρ3
(21)

Remember that the above norms are L2(X) norms in the relevant spaces X = DT , ∂DT and D

respectively. We can use the following result from Theorem 1:

C
(

Ψ̂n
)
→ 0 as n→∞

In addition, every neural network Ψ̂n with a source term hn(x, t), satisfies a PDE as follows:
L
[
Ψ̂n(x, t)

]
= hn(x, t), for (x, t) ∈ DT

Ψ̂n(x, 0) = Ψn
0 (x), for x ∈ D

Ψ̂n(x, t) = fn(x, t), for (0, t) ∈ ∂DT

(22)

for some hn, fn, and Ψn
0 such that

‖hn‖2
2,DT

+ ‖fn‖2
2,∂DT

+ ‖Ψn
0 −Ψ0‖2

2,D → 0 as n→∞. (23)

further, some assumptions are made for this subsection:
A4 - Let λ(x, t) be a positive function for all (x, t) ∈ DT such that

|pΨsΨx + qΨ (Ψs − 1) (Ψs − r) |≤ λ(x, t)‖Ψx‖,

13



with λ ∈ Ld+2+η (DT ) for some η > 0.
A5- Ψxx and pΨsΨx + qΨ (Ψs − 1) (Ψs − r) are Lipschitz continuous in (x, t,Ψ,Ψx) ∈ DT × R × Rd

uniformly on compacts of the form
{

(x, t) ∈ D̄T , |Ψ|≤ K, |Ψx|≤ K
}
.

A6- Ψ0(x) ∈ C0,2+ξ(D̄) for some ξ > 0 with itself and its first derivative bounded in D̄.
A7- D is a bounded, open subset of Rd with boundary ∂D ∈ C2.
A8- For every n ∈ N, Ψ̂n ∈ C1,2

(
D̄T

)
, and

(
Ψ̂n
)
n∈N
∈ L2 (DT ).

Theorem 2. Assume that the Eq. (20) has a unique bounded solution in C0,µ,µ/2
(
D̄T

)
∩

L2
(
0, T ;W 1,2

0 (D)
)
∩ W (1,2),2

0 (D′T ) for any µ > 0 and any subdomain D′T of DT , under the criteria
A4 to A8 and (23). Furthermore, If the sequence

{
Ψ̂n(x, t)

}
n∈N

is uniformly bounded and equicon-

tinuous, then Ψ̂n converges strongly to Ψ in L2 (DT ), and Ψ̂n uniformly converges to Ψ in DT .

Proof. By using Theorems 6.3-6.5 of [47] and Theorem 2.1 of [48], we can obtain the existence,
regularity, uniqueness of Eq.(20), and boundedness can be established from Theorem 2.1 in [48] and
chapter V.2 in [47] of Eq.(20). Consider equations (22) under the situation fn(x, t) = 0 and the
solution to this problem denoted by Φ̂n(x, t). We need to state that Φ̂n(x, t) is uniformly bounded
and satisfies the following equations:

L
[
Φ̂n(x, t)

]
= hn(x, t), for (x, t) ∈ DT

Φ̂n(0, x) = Ψn
0 (x), for x ∈ D

Φ̂n(x, t) = 0, for (x, t) ∈ ∂DT

(24)

From Lemma 4.1 of [49] & under the assumptions A4 to A8, we might assume that
{

Φ̂n
}
n∈N

is

uniformly bounded in L∞ (0, T ;L2(D)) ∩ L2
(
0, T ;W 1,2

0 (D)
)
, and there exist a weakly sub-sequence,{

Φ̂n
}
n∈N

(To keep things simple, we’ll keep using the same notation for the sub-sequence.), which

converges to Ψ in L∞ (0, T ;L2(D)) and weakly in L2
(
0, T ;W 1,2

0 (D)
)
and to some w weakly in L2(D)

for every fixed t ∈ (0, T ].

Due to compactness of the embedding W 1,2
0 (D) ⊂ L2(D) and from Corollary 4 of [48],

{
Φ̂n
}
n∈N

con-

verges strongly to Ψ in L2(DT). Now, up to sub-sequences,
{

Φ̂n
}
n∈N

converges almost everywhere

to Ψ in DT . Further, from theorem 3.3 of [4], we can conclude that ∇Φ̂n → ∇Ψ almost everywhere
in DT. Finally, we conclude that

{
Φ̂n
}
n∈N

strongly converges to Ψ in L2(0, T ;W 1,2
0 (D)).
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Using assumption A4 and applying the Hölder inequality with indices e1 and e2 satisfying 1
e1

+ 1
e2

= 1,
and put β = 1 + d

d+4
∈ (1, 2), we have∫

DT

∣∣∣p Φ̂n
s
Φ̂n
x + q Φ̂n

(
Φ̂n

s
− 1
)(

Φ̂n
s
− r
)∣∣∣β dx dt ≤ ∫

DT

|λ(x, t)|β
∣∣∣Φ̂n

x(x, t)
∣∣∣β dx dt

≤
(∫

DT

|λ(x, t)|e1βdx dt
)1/e1 (∫

DT

∣∣v̂nx(x, t)
∣∣e2β dx dt)1/e2

.

Let e2 = 2/β > 1, this implies that e1 = 2
2−β , thus we get e1β = d+ 2.

Moreover, by using assumptions A4 for a measurable set M ⊂ DT (with a constant K ) we get

∫
M

∣∣∣pΦ̂n
s
Φ̂n
x + qΦ̂n

(
Φ̂n

s
− 1
)(

Φ̂n
s
− r
)∣∣∣β dx dt ≤ K

(∫
M

|λ(x, t)|d+2dx dt

)(2−β)/2

≤ K |M |
n

d+2+η

(25)
Now according to Vitali’s theorem we have

pΦ̂n
s
Φ̂n
x + qΦ̂n

(
Φ̂n

s
− 1
)(

Φ̂n
s
− r
)
→ pΨsΨx + qΨ (Ψs − 1) (Ψs − r) strongly in Lβ (DT )

as n→∞. Due to compactness of the embedding Lq(D) ⊂ L2(D), we can conclude that:

pΦ̂n
s
Φ̂n
x + qΦ̂n

(
Φ̂n

s
− 1
)(

Φ̂n
s
− r
)
→ pΨsΨx + qΨ (Ψs − 1) (Ψs − r) strongly in L2 (DT ) .

For all t1 ∈ (0, T ] the weak formulation of the PDE (24) with fn = 0 given as follows (notice that Ψn
0

strongly converges to Ψ0 in L2(D) ).∫
Dt1

[
−Φ̂n∂tφ+

〈
∇Φ̂n,∇φ

〉
+
(
p Φ̂n

s
Φ̂n
x + qΦ̂n

(
Φ̂n

s
− 1
)(

Φ̂n
s
− r
)
− hn

)
φ
]

(x, t)dxdt

+

∫
D

Φ̂n (x, t1)φ (x, t1) dx−
∫

D

Ψn
0 (x)φ(x, 0)dx = 0

for every φ ∈ C∞0 (DT ).
We may deduce from the convergence results that the limit point Ψ satisfies for every t1 ∈ (0, T ] the
following Eq. (26) represent the weak formulation of Eq. (20).
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∫
Dt1

[−Ψ∂tφ+ 〈∇Ψ,∇φ〉+ (pΨsΨx + qΨ (Ψs − 1) (Ψs − r))φ] (x, t)dxdt

+

∫
D

Ψ (t1, x)φ (0, t1) dx−
∫

D

Ψ0(x)φ(x, 0)dx = 0

(26)

It is still necessary to examine the convergence of Ψ̂n− Φ̂n to zero, where Ψ̂n is the neural network
approximation satisfying (24) and Φ̂n is the neural network approximation satisfying (24) with fn = 0.

Since we assumed that
{

Ψ̂n
}
n
is uniformly bounded in L2 (DT ), therefore up to a sub-sequence, Ψ̂n

weakly converges in L2 (DT ) . Furthermore in addition, Ψ̂n(x, t) in Eq. (24) converges strongly to
zero in L2 (DT ) . Furthermore, Ψ̂n defined by fn on the boundary ∂DT , will converge to 0 at least
along a sub-sequence on the boundary (see for example Lemma 2.1 in Chapter II of [46].) As may
be shown from the proof of Theorems 6.3-6.4-6.5 in Chapter V.6 in [46], and by using smoothness
and uniqueness, Ψ̂n will same as Φ̂n(x, t) (i.e., the solution to the PDE (24)) almost everywhere when
fn = 0.

Set Fn =
∣∣∣Ψ̂n − Φ̂n

∣∣∣2. Thus, function sequence {Fn} is uniformly bounded in the L2(DT ) because

of the boundeness of Ψ̂n and Φ̂n above. {Fn} is integrable on area D̄T naturally. Moreover, {Fn}
converges to 0 almost everywhere. Furthermore, using the definition of Fn together with the uniform
boundedness as well as equicontinuity of Ψ̂n and Φ̂n, ∀ ε0 > 0, ∃ c > 0, such that |(x, t) − (y, t)|<
c, and {(x, t), (y, t)} ∈ D̄T and n ≥ 1, there is∣∣∣Fn(x, t)− Fn(y, t)

∣∣∣
=
∣∣∣ ∣∣∣Ψ̂n(x, t)− Φ̂n(x, t)

∣∣∣2 − ∣∣∣Ψ̂n(y, t)− Φ̂n(y, t)
∣∣∣2 ∣∣∣

=
∣∣∣ ∣∣∣Ψ̂n(x, t)− Φ̂n(x, t)

∣∣∣+
∣∣∣Ψ̂n(y, t)− Φ̂n(y, t)

∣∣∣ ∣∣∣× ∣∣∣ ∣∣∣Ψ̂n(x, t)− Φ̂n(x, t)
∣∣∣− ∣∣∣Ψ̂n(y, t)− Φ̂n(y, t)

∣∣∣ ∣∣∣
≤
∣∣∣ ∣∣∣Ψ̂n(x, t)− Φ̂n(x, t)

∣∣∣+
∣∣∣Ψ̂n(y, t)− Φ̂n(y, t)

∣∣∣ ∣∣∣× ∣∣∣ ∣∣∣(Ψ̂n(x, t)− Ψ̂n(y, t)
)

+
(

Φ̂n(y, t)− Φ̂n(x, t)
)∣∣∣ ∣∣∣

≤
∣∣∣ ∣∣∣Ψ̂n(x, t)− Φ̂n(x, t)

∣∣∣+
∣∣∣Ψ̂n(y, t)− Φ̂n(y, t)

∣∣∣ ∣∣∣× ∣∣∣ ∣∣∣Ψ̂n(x, t)− Ψ̂n(y, t)
∣∣∣+
∣∣∣Φ̂n(y, t)− Φ̂n(x, t)

∣∣∣ ∣∣∣
≤J ε0,

which implies that function sequence {Fn(x, t)} is equicontinuous. Thus, using Vitali’s theorem, we
infer that

lim
n→∞

∥∥∥Ψ̂n − Φ̂n
∥∥∥2

2,DT
= 0,

which shows that Ψ̂n− Φ̂n converges to 0 strongly in L2(DT ). Using a triangle inequality, we can gain
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the following inequality
lim
n→∞

∥∥∥Ψ̂n −Ψ
∥∥∥

2,DT

= lim
n→∞

∥∥∥Ψ̂n − Φ̂n + Φ̂n −Ψ
∥∥∥

2,DT

≤ lim
n→∞

∥∥∥Ψ̂n − Φ̂n
∥∥∥

2,DT
+ lim

n→∞

∥∥∥Φ̂n −Ψ
∥∥∥

2,DT

= 0.

This result shows that Ψ̂n converges strongly to Ψ in L2(DT ). Furthermore, based on the equi-
continuity and uniform boundedness of Ψ̂n, by Arzelà-Ascoli theorem, we obtain that Ψ̂n uniformly
converges to Ψ in DT .

4. Numerical results and Discussion

In the following section, we assess and test the suggested method’s performance on the gBHE
and gHE, as well as demonstrate its efficacy. According to the DGM method, we have to generate
a sample of random points from the domain of the given equation which includes interior point,
boundary points, and terminal/initial points. For our work, we generate one thousand random points
from the interior of the domain, and from the boundary and the terminal of the domain we generate
one hundred random points for each. For training purposes, we set training parameters as given
in Table 1. Parameters of the DNN in Eq. (10) were initialized by using the xavier initialization
[41], and Adam optimizer [42] is used for updating the parameters of DNN in Eq. (10). We run the
algorithm in a loop of fifty times and recorded the standard deviation(STD) between the fitted values
for each time of the loop. Four examples based on various parameter values are chosen to test the
efficiency of the method. For each example average CPU time is recorded as 60 seconds for a single
loop and for a loop of 50 times the average CPU time is recorded as 16 minutes. For simulations,
Google Colab has been used in this work. The obtained numerical solution of gBHE and gHE for
different parameter combinations at some selected node points is compared with existing numerical
methods in literature and discussed in Example 1-4.

Example 1. The obtained results of the gBHE Eq. (1) using the DGM method are compared
by ADM [6, 12] and VIM [16] method at real coefficients r=0.001 and s = 1, advection coefficient
p = 1, reaction coefficient q = 1, at times t = 0.05, t = 0.1 and t = 1 and presented in Table 2.
The absolute errors at some selected node points are compared with the errors in ADM and VIM
methods and it can be observed that the proposed method provides comparable solution to the exist-
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Table 1: Training Parameters

Parameters Numbers
Sampling stages 50
No. of SGD steps 10
No. of hidden layers 3
No. of nodes per layers 50
Activation functions sigmoid/relu

ing ADM and VIM methods. The graph of absolute error in the DGM solution is presented by Fig. 3.

Table 2: Absolute errors when r = 0.001, p = q = s = 1

x t STD Proposed ADM[6] ADM [12] VIM [16]
0.1 0.05 0.000848 1.912E-07 1.937E-07 1.874E− 08 1.874E− 08

0.1 0.000738 3.560E-07 3.874E-07 3.748E− 08 3.748E− 08

1 0.000680 2.581E-07 3.875E-06 3.748E− 07 3.748E− 07

0.5 0.05 0.000980 2.295E-07 1.937E-07 1.874E− 08 1.874E− 08

0.1 0.000905 2.901E-07 3.875E-07 3.748E− 08 1.375E− 08

1 0.000807 2.466E-08 3.875E-06 3.748E− 07 3.748E− 07

0.9 0.05 0.001073 1.276E-07 1.937E-07 1.874E− 08 1.874E− 08

0.1 0.001036 3.357E-07 3.875E-07 3.748E− 08 3.748E− 08

1 0.000862 2.611E-07 3.876E-06 3.748E− 07 3.748E− 07
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Figure 3: Absolute error for p = q = 1, s = 1 & r = 0.001
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Example 2. The obtained results of the gBHE Eq. (1) using proposed method are compared by
ADM [12] and VIM [16] methods at real coefficients r = 0.01 and s = 2, 4, advection coefficient
(p) = 1, reaction coefficient (q) = 1, at times t = 0.1, t = 0.2, t = 0.3, t = 0.4 and t = 0.5 and
reported in Table 3. The absolute errors at some selected node points are compared with the errors
in ADM and VIM methods and it can be observed that the proposed method provides better solution
than ADM and VIM methods. The graph of absolute error in the DGM solution is presented by Fig.
4 & Fig. 5

Table 3: Absolute errors when r = 0.01, p = q = 1, s = 2, 4

s = 2 s = 4

t x STD Proposed ADM [12] VIM [16] STD Proposed ADM [12] VIM [16]

0.1 0.000592 1.0E-05 5.516E− 05 5.516E− 05 0.000624 2.2E-05 2.178E− 04 2.177E− 04

0.2 0.000459 2.7E-06 1.103E− 04 1.103E− 04 0.059261 2.5E-05 4.357E− 04 4.353E− 04

0.1 0.3 0.000508 1.6E-05 1.655E− 04 1.655E− 04 0.000430 2.0E-06 6.537E− 04 6.528E− 04

0.4 0.001494 6.0E-06 2.207E− 04 2.206E− 04 0.000511 2.0E-06 8.718E− 04 8.703E− 04

0.5 0.000773 5.0E-06 2.760E− 04 2.757E− 04 0.001312 2.4E-05 1.090E− 03 1.088E− 03

0.1 0.000589 7.0E-06 5.514E− 05 5.513E− 05 0.000754 2.6E-05 2.176E− 04 2.175E− 04

0.2 0.000464 3.1E-05 1.103E− 04 1.103E− 04 0.051273 4.5E-05 4.352E− 04 4.348E− 04

0.3 0.3 0.000547 4.2E-05 1.655E− 04 1.654E− 04 0.000481 2.1E-05 6.530E− 04 6.521E− 04

0.4 0.001611 1.6E-05 2.206E− 04 2.205E− 04 0.000592 1.9E-05 8.709E− 04 8.693E− 04

0.5 0.000737 2.9E-05 2.758E− 04 2.756E− 04 0.001376 1.5E-04 1.089E− 03 1.086E− 03

0.1 0.000617 9.0E-06 5.511E− 05 5.511E− 05 0.000888 6.6E-05 2.173E− 04 2.172E− 04

0.2 0.000494 1.6E-05 1.102E− 04 1.102E− 04 0.037515 2.5E-04 4.348E− 04 4.344E− 04

0.5 0.3 0.000667 3.0E-06 1.654E− 04 1.653E− 04 0.000571 7.4E-05 6.523E− 04 6.514E− 04

0.4 0.001718 3.0E-06 2.205E− 04 2.204E− 04 0.000669 3.8E-05 8.699E− 04 8.684E− 04

0.5 0.000782 5.9E-05 2.757E− 04 2.755E− 04 0.001464 6.7E-05 1.088E− 03 1.085E− 03
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Figure 4: Absolute error for p = q = 1, s = 2 & r = 0.01
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Figure 5: Absolute error for p = q = 1, s = 4 & r = 0.01
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Example 3. The obtained results of the gHE Eq. (5) using proposed method are compared by
ADM[6], FDS4[20] and OHAM [26] method at real coefficients r = 0.001 and s = 1, advection co-
efficient (p) = 0, reaction coefficient (q) = 1, at times t = 0.05, t = 0.1 and t = 1 and reported in
Table 4. The absolute errors at some selected node points are compared with the errors in ADM,
FDS4 and OHAM methods and it can be observed from Table 4 that the proposed method provides
comparable solution to the other reported methods.The graph of absolute error in the DGM solution
is presented by Fig. 6.

Table 4: Absolute errors when r = 0.001, p = 0, q = s = 1

x t STD Proposed ADM[6] FDS4[20] OHAM [26]
0.1 0.05 0.000627 1.179E-07 1.875E-07 2.499E− 08 2.499E− 08

0.1 0.000735 2.875E-07 3.749E-07 4.998E− 08 4.998E− 08

1 0.001205 3.046E-07 3.750E-06 4.998E− 07 4.998E− 07

0.5 0.05 0.000771 1.185E-07 1.875E-07 2.499E− 08 2.499E− 08

0.1 0.000795 3.041E-08 3.750E-07 4.998E− 08 4.998E− 08

1 0.001238 1.023E-07 3.750E-06 4.998E− 07 4.998E− 07

0.9 0.05 0.000892 1.463E-07 1.875E-07 2.499E− 08 2.499E− 08

0.1 0.000791 4.055E-07 3.750E-07 4.998E− 08 4.998E− 08

1 0.001328 3.167E-07 3.751E-06 4.998E− 07 4.998E− 07
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Figure 6: Absolute error for p = 0, q = 1, s = 1 & r = 0.001
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Example 4. The obtained results of the gHE Eq. (5) using proposed method are compared by
ADM[6], FDS4[20] and MCB-DQM [50] method at real coefficients r = 0.001 and s = 2, 3, advection
coefficient (p) = 0, reaction coefficient (q) = 1, at times t = 0.05, t = 0.1 and t = 1 and reported in
Table 5. The absolute errors at some selected node points are compared with the errors in ADM,
FDS4 and MCB-DQM methods and it can be observed from Table 5 that the proposed method pro-
vides better solution than FDS4 and comparable solution to ADM and MCB-DQM. The graph of
absolute error in the DGM solution is presented by Fig. 7 and Fig. 8.

Table 5: Absolute errors when r = 0.001, p = 0, q = 1, s = 2, 3

s = 2 s = 3

t x STD Proposed ADM[6] FDS4[20] MCB-DQM [50] STD Proposed ADM[6] FDS4[20] MCB-DQM [50]

0.1 0.05 0.000560 5.420E-08 5.589E-07 1.118E− 06 4.492E− 07 0.000430 2.882E-07 1.984E-06 3.967E− 06 1.595E− 06

0.1 0.000228 1.511E-07 1.118E-06 2.235E− 06 6.615E− 07 0.000770 1.855E-07 3.968E-06 7.935E− 06 2.348E− 06

1 0.001205 3.046E-07 3.750E-06 4.998E− 07 4.998E− 07 0.000547 6.081E-07 3.966E-05 7.935E− 05 3.522E− 06

0.5 0.05 0.000754 2.345E-07 5.588E-07 1.118E− 06 1.031E− 06 0.000537 2.664E-07 1.984E-06 3.967E− 06 3.658E− 06

0.1 0.000270 3.485E-07 1.118E-06 2.235E− 06 1.711E− 06 0.000955 2.236E-06 3.967E-06 7.933E− 06 6.072E− 06

1 0.002580 3.485E-06 1.007E-05 2.235E− 05 2.779E− 06 0.000604 3.925E-07 3.966E-05 7.933E− 05 9.861E− 06

0.9 0.05 0.000927 2.216E-07 5.588E-07 1.117E− 06 4.492E− 07 0.000636 4.401E-07 1.983E-06 3.966E− 06 1.594E− 06

0.1 0.000325 1.201E-07 1.118E-06 2.237E− 06 6.614E− 06 0.001092 7.322E-07 3.967E-06 7.931E− 06 2.348E− 06

1 0.007759 3.275E-07 1.117E-06 2.234E− 05 9.926E− 07 0.000621 7.693E-06 3.965E-05 7.931E− 05 3.522E− 06
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Figure 7: Absolute error for p = 0, q = 1, s = 2 & r = 0.001
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Figure 8: Absolute error for p = 0, q = 1, s = 3 & r = 0.001
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It is clear from the findings of four instances in Table 2 - 5 that the DGM algorithm offers a
solution that is comparable to other conventional numerical approaches, such as ADM, VIM, FDS4,
OHAM, and MCB-DQM in terms of accuracy. In addition to accuracy, the DGM approach does
not require domain discretization, whereas all of the aforementioned methods depend on the mesh.
While the finite difference method substitutes derivatives by finite-difference formulas and the ADM
method expresses the unknown function in terms of infinite series with nonlinear term is decomposed
by an infinite series of polynomials, the DGM does not call for the linearization of nonlinear terms
or dimensionality reduction. In OHAM, a series of equations are derived in terms of embedding
parameter, non-zero auxiliary function, and unknown function, and the Taylor series is used to
approximate the solution, which is not an easy task, in contrast, in DGM algorithm a cost function is
constructed in terms of L2– norm function. In MCB-DQM algorithm also given equation is reduced
to a system of first order ordinary differential scheme and approximation methods are used to find the
solution. In DGM algorithm DNN are used instead of basis function and cost function is constructed
in terms of L2– norm, which makes the algorithm simpler, efficient and generalized. It does not
require any calculus effort unlike traditional numerical methods.

5. Conclusion

In this article, DGM algorithm is applied to provide the approximate solution of the gBHE
and gHE. An architecture similar to GRU network architecture is used in implementation of the
algorithm which is more faster and advantageous over other DNN architectures. This algorithm does
not require linearization of nonlinear PDEs as well as dimension reduction, and it does not create
meshes, which is an important feature because meshes become infeasible in higher dimensions. This
method also removes the difficulty of construction of trial solution. The proposed method has been
successfully implemented for obtaining the approximate solutions of the gBHE and gHE , which is
fully demonstrated by the numerical results in terms of absolute error along with 3-D surface plot
graph of absolute error. Further, convergence analysis of the cost function as well as neural network
to the gBHE solution is also discussed. Numerical simulation has been done to compare the obtained
DNN solution with the exact solution as well as the solution obtained by traditional methods such
as ADM, VIM, OHAM, FDS4 and MCB-DQB. Numerical results shows the efficacy of the proposed
method, which is reliable and encouraging.
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