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Abstract
This study analyses the rheological characteristics of non-Newtonian

Carreau fluid model for nanoparticles suspended flow of blood through con-
stricted arteries in the presence of stenosis, thrombosis and catheters. Ana-
lytical expressions, such as, velocity distribution, temperature, pressure gra-
dient, wall shear stress and resistive impedance to flow are obtained by im-
plementing the perturbation method and through the extensive use of MAT-
LAB and MATHEMATICA programming tools, the results are presented
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graphically and tabularly. It is found that temperature of the fluid lessens
with the increase in stenosis shape parameter and depth of stenosis which
results in the reduction of flow of blood in the artery. It is discovered that
a rise in Weissenberg number results in the decrease of fluid’s velocity and
skin friction. The magnitude of resistance to blood flow reduces with the
upsurge of flow rate and stenosis shape parameter and the reverse character
is recognized when Weissenberg number, the depth and axial displacement
of blood clot increases. When the angioplasty catheter of radius 0.3 is in-
serted to the clear the constrictions in the artery, the resistance to flow surges
considerably in the range of 6.75-8.78 when the stenosis position extends in
the axial direction from 0.1 to 0.3. It is also recorded that when the catheter
guidewire radius is 0.18, the pressure gradient in blood flow is found to vary
in the range of 1.21-1.43 when the axial variable z varies from 0.2 to 0.8 and
it decreases from 1.36-1.32 when the blood clot position displaces from 0.2
to 0.6.

Keywords: Carreau fluid model; Copper nanoparticles; Stenosed artery;
Thrombosis; Catheterization; Clinical applications.
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Nomenclature

L Length of the artery
R Non-stenotic radius of outer tube
K Thermal conductivity
T Temperature
S Stress tensor
Q Flow rate
Gr Grashof number
We Weissenberg number
(r̄, z̄) Cylindrical Coordinates
(ū, w̄) Radial, Axial velocity
n (≥ 2) Multiple stenosis shape parameter

q/ ∂p
∂z

Pressure gradient
a Location of the stenosis
b Length of the stenosis
c Catheter radius
m Power law index
δ Maximum stenotic depth
g Gravity
p Fluid’s pressure

Greek symbols

Π Second invariant of stress tensor
η Outer wall of artery
ϵ Inner wall of artery
β Dimensionless heat source or sink parameter
θ Temperature
ζ Maximum height attained by the clot
γ Thermal expansion coefficient
ρ Density
µ Viscosity
ϕ Nanofluid volume fraction

Subscript

nf Nanofluid
f Base fluid
s Metallic nanoparticles
d Displacement
cp Heat capacity
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1 Introduction

A variety of cardiovascular diseases caused by stenosis or arteriosclerosis are the

leading cause of mortality all over the world, which are affiliated to actions and

hemodynamic circumstances of motion of blood in the artery. Stenosis is a type

of uncommon constriction development caused by the build up of atherosclerotic

plaques, lipids, fats, cholesterol or other unobserved substances. It arises in one or

more sites in the cardiovascular system at the inner arterial wall and gives rise to

crucial circulatory disorders [1]. The progression of stenosis is divided into three

stages. It is mild at first stage (clogs around 5% - 15% of the blood vessel’s cross-

sectional passage area), then the blockage further grows to about 20% - 35% in the

next phase and the flow remains laminar, but separation of flow as well as back

flow happens in the vicinity of stenosis. The ultimate stage is characterized by

turbulence in which the congestion surpasses 40% of the cross sectional area [2,3].

Another most frequent type of cardiovascular disease that may develop as a result

of the worsening of stenosis is thrombosis, which originates from the development

of thrombosis that also obstructs flow of blood in the vessels. Its growth may

lead to various types of disorders and conditions, for instance, infarction, stroke,

cancer and sepsis [4]. A clot in the cerebral or coronary circulation (resulting in

ischemic stroke or acute myocardial infarction, respectively) is now the leading

cause of worldwide illness and mortality, and the universality of both disorders is

increasing, especially in developing countries [5].

In modern medicine, catheters are a common diagnostic and treatment tool.

It is a fine tube that is inserted into the artery to deliver a drug or to remove the

obstructions in the passage of blood. Movement of blood to crucial organs can
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be improved with the use of catheters and moreover, the gas levels (oxygen and

carbon dioxide) may often be measured in the bloodstream. For withdrawal of

clots, a tiny needle is inserted into the blood vessel at neck, arm, leg or groin

and malleable wire is stretched out into the blood vessel via the clot. In order

to disintegrate, break apart and discard the clot, the catheter is guided along this

wire to the location of the clot [6]. In the case of a blocked or constricted artery,

a balloon can be inflated from the catheter to open up the vessel and enhance the

movement of blood.

Several researchers [7–11] carried out both empirical and analytical investiga-

tion on the flow of blood via narrow stenotic arteries to diagnose the consequences

of stenosis on rheological quantities like skin friction and resistance to flow. Sus-

pension of leukocytes, thrombocytes and erythrocytes in plasma forms blood [12].

White cells (also known as Leukocytes) are relatively bigger cells (12 − 15µm)

that has an important function in preserving the immune system in our body. Red

cells (commonly named as Erythrocytes) are small blood cells (6 − 8µm) that

transport oxygen-rich blood from lungs to all parts of the body and expel CO2

from numerous sections of the body across the lungs [13]. Platelets (so called

Thrombocytes) are another type of blood cell that is much smaller in size than red

cells and is in-charge of forming the blood clot when it bleeds during the time of

injury [14, 15].

Tiny particles suspended in liquid with at the minimum of one primary di-

mension less than 100nm are known as nanofluids. It has become the subject

matter of extensive studies and biomedical implementation. Former studies reveal

that nanofluids own intensified properties of thermophysics like thermal diffusiv-

ity, viscosity, thermal conductivity and coefficients of convective heat transfer in
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comparison to base fluids [16–19]. Moreover, nanoparticles can be utilized in the

procedure of medical treatment [20].

It is commonly agreed that at high shear rate, blood is recognised as New-

tonian fluid when it moves along the bigger diameter blood vessels (diameter of

blood vessel diameter > 300µm) whereas when blood moves in smaller diam-

eter blood vessel (diameter of size < 300µm) at lower rate of shear, it acts as

non-Newtonian fluid [21, 22]. Generally, the cluster of red cells is higher in the

middle region when blood flows in constricted arteries while the cell depleted re-

gion is at the arterial wall. Empirical outcomes obtained from the experimental

studies [23–27] disclosed that in constricted arteries, many red cells in blood are

suspended along the axis of the arteries which are exemplified by non-Newtonian

fluid.

As reported by Yilmaz et al. [28], Generalized Newtonian fluid expresses most

characteristics of shear thinning blood. Carreau-Yasuda, Cross, Power law, Sisko,

Herschel-Bulkley and Yeleswarapu are some models of non-Newtonian fluid that

are frequently used to mathematically describe the rheology of blood via smaller

artery diameters [29, 30]. It is known that the Carreau-Yasuda model is a gen-

eralized type of Sisko and Power law models. Many researchers revealed that

Carreau fluid model is the better fitting model in exhibiting distinct features of

blood dynamics since it behaves like Newtonian when the time parameter is zero

and non-Newtonian fluid models otherwise. [31, 32].

Nadeem et al. [33] dealt with a nanofluid for constant flow of the Prandtl

model in tapered stenotic arteries and employed homotopy perturbation method

for solving the governing equations of motion. In addition, Ellahi et al. [34] also

utilized the same approach in analyzing flow of blood of nanofluid along com-
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posite stenosed arteries with penetrable walls. The mathematical study of Ahmed

and Nadeem [35] derived exact solutions using distinct types of nanoparticles like

titanium (TiO2), copper (Cu) and aluminum (Al2O3) as antimicrobials of blood

movement via moderate stenosis in the lesion of arteries.

Mekheimer et al. [36, 37] studied the impacts of copper nanoparticles on the

motion of blood along a stenotic artery when magnetic field presents. The conse-

quences of dilatation and constriction were taken into account in the work of [38]

by investigating the unusual nature of the wall sections with variable nanofluid

viscosity in the motion of blood via artery and assuming blood as a viscous fluid.

Thenceforth, Akbar [39] conducted an analysis of pure water and copper-blood

flow model and subsequently obtained precise solutions for nature of blood move-

ment for various types of tapered stenotic arteries.

Nadeem et al. [40] studied the impact of metallic nanoparticles on blood mo-

tion via catheterized tapered flexible intersecting stenosed artery with magnetic

field varying with radial direction. Elnaqeeb et al. [6] examined copper nanopar-

ticles for motion of blood along a catheterized mild stenotic artery with a clot.

Recently, motion of blood along an artery with diversified stenoses and a throm-

bus was explicated by Zidan et al. [41]. They implemented entropy analysis for

a comprehensive study of irreversibility. Due to the numerous applications of

nanoparticles in the field of biomedicine, several researchers [42–50] considered

the flow of fluid with the suspension of nanoparticles to investigate their effects

under various rheological states.

This contemporary work deals with metallic nanoparticles in flow of blood

along a catheterized mild stenotic artery with thrombosis, modelling blood as non-

Newtonian Carreau fluid. The governing equations are solved by the method of
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perturbation and the expressions of velocity, pressure gradient, temperature, skin

friction and resistance to flow are acquired both analytically and numerically by

the extensive use of MATLAB and MATHEMATICA softwares. The influences

of Weissenberg number, axial displacement of the blood clot, maximum stenotic

depth, stenosis shape parameter on the aforementioned flow quantification are

displayed graphically and tabularly. Clinical applications of the study with the

effects of several geometrical and physiological parameters on blood rheology are

also analyzed in this study. The schematic diagram shown in Figure 1 describes

the organization of the present mathematical model.
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Fig. 1. Schematic configuration of the fluid flow system under study.
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2 Mathematical Formulation

Let us examine the mathematical model for the incompressible, steady flow of

copper nanoparticles blood along a circular artery of length L which is assumed

to be comprised of two coaxial tubes; the outer tube that is axisymmetric with

moderate stenosis and the inner tube which has a thrombosis where the catheter is

introduced coaxially, considering blood as non-Newtonian Carreau fluid. Figure

2 depicts the geometry of segment of artery under investigation. The inner and the

outer walls are denoted by ϵ(z) and η(z), respectively, and can be mathematically

represented as below:

ϵ̄(z̄) = R̄[c+ ζe−π
2(z̄−zd−0.5)2 ], ā ≤ z̄ ≤ ā+ b̄

= cR̄, otherwise
(1)

η̄(z̄) = R̄
[
1− κ̄

(
b̄n−1 (z̄ − ā)− (z̄ − ā)n

)]
, ā ≤ z̄ ≤ ā+ b̄

= R̄, otherwise
(2)

where ζ is the utmost height attained by the clot at z̄ = zd + 0.5, cR̄ is the

inner tube’s radius in which c ≪ 1, and zd is the clot’s axial displacement, R̄ is

the artery’s radius in the non-stenotic region, b̄ is the length of the stenosis, n ≥ 2

is the shape parameter of stenosis, ā is the site of stenosis and κ̄ is delineated by

κ̄ =
δ̄∗

R̄b̄n
n

n
n−1

n− 1
(3)

where δ̄∗ is the utmost stenotic depth placed at z̄ = ā+ b̄

n
1

n−1
.

By assuming the flow of blood along the artery is asymmetric, the difference in
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Fig. 2. Geometry of a mild stenotic catheterized artery with thrombus

the characteristic of blood motion is not dependent on the azimuthal angle. Thus,

the governing equations of the steady flow of an incompressible viscous nanofluid

along a catheterized mild stenotic artery with thrombosis in the presence of gravity

as a body force, are

∂ū

∂r̄
+
ū

r̄
+
∂w̄

∂z̄
= 0 (4)

ρnf

(
ū
∂w̄

∂r̄
+ w̄

∂w̄

∂z̄

)
= −∂p̄

∂z̄
+
1

r̄

∂

∂r̄

(
r̄S̄r̄z̄

)
+
∂

∂z̄

(
S̄z̄z̄

)
+g(ργ)nf

(
T̄ − T̄0

)
(5)

ρnf

(
ū
∂ū

∂r̄
+ w̄

∂ū

∂z̄

)
= −∂p̄

∂r̄
−

(
1

r̄

∂

∂r̄

(
r̄S̄r̄r̄

)
+

∂

∂z̄

(
S̄r̄z̄

))
(6)

11



ū
∂T̄

∂r̄
+ w̄

∂T̄

∂z̄
=

Knf

(ρcp)nf

(
∂2T̄

∂r̄2
+

1

r̄

∂T̄

∂r̄
+
∂2T̄

∂z̄2

)
+

Q0

(ρcp)nf
(7)

In Eqs. (4) - (7), z̄ and r̄ axes are taken as axial and radial direction, respec-

tively, u and w are the components of radial and axial velocity, accordingly, g

is the gravity, p is the fluid pressure and Q0 is the constant heat generation or

absorption. For the suggested model of nanofluid, γnf is the thermal expansion

coefficient of nanofluid, (ρcp)nf is the heat capacitance of nanofluid, ρnf is the

nanofluid density, Knf is the thermal conductivity of nanofluid and µnf is the

nanofluid viscosity. The heat transfer is also considered by assuming T0 and T1 as

the temperatures at the arterial wall and catheter, accordingly.

Since the heat transfer is also considered in the study, the last term g(ργ)nf (T − T0)

in Eq. 5 corresponds to the natural convective heat transfer in blood flow which

occurs in radial direction due to the presence of metallic nanoparticles in blood.

Thus, the effect of gravitational force is inherent in the blood flow with heat trans-

fer and this acts in the radial direction.

The constitutive equation of non-Newtonian Carreau fluid which defines the

nonlinear relation between the shear stress and rate of shear, is given below:

(µ̄− µ̄∞)

(µ̄0 − µ̄∞)
=

[
1 + (Γ̄̇γ)

2
](m−1

2 )
(8)

S̄ij = µ̄0

[
1 +

(m− 1)

2
(Γ̄̇γ)

2

]
¯̇γij (9)

in which S̄ij is the extra stress tensor, µ̄∞ is the finiteless rate of shear viscosity,

µ̄0 is the zero rate of shear viscosity, Γ is the time dependent constant, m is the
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power law index and γ̇ is the rate of shear which is depicted as

¯̇γ =

√
1

2

∑
i

∑
j
¯̇γij̄̇γji =

√
1

2
Π (10)

Here, Π is the second invariant strain tensor.

The dimensional form of boundary conditions pertaining to the assumed blood

flow are
T̄ = T̄1 at r̄ = ϵ̄(z̄) and T̄ = T̄0 at r̄ = η̄(z̄)

w̄ = 0 at r̄ = ϵ̄(z̄) and w̄ = 0 at r̄ = η̄(z̄)
(11)

The nanofluid’s thermo physical properties are defined by the following equa-

tions [51]:

αnf =
Knf

(ρcp)nf
,

ρnf = (1− ϕ) ρf + ϕρs,

(ρcp)nf = (1− ϕ) (ρcp)f + ϕ(ρcp)s,

(ργ)nf = (1− ϕ) (ργ)f + ϕ(ργ)s,

µnf =
µf

(1−ϕ)2.5 ,

Knf

Kf
=

(Ks+2Kf)−2ϕ(Kf−Ks)
(Ks+2Kf)+ϕ(Kf−Ks)

,

(12)

where Kf , ρf , (ρcp)f , µf and γf are thermal conductivity, density, heat capaci-

tance, viscosity and the base fluid’s thermal expansion coefficient, accordingly,

while Ks, ρs, (ρcp)s, µs and γs are thermal conductivity, density, heat capacitance,

viscosity and thermal expansion coefficient of the metallic nanoparticles, respec-

tively and ϕ is volume fraction of the nanofluid.

The dimensionless quantities are demonstrated as below:
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r = r̄
R̄
, z = z̄

b̄
, w = w̄

ū0
, u = Lū

ū0δ̄∗
, p = R̄2p̄

4ū0b̄µf
,

β = R̄2ā
4ū0µf

, Gr =
gνfρf R̄

2T̄0
ū0µf

, θ = T̄−T̄0
T̄1−T̄0 ,

Q = Q̄
R̄2ū0

, We = Γū0
R̄

(13)

where ū0 is the averaged velocity of the channel segment of width R, β is the

dimensionless parameter of heat source or sink of the fluid, θ is the temperature,

Q is the flow rate, Gr is the Grashof number and We is the Weissenberg number.

Considering the flow as slow flow (low Reynolds number) and then utilizing the

dimensionless variables, we obtain the following conceptual approximation to the

assumed fluid flow model:

Rn
1

n−1

b
∼ O(1) (14)

δ =
δ∗

R
≪ 1 (15)

By utilizing the dimensionless variables in the momentum equations (5)-(7),

one can attain the reduced form of governing equations as follows:

∂p

∂r
= 0 (16)

−4
∂p

∂z
− 1

r

∂

∂r

[
r

{(
∂w

∂r

)
+We2

(
m− 1

2

)(
∂w

∂r

)3
}]

+
Grθ

(ργ)f
= 0 (17)
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∂2θ

∂r2
+

1

r

∂θ

∂r
+ β

Kf

Knf

= 0 (18)

The boundary conditions in (11) reduce to the dimensionless form as below:

θ = 0 at r = η(z) and θ = 1 at r = ϵ(z)

w = 0 at r = η(z) and w = 0 at r = ϵ(z)
(19)

where ϵ(z) and η(z) in non-dimensional form become

ε(z) = c+ ζe−π
2b2(z− zd+0.5

b )
2

h ≤ z ≤ h+ 1,

= c otherwise
(20)

η(z) = 1− κ∗ [bn−1 (z − a)− (z − a)n] h ≤ z ≤ h+ 1,

= 1 otherwise
(21)

and

where h = a
b
, κ∗ = δ n

n
n−1

n−1
and δ = δ∗

R
.

(a) Outer tube (b) Inner tube

Fig. 3. Geometry of the outer tube η and inner tube ϵ withR = 1, a = 0 and b = 1
and for (a) various n and δ values and (b) various c and ζ values.

Figs. 3a and 3b represent the geometry of arterial segment with stenosis and

thrombosis, respectively. Since stenosis occurs at the outer tube, the stenosis has
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peak in the downward direction and the blood clot (thrombosis) has developed at

the inner tube, the blood clot has peak in the upward direction.

3 Solution Method

Solving Eq. (18) by employing the corresponding boundary conditions, one can

easily obtain the general solution of temperature as below:

θ = −β
4

Kf

Knf

(
r2 − η2

)
+

ln
(
r
η

)
ln
(
ε
η

) (
1− β

4

Kf

Knf

(
η2 − ε2

))
(22)

3.1 Perturbation solution

Let us denote the pressure gradient dp
dz

by q. In order to attain the perturbation

solution of axial velocity, w, we expand w corresponding to the parameter of

perturbation We2 (Weissenberg number) as given below:

w = w0 +We2w1 +O
(
We2

)2 (23)

On using Eq. (22) in Eq.(17) and then employing the series of perturbation

expansion (23) in the resulting equation and solving the decomposed system of

differential equations through the utilization of the boundary conditions (19), one

can acquire the solution to the axial velocity analytically as presented below:

w = q (η2 − r2) + Gr
(ργ)f

f (r) +
ln( r

η )
ln( ε

η )

[
q (ε2 − η2) + Gr

(ργ)f
f (ε)

]
+We2[w1]

(24)
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where f(r), f(ϵ) and w1 are depicted as

f(r) = −β
4

Kf

Knf

(
r4

16
− η2r2

4
+

3η4

16

)
+

(
r2 ln

(
r
η

)
− r2 + η2

)
4 ln

(
ε
η

) {
1− β

4

Kf

Knf

(
η2 − ε2

)}
(25)

f(ε) = −β
4

Kf

Knf

(
η2ε2

4
− ε4

16
− 3η4

16

)
+

(
ε2 − η2 − ε2 ln

(
ε
η

))
4 ln

(
ε
η

) {
1− β

4

Kf

Knf

(
η2 − ε2

)}
(26)

w1 =
(
m−1
2

) [
(2ε4 − 2r4) q3 +

(6ε2−6r2)
ln( ε

η )
(q3 {ε2 − η2})− q3{ε2−η2}3

{2r2−2ε2}(ln( ε
η ))

3

]

+
ln( r

ε)
ln( η

ε )

[(
m−1
2

) [
(2η4 − 2ε4) q3 +

(6η2−6ε2)
ln( ε

η )
(q3 {ε2 − η2})− q3{ε2−η2}3

{2ε2−2η2}(ln( ε
η ))

3

]]
(27)

Now, one can obtain the expression for stream function ψ by utilizing the

equation w = 1
r
∂ψ
∂r

and the condition ψ = 0 at r = ϵ. Hence, the corresponding

stream function can be obtained in the following form

ψ = q
(
η2r2

2
+ 1

4
{ε4 − r4} − η2ε2

2

)
+ Gr

(ργ)f
ψa

+
2r2 ln( r

η )−r2+2ε2 ln( ε
η )−ε2

4 ln( ε
η )

[
q (ε2 − η2) + Gr

(ργ)f
ψb

]

−We2
[(

m−1
2

)
ψc +

2r2 ln( r
ε)−r2−ε2

4 ln( η
ε )

[(
m−1
2

)
ψd

]]
(28)
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where

ψa = −β
4

Kf

Knf

{
r6−ε6
96

+ 3η4

32
(r2 − ε2) + η2

16
(ε4 − r4)

}

+
{
1− β

4

Kf

Knf
(η2 − ε2)

} {
r4

4
ln( r

η )+
5
16(ε4−r4)+

η2

2 (r2−ε2)−
ε4

4
ln( ε

η )
}

4 ln( ε
η )

(29)

ψb = −β
4

Kf

Knf

{
4η2ε2 − 3η4 − ε4

16

}
+

{
ε2 − η2 − ε2 ln

(
ε
η

)}
4 ln

(
ε
η

) {
1− β

4

Kf

Knf

(
η2 − ε2

)}
(30)

ψc = q3

 ε4r2 − r6

3
− 2

3
ε6 + (ε2 − η2)×{

3ε2r2− 3
2(r4+ε4)

ln( ε
η )

− (ε2 − η2)
2

{
ln(2r2−2ε2)
4{ln( ε

η )}
3

}}
 (31)

ψd = q3

(2η4 − 2ε4
)
+
(
ε2 − η2

)6η2 − 6ε2

ln
(
ε
η

) − (ε2 − η2)
2

(2ε2 − 2η2)
(
ln
{
ε
η

})3




(32)

The flow rate Q is defined by

Q =

η∫
ε

rwdr (33)

The ultimate expression of Q is obtained as below:
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Q = q
(
η4

4
− η2ε2

2
+ ε4

4

)
+ Gr

(ργ)f
Qa +

ε2−η2−2ε2 ln( ε
η )

4 ln( ε
η )

[
q (ε2 − η2) + Gr

(ργ)f
Qb

]

+We2
[(

m−1
2

)
Qc +

2η2 ln( η
ε )−η2+ε2

4 ln( η
ε )

{
m−1
2
Qd

}]
(34)

where

Qa = −β
4

Kf

Knf

(
η6

24
− ε6

96
+ η2ε2

16
− 3η4ε2

32

)
+

{
3η4

8
− ε4

4
ln( ε

η )+
ε4

8
− η2ε2

2

}
4 ln( ε

η )
×{

1− β
4

Kf

Knf
(η2 − ε2)

} (35)

Qb = −β
4

Kf

Knf

(
−3η4

16
− ε4

16
+
η2ε2

4

)
+

{
ε2 − η2 − ε2 ln

(
ε
η

)}
4 ln

(
ε
η

) {
1− β

4

Kf

Knf

(
η2 − ε2

)}
(36)

Qc = q3

ε4η2 − η6

3
− 2ε6

3
+
(
ε2 − η2

)3ε2η2 − 3
2
(η4 + ε4)

ln
(
ε
η

) − (ε2 − η2)
2
ln (2η2 − 2ε2)

4
{
ln
(
ε
η

)}3




(37)

Qd = q3

(2η4 − 2ε4
)
+
(
ε2 − η2

)6η2 − 6ε2

ln
(
ε
η

) − (ε2 − η2)
2

(2ε2 − 2η2)
{
ln
(
ε
η

)}3




(38)

By presuming total volumetric flow rate, Q as constant, one can calculate the

pressure gradient, q for distinct parameter values involved in the present study.
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The wall shear stress can be derived as

Srz = 2ηq − Gr
(ργ)f

Srz1 − 1

η ln( ε
η )

[
q (ε2 − η2) + Gr

(ργ)f
Srz2

]

−We2
[(

m−1
2

)
Srz3 +

1

η ln( η
ε )

{(
m−1
2

)
Srz4

}] (39)

where

Srz1 = −β
4

Kf

Knf

(
−η

3

4
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− η
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ε
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) {
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4

Kf

Knf

(
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(40)

Srz2 = −β
4
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−3η4

16
− ε4

16
+
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4

)
+
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))
4 ln

(
ε
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) {
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4
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(
η2 − ε2

)}
(41)

Srz3 = −8η3q3 +
(−12η)

ln
(
ε
η

) (
q3

(
ε2 − η2

))
+

4q3(ε2 − η2)
3

η3
(
ln
(
ε
η

))3 (42)

Srz4 =
(
2η4 − 2ε4

)
q3+

(6η2 − 6ε2)

ln
(
ε
η

) q3
(
ε2 − η2

)
− q3(ε2 − η2)

3

(2ε2 − 2η2)
(
ln
(
ε
η

))3 (43)

The resistive impedance can be obtained as

λ =
∆p

Q
(44)

In order to get the resistance to flow, numerical integration is performed through

the use of MATLAB software. For several parameter values contained in this
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study, numerical values of λ can be calculated and are presented in the next sec-

tion through graphical results as well as physiological data.

The solutions obtained so far to various flow quantities of Carreau fluid model

reduce to those of Newtonian fluid whenWe = 0 orm = 1 and are in good agree-

ment with the corresponding solutions obtained for Newtonian fluid by Elnaqeeb

et al. [6].

Table 1: Thermophysical properties of base fluid (blood) and copper nano parti-
cles.

Physical quantities Blood Copper (Cu)
cp(J/kgK) 3594 385
ρ(kg/m3) 1063 8933
K(W/mK) 0.492 400
γ x10−5(K−1) 0.18 1.67
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4 Numerical Simulation of Results

MATLAB and MATHEMATICA softwares are extensively used to numerically

evaluate the analytical solutions obtained for temperature, pressure gradient, ve-

locity distribution, skin friction and resistance to flow, to generate data for graph-

ical and tabular representation of results and also to present some data for the

clinical applications of the current study. These graphs interpret the results for

different kinds physiological states such as stenosis in arteries with thrombus in

the presence of catheter (c ̸= 0) and in the absence of catheter (c = 0). The

thermophysical quantities for density ρ, specific heat capacity cp, thermal conduc-

tivity K and coefficient of thermal expansion γ for both copper nano particles and

blood are extracted from [52, 53] and are recorded in Table 1.

The range of values of parameters implemented in the computation of data for

graphical results and tabulated data are presented below:

Table 2: Range of values of parameters

Parameters Symbol Range
Stenosis length L 1
Radius of the unconstricted artery R̄ 1
Length of stenosis b 1
Power law index m 2
Shape parameter of stenosis n 2 - 11
Radius of catheter c 0 - 0.6
Axial displacement of the clot zd 0 - 0.6
Utmost stenotic depth δ 0.05 - 0.4
Utmost depth of blood clot ζ 0.05 - 0.2
Flow rate Q 0.03 - 0.95
Dimensionless heat source or sink parameter β 0.1 - 0.5
Grashof number Gr 2 - 5
Weissenberg number We 0.05 - 0.7
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4.1 Temperature distribution

Fig. 4a presents the variation of temperature profile radially for various values

of stenosis shape parameter n. As the stenosis shape develops, the temperature

decreases due to the decreased blood motion in the artery. This behaviour is also

visualized in Fig. 4b when the stenosis depth increases and the reverse trend in

temperature variation is noted in Fig. 4c when the depth of the blood clot increases

(due to the reduced supply of oxygen in the blood stream). In all the three cases,

one can note that in the presence of a catheter, the temperature values are always

higher.

(a) Different n (b) Different δ

(c) Different ζ

Fig. 4. Temperature with radial distance for (a) several n values, (b) several δ
values and (c) several ζ values with z = 0.9, b = 1, R = 1, a = 0, β = 0.2 and
zd = 0.
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4.2 Pressure gradient

Figs. 5a - 5e shows the axial variation of pressure gradient for distinct values

of parameters (a) n, (b) ζ , (c) δ, (d) zd and (e) Q with R = 1, b = 1, a = 0,m =

2,We = 0.1, Gr = 5 and β = 0.5. In Fig. 5a, pressure gradient seems to rise

when the stenosis shape parameter n decreases owing to the existence of both the

stenosis and the blood clot. As the blood clotting thickens, the opposite trend in

pressure gradient is recognized in Fig. 5b, because as the blood flows through the

narrow artery, it demands more pressure to navigate the blood to move along the

downstream.

Fig. 5c illustrates the variation of pressure gradient axially for several values

of stenosis depth δ. As in the case of blood clot, the thickening of the stenosis

results in the increase of pressure gradient. The difference of axial displacement

of the thrombus are portrayed in Fig. 5d with values 0.1, 0.3 and 0.5. It can be

observed that when zd increases from 0.1 to 0.3, the pressure gradient reduces

significantly with the existence of catheter and considerably when catheter is in

use. It is also visible that the skewness in pressure gradient are more towards the

right side as zd rises. In Fig. 5e, variation of flow rate Q for three distinct values

are plotted against axial distance, z and it is spotted that as the flow rate surges

from 0.75 to 0.85 then to 0.95, the pressure gradient also increase marginally.
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(a) Different n (b) Different ζ

(c) Different δ (d) Different zd

(e) Different Q

Fig. 5. Pressure gradient with axial distance for (a) several n values, (b) several
ζ values, (c) several δ values, (d) several zd values and (e) several Q values with
R = 1, b = 1, a = 0,m = 2,We = 0.1, Gr = 5 and β = 0.5.
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4.3 Velocity distribution

Figs. 6a - 6e illustrates the variation of velocity distribution radially for several

values of the parameters (a) n, (b) ζ , (c) zd, (d) Q and (e) We with R = 1, b =

1, a = 0,m = 2 and Gr = 5. Fig. 6a depicts that when the shape parameter of

stenosis n grows and in the absence of catheter, the fluid velocity descends in the

range of r from 0 to 0.5 and it begins to increase in the range of r from 0.5 to 0.84.

The reverse trend is noticed in the existence of catheter when r is around 0.1 to

0.2. The axial displacement of the clot plays a significant role for this abnormal

behavior.

Fig. 6b delineates the velocity profile for distinct values of ζ . In both tubes

(with and without catheter), the thickness of the thrombus (along with 5% steno-

sis) results in the decrease of the velocity when r varies in the range 0 - 0.3. It then

increases slightly when r rises from 0.3 to 0.94. From Fig. 6c, one can observe

that as the clot displaces further, velocity raises. When the flow rate rises, the

fluid’s velocity increases which is depicted in Fig. 6d. This is due to the narrow-

ing of the artery in the existence of both stenosis and constriction. Fig. 6e exhibits

the velocity profile for several values of Weissenberg number. One can perceive

that the magnitude of the velocity lessens with a surge in Weissenberg number be-

cause the inciting values of We increases the relaxation time of the fluid particles

and thus enhance the viscosity even more which then creates resistance to the flow

of blood as a consequence of the decrease in fluid’s velocity.
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(a) Different n (b) Different ζ

(c) Different zd (d) Different Q

(e) Different We

Fig. 6. Velocity with radial distance for (a) several n values, (b) several ζ values,
(c) several zd values,(d) several Q values and (e) several We values with R =
1, b = 1, a = 0,m = 2 and Gr = 5
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4.4 Wall shear stress/Skin friction

The graphs of skin friction with axial distance z are shown in Figs. 7a - 7f for

several values of parameters (a) n, (b) ζ , (c) We, (d) δ, (e) Q and (f) zd with

R = 1, b = 1, a = 0,m = 2, β = 0.5 and Gr = 5. From Fig. 7a, one can note

that as the parameter of the shape of stenosis n raises, the skin friction decreases

up to mid axial distance and then it increases from the mid axial distance until

it ends. The distribution of shear stresses at the wall of blood vessels is deeply

influenced by the simultaneous existence of both stenosis and thrombosis in the

artery.

Figs. 7b and 7c outlines the variation of skin friction axially for several values

of the utmost height acquired by the clot and maximum depth of stenosis, respec-

tively. In both cases, skin friction rises with increase in both parameters, i.e. the

arterial wall experiences higher stress when stenosis grows deeper and in addition

to the thrombosis growth. This further influence the wall shear stress to surge

significantly which leads to the declining of blood movement in the artery.

Fig. 7d portrays the behavior of skin friction for different flow rate (Q) val-

ues. It is viewed that with the upsurge of flow rate, the shear stresses at the wall

increases significantly. The significant increase is due to the simultaneous growth

of stenosis and thrombosis which makes the artery to constrict even more. In Fig.

7e, the graph of skin friction for distinct values of Weissenberg number We has

been plotted against axial distance z. It is spotted that by uplifting We, the skin

friction coefficient lessens remarkably owing to the rise of inertial forces.

Fig. 7f compares the wall shear stress of Carreau and Newtonian fluids for

different values of zd. One can notice that when the blood clot axially moves from
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0 to 0.2, the skin friction diminishes greatly and when it flows further from 0.2

to to 0.3, the skin friction reduces considerably as a consequence of the simulta-

neous attendance of constrictions (stenosis and clot) in the artery. It is pertinent

to mention that the plot of wall shear stresses of Newtonian fluid model (obtained

from Carreau fluid model when We = 0) is in favourable agreement with the

complementary plot in Fig. 9a of Elnaqeeb et al. [6] and this validates the present

study.
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(a) Different n (b) Different ζ

(c) Different δ (d) Different Q

(e) Different We (f) Different zd

Fig. 7. Shear stresses at the wall with axial distance for (a) several n values, (b)
several ζ values, (c) several We values, (d) several δ values, (e) several Q values
and (f) several zd values with R = 1, b = 1, a = 0,m = 2, β = 0.5 and Gr = 5
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4.5 Resistive Impedance

The graph of resistance to flow with utmost stenotic depth δ for several parameter

values of the shape of stenosis n, are portrayed in Fig. 8a. It is perceived that the

resistance diminishes inconsiderably with the rise in n for both tube and catheter.

Fig. 8b demonstrates the variation of resistive impedance with δ for various height

of the blood clot ζ . It reveals that as the clotting in the artery deepens, it reduces

the flow of the blood and thus it raises the resistance to flow.

Fig. 8c depicts the impact of Weissenberg number We on the resistance to

flow when it differs with highest stenotic depth δ. It is found that as We rises, the

resistance to flow decreases substantially as a result of an increase in relaxation

time which makes blood in the artery to move easily. Fig. 8d is sketched to analyze

the consequences of zd on the resistance to flow with maximum stenotic depth.

We deduce that when zd moves forward, the resistance decreases appreciably as a

consequence of nanofluid’s presence, i.e. the presence of nanofluid intensifies the

motion of blood in the stenosed arteries containing clot.

Fig 8e displays the impact of flow rate variation with maximum stenotic depth

on the resistive impedance. It is recorded that a slight rise in the flow rate (Q)

results in the marginal reduction in the resistive impedance with the simultaneous

existence of stenosis and blood clot.
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(a) Different n (b) Different ζ

(c) Different We (d) Different zd

(e) Different Q

Fig. 8. Resistive Impedance with maximum stenotic depth for several (a) n values,
(b) several ζ values, (c) several We values, (d) several zd values and (e) several Q
values with R = 1, b = 1, a = 0, z = 0,m = 2, , Gr = 2 and β = 0.5.
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4.6 Streamlines

The stream lines are effective two-dimensional pictorial representation which can

depict the motion of fluid particles, i.e., streamlines (of blood flow) are lines that

are instantaneously tangent to the velocity vector of the fluid flow. Since it is

impossible for a fluid particle to have two distinct velocities at once, streamlines

cannot intersect. Figs. 9a - 9l exhibits the streamlines of blood flow which are

drawn for distinct values of various parameters .

Figs. 9a and 9b show the pattern of blood flow for different height of blood

clot, ζ . One can observe that as the clot grows, the streamlines converge towards

the centre, indicating the phenomenon of thrombosis. The effects of catheter ra-

dius on the stream line pattern of blood flow are illustrated in Figs. 9c and 9d

where the trapping phenomenon is lessened owing to the surge of the radius ratio

of catheter c. This implies that the trapping bolus is more in the case of a tube

model in comparison to the catheter model.

The influences of flow rate (Q) in the stream line of blood flow can be seen in

Figs. 9e and 9f. The constriction grows significantly when the flow rate Q value

raises from 0.02 to 0.07, the pressure rises to higher level due to the simultaneous

development of stenosis and thrombosis. Figs. 9g and 9h outline the effects of

varying the maximum stenotic depth δ on the streamlines. One can note that as δ

ascends, the occurrence of stenosis is more critical as seen from the convergence

of the streamlines towards the centre.

The variation of stenosis shape parameter n on streamlines are portrayed in

Figs. 9i and 9j with n = 2 and n = 6, respectively. It is pertinent to mention

that the skewness in the stream lines pattern are clearly noticed in Fig. 9j when
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n increases from 2 to 6. It is known that n indicates the stenosis shape parameter

and thus any increase of the parameter value will show skewness towards the right

side and additionally, since blood clot occurs in the inner tube, one can see the

narrow contour at the middle. Figs. 9k and 9l points out the consequences of

Weissenberg number, We on streamlines. It is important to emphasize that a rise

in the Weissenberg numberWe results in the lessening of pressure gradient as well

as the rise of the relaxation time of the fluid and hence it produces a reduction in

resistance to the fluid particles.
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(a) Different ζ (b) Different ζ

(c) Different c (d) Different c

(e) Different Q (f) Different Q

(g) Different δ (h) Different δ

(i) Different n (j) Different n

(k) Different We (l) Different We

Fig. 9. Streamlines pattern of the blood motion with R = 1, b = 1, a = 0,m =
2, zd = 0, Gr = 3 and β = 0.1. 35



5 Clinical Applications

As a potential application of the current investigation to the field of medicine, Ta-

bles 3 - 7 compute the physiological data of pressure gradient, resistive impedance

and skin friction for distinct types of catheter (Guidewire, Infusion and Angio-

plasty Catheter) and its radius are taken from [54, 55].

Table 3 presents the axial variation of pressure gradient for various types of

catheters and different stenosis shape parameter n values; whereas Table 4 com-

putes the pressure gradient axially for several values of zd, axial displacement of

the clot. It is observed that for all three types of catheter, the pressure gradient

reduces with increasing stenosis shape parameter and zd. The reduction in pres-

sure gradient indicates the capability of catheters in alleviating blood flow in the

constricted artery.

Table 3: Estimates of pressure gradient at different locations in the axial direction
and for different types of catheters for different values of nwithR = 1, b = 1, a =
0, zd = 0,m = 2,We = 0.5, Gr = 5, β = 0.5, ζ = 0.1, δ = 0.1 and Q = 0.985.

Types of catheter Range of catheter size z n = 2 n = 6 n = 10

Guidewire 0.08 - 0.18

0.2 1.17 - 1.32 1.08 - 1.23 1.07 - 1.21
0.4 1.36 - 1.47 1.27 - 1.37 1.24 - 1.34
0.6 1.36 - 1.47 1.36 - 1.46 1.32 - 1.43
0.8 1.17 - 1.32 1.25 - 1.41 1.27 - 1.43

Infusion 0.14 - 0.33

0.2 1.27 - 1.43 1.18 - 1.33 1.17 - 1.31
0.4 1.43 - 1.60 1.34 - 1.49 1.30 - 1.45
0.6 1.43 - 1.60 1.43 - 1.59 1.39 - 1.55
0.8 1.27 - 1.43 1.36 - 1.53 1.39 - 1.56

Angioplasty Catheter 0.3 - 0.6

0.2 1.41 - 2.13 1.31 - 1.79 1.29 - 1.75
0.4 1.57 - 4.86 1.46 - 3.18 1.42 - 2.80
0.6 1.57 - 4.86 1.56 - 4.78 1.52 - 4.06
0.8 1.41 - 2.13 1.51 - 2.68 1.53 - 2.88

36



Table 4: Estimates of pressure gradient at different locations in the axial direction
and for different types of catheters for different zd values with R = 1, b = 1, a =
0, n = 2,m = 2,We = 0.5, Gr = 5, β = 0.5, ζ = 0.1, δ = 0.1 and Q = 0.985.

Types of catheter Range of catheter size z zd = 0.2 zd = 0.4 zd = 0.6

Guidewire 0.08 - 0.18

0.2 1.08 - 1.28 1.05 - 1.27 1.05 - 1.27
0.4 1.26 - 1.42 1.17 - 1.39 1.14 - 1.37
0.6 1.36 - 1.47 1.26 - 1.42 1.17 - 1.39
0.8 1.26 - 1.36 1.26 - 1.36 1.17 - 1.32

Infusion 0.14 - 0.33

0.2 1.05 - 1.27 1.21 - 1.40 1.21 - 1.40
0.4 1.17 - 1.39 1.32 - 1.52 1.31 - 1.51
0.6 1.26 - 1.42 1.37 - 1.55 1.32 - 1.52
0.8 1.26 - 1.36 1.32 - 1.47 1.27 - 1.43

Angioplasty Catheter 0.3 - 0.6

0.2 1.38 - 1.84 1.38 - 1.84 1.05 - 1.27
0.4 1.52 - 2.78 1.50 - 2.26 1.49 - 2.18
0.6 1.57 - 4.86 1.52 - 2.78 1.50 - 2.26
0.8 1.44 - 3.02 1.44 - 3.02 1.41 - 2.13

The estimates of the resistance to flow at different locations in the axial direc-

tion, various types of catheters (Guidewire, Infusion and Angioplasty Catheter)

and also for several values of Weissenberg number We are presented in Table 5.

Here, the axial distance, z are shown only until z = 0.5 due to the symmetric

pattern of the stenosis considered in this case. One can notice that an upsurge in

Weissenberg number causes a reduction in the resistive impedance for all three

types of catheter although an increase in z gives rise to the elevation in resis-

tive impedance. As the relaxation time raises, the enhancement of blood flow is

achieved and by incorporating the catheter to further intensify the motion of blood

reduces the resistive impedance.

Table 6 computes the estimates of the resistive impedance at different posi-

tions in the axial direction and for several kinds catheters and also for distinct

values of varying height of blood clot ζ . As in Table 5, the estimates of resistive

impedance are also computed upto z = 0.5. The development of clot in the mild

stenosed artery leads to the escalation in resistance to flow. One can record that
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the incorporation of catheter results in greater notable rise in the magnitude of

resistive impedance, in addition to that of stenosis and thrombus in the artery.

Table 5: Estimates of resistive impedance at different locations in the axial direc-
tions and for different types of catheters for different We values with R = 1, b =
1, a = 0, zd = 0,m = 2, n = 2, Gr = 2, β = 0.5, ζ = 0.15, δ = 0.05 and
Q = 0.05.

Types of catheter Range of catheter size z We = 0.3 We = 0.5 We = 0.7

Guidewire 0.08 - 0.18
0.1 6.60 - 8.36 5.54 - 6.84 4.80 - 5.85
0.3 8.84 - 10.78 7.23 - 8.51 6.18 - 7.15
0.5 10.05 - 12.01 8.09 - 9.32 6.86 - 7.76

Infusion 0.14 - 0.33
0.1 7.67 - 10.86 6.37 - 8.38 5.48 - 6.96
0.3 10.02 - 13.58 8.04 - 10.19 6.80 - 8.36
0.5 11.25 - 15.00 8.86 - 11.13 7.43 - 9.07

Angioplasty Catheter 0.3 - 0.6
0.1 10.36 - 16.83 8.08 - 12.19 6.75 - 9.83
0.3 13.00 - 24.20 9.84 - 17.38 8.10 - 13.95
0.5 14.35 - 35.75 10.73 - 25.61 8.78 - 20.54

Table 6: Estimates of resistive impedance at different locations in the axial di-
rection and for different types of catheters for different ζ values with R = 1, b =
1, a = 0, zd = 0,m = 2, n = 2, Gr = 2, β = 0.5, δ = 0.05,We = 0.5 and
Q = 0.05.

Types of catheter Range of catheter size z ζ = 0.05 ζ = 0.1 ζ = 0.15

Guidewire 0.08 - 0.18
0.1 5.08 - 6.36 5.23 - 6.47 5.38 - 6.58
0.3 5.85 - 7.12 6.32 - 7.48 6.74 - 7.83
0.5 6.24 - 7.48 6.90 - 8.01 7.48 - 8.52

Infusion 0.14 - 0.33
0.1 5.89 - 7.86 6.02 - 7.96 6.14 - 8.05
0.3 6.65 - 8.66 7.05 - 9.01 7.42 - 9.37
0.5 7.02 - 9.03 7.59 - 9.58 8.11 - 10.19

Angioplasty Catheter 0.3 - 0.6
0.1 7.57 - 11.23 7.67 - 11.44 7.77 - 11.68
0.3 8.36 - 12.83 8.70 - 14.01 9.05 - 15.77
0.5 8.72 - 13.81 9.25 - 16.45 9.82 - 24.39

Table 7 assesses the rates of increase in skin friction for distinct values of

catheter radius ratio, c and for several locations of blood clot zd. These estimates

clearly measures the impacts of catheterization on the wall shear stress of the fluid

flow. It is clear that there is a considerable rise in the shear stresses at the wall
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for the contemporary Carreau fluid model when the radius of the catheter rises.

Another important thing to note is the marginal drop in the magnitude of wall

shear stress when the blood clot moves forward in the axial direction.

Table 7: The estimates of increase in skin friction for different catheter radius
ratio c and for various values of axial position of blood clot, zd with R = 1, b =
1, a = 0,m = 2, z = 0,We = 0.5, Gr = 2, β = 0.5, ζ = 0.1, δ = 0.1 and
Q = 0.22.

Ratio of increase in the skin friction for different catheter radius
c zd = 0.025 zd = 0.05 zd = 0.075 zd = 0.1

0.04 2.91 2.65 2.32 1.91
0.06 3.2 3.08 2.91 2.69
0.08 3.95 3.92 3.86 3.77
0.1 3.98 4.95 4.97 4.97

6 Discussion of Results

In this present study, the method of perturbation is employed for solving the result-

ing non-linear differential equations as it provides analytical solutions to various

flow quantities.Approximate solutions are acquired through the expansion of the

unknown variable viz., velocity in perturbation series in terms of small parameter

Weissenberg number (time-dependent parameter) We.

In the interest of understanding the physical features of blood movement in a

stenosed catheterized artery with thrombosis, the immense quantitative analysis is

executed numerically by the extensive utilization of MATLAB/MATHEMATICA

softwares and are exhibited both tabularly and graphically. From Figs. 6a - 6e,

one can deduce that as the constriction develops mildly as a result of both stenosis

and thrombosis, the velocity decreases which reduces the motion of blood in the
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artery. The identical character can be seen when Weissenberg number surges.

This is caused by the rise in relaxation time of the blood particles which intensifies

the blood viscosity even more and thus, it raises frictional resistance to the flow.

However, when blood clot position displaces further, the velocity increases on

account of the narrowed blood vessels when the value of Q increases in both

situations (tube and catheter).

Skin friction is another key rheological quantity which discovers the impacts

of thrombosis and stenosis in an artery. It plays a fundamental role not only in

the evolution of atherosclerotic plaque, but also to influence the vulnerability in

the normal blood circulation. Figs 7a - 7f discloses the fact that the rise in the

skin friction influences the formation of thrombus where it harms the wall of the

vessel and creates intimal thickening which triggers aggregation of platelets. It is

prominent to highlight that the magnitude of shear stresses at the wall increases

with increasing flow rate and stenosis depth owing to the enlargement of plaque at

the arterial wall. This also indicates that the simultaneous existence of stenosis and

thrombosis greatly enhances the wall shear stress. The decline in the magnitude

of skin friction is caused by the increase in We where the ratio of the relaxation

time of the fluid soars and hence makes the blood to move smoothly. The primary

cause of the increase in the value of skin friction with the rise of the flow rate is

due to the ”no slip condition” at the boundary of the artery.

The graphical results presented in Figs 8a - 8e demonstrate the influence of

various parameters on resistance to flow which reveals that the reduction in resis-

tive impedance is seen as a consequence of the surge in stenosis shape parameter

and the reverse is noticed when the height of blood clot boosted. It is recorded

that as the thrombus develops in the artery, it lessens the flow of blood and thus
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surges the resistance to flow. We may also perceive that the magnitude of resistive

impedance enhances when there is a decline in We which increases the velocity

field and creates impedance to the flow of blood. Ultimately, it can also be men-

tioned that when the height of the stenosis grows, the resistive impedance to flow

increases at the wall.

From the physiological data provided in Tables 3-6, it is worth noting that both

pressure gradient and resistive impedance are the increasing functions of Angio-

plasty catheter. One can infer that the implementation of Angioplasty catheter

helps in improving flow of blood significantly in comparison to Guidewire and

Infusion catheters as it utilizes a balloon-tipped catheter to unclog the blocked

blood vessels. In general, as the radius of the catheter increases, the pressure

distribution and the resistive impedance raise as a result of the shrinkage of the

annular region of the artery. It is also pertinent to mention that the increase in re-

laxation time (We) which escalates the motion of blood and catheterization in the

stenosed artery with thrombosis rises the frictional resistance in the blood flow.

Due to the wider usage of catheters clinically, the presented estimations might be

useful to physicians in deciding their ensuing course of action.

7 Conclusion

In the present study, the steady incompressible axisymmetric flow of metallic

nanoparticles suspended blood flow via stenosed catheterized artery with throm-

bosis is investigated, modelling blood as non-Newtonian Carreau fluid. The gov-

erning equations of motion are solved by employing the regular perturbation method.

MATLAB/MATHEMATICA softwares are comprehensively used to create and
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execute codes in order to generate the data which are then exhibited in graphical

and tablular forms for further analysis. The influences of stenosis shape pareame-

ter, maximum depth attained by stenosis and maximum height of blood clot, Weis-

senberg number, axial displacement of the clot and flow rate on temperature, pres-

sure gradient, velocity, shear stresses at the wall and resistive impedance to flow

are analyzed. The major findings of this study are compiled below:

• Temperature of the fluid lessens with the increase in stenosis shape param-

eter and depth of stenosis which results in the reduction of flow of blood in

the artery.

• When the stenotic depth and blood clot thickens, pressure gradient surges as

a result of the increasing constriction in the artery and thus needs assistance

such as pressure to push blood from the upstream.

• Pressure gradient is also found to increase when the flow rate, Q increases.

• The rise in Weissenberg number reduces the velocity distribution, owing to

the rise in relaxation time of the fluid which intensifies the viscosity and

hence raises the frictional resistance to blood flow.

• When the position of blood clot displaces, velocity increases considerably

and the same behaviour is noted when the flow rate surges.

• The magnitude of resistance to blood flow reduces with the upsurge of flow

rate and stenosis shape parameter. The reverse character is recognized when

Weissenberg number, the depth and axial displacement of blood clot in-

creases.
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• A rise in Weissenberg number results in the significant reduction in the mag-

nitude of skin friction due to the rise in inertial forces.

• The ratio of increase in the skin friction raises slightly with the rise of dif-

ferent catheter radius and the forward movement of blood clot in the axial

direction.

• When the catheter guidewire radius is 0.18, the pressure gradient in blood

flow is observed to differ in the range of 1.21−1.43 with the axial variation

of 0.2 − 0.8 and found to decrease from 1.36 − 1.32 when the blood clot

position shifted from 0.2 to 0.6.

• When the angioplasty catheter of radius 0.3 is used, the resistance to flow

surges considerably in the range of 6.75 − 8.78 when z varies from 0.1 to

0.3 with We = 0.7.

From the obtained fascinating theoretical results and the clinical applications,

it is hoped that this contemporary mathematical model could be very useful to the

medical practitioners in predicting the nature of the movement of blood in stenotic

catheterized artery with thrombus formation. The current work shall further be

developed to pulsatile motion of blood with the incorporation of body acceler-

ation and magnetic field in order to produce a more practical model. It is also

planned to mathematically investigate the flow of blood in a cardiovascular sys-

tem with stenting, a modern technique for treating the abnormalities of aneurysm

and stenosis.
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