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Abstract. Satisfying the mobility demand is one of the biggest concerns arising 

with the increase of urban population. With many people in the road network, 

traffic congestions are present in most of the cities in the world.  The Distrito 

Nacional in Santo Domingo, capital city of Dominican Republic, is a notorious 

example of this phenomenon. Unfortunately, all the efforts to improve traffic 

experience there have had little success. 

With this work, two models have been developed using Particle Swarm Optimi-

zation (PSO): a PSO-optimized Fixed Traffic Signal Control (PSO-FTSC) and a 

PSO-optimized Neural Network-Adaptive Traffic Signal Control (PSO-NN-

ATSC) that uses 4 Neural Networks to predict phase times. 

The intersection of 27 de Febrero Avenue corner with Winston Churchill Ave-

nue was simulated using Simulation of Urban Mobility (SUMO), minimizing 

the Time Loss per vehicle during optimisation.  

The models, PSO-FTSC and PSO-NN-ATSC, present reductions of 17% and 

24% of Mean Time Loss, respectively. 

Keywords: Traffic Signal Control, Simulation of Urban Mobility, Particle 

Swarm Optimisation, Neural Network. 

1 Introduction 

The increase of traffic flow is an unavoidable consequence of population growth. The 

resulting traffic congestions are the cause of long waits for commutants and higher 

fuel consumption, which cause higher expenses and increased air pollution globally. 

Only in the United States of America (USA), 3.6 billion vehicle hours were lost due 

to traffic delay in year 2000, together with 21.6 billion liters of fuel and US$67.5 

billion because of decreased productivity [1]. The same costs in Greater Santo Do-

mingo, Dominican Republic, exceeded RD$48 million (USD$ 855 thousand) daily in 

2016 [2]. Apart from these expenses, the long waits and air pollution result in mental 

and respiratory health issues, respectively. One third of mortality related to fine par-

ticulate matter pollution in North America is caused by these emissions [3]. 
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Throughout the last 30 years, many attempts have been made to find solutions to 

this issue. The work done in this matter can be classified in one of the following 

fields: 

1. Improving road infrastructure 

2. Coordinated vehicle rerouting 

3. Diversifying mobility 

4. Traffic light signal optimisation 

Unfortunately, improving road infrastructure and diversifying mobility are not 

achievable in short term and require large investments [4]. Coordinated vehicle re-

routing is only possible if all vehicles are connected to a centralized system and if 

drivers comply with the system. 

Traffic Signal Timing (TST) optimization, on the other hand, is considered by 

Qadri et al. [4] as the fastest and cheapest way to tackle the traffic congestion prob-

lem. Hence, this project proposes a new method based on neural networks optimized 

with Particle Swarm Optimization (PSO) that adjust the phase of a traffic light signal 

in real-time. As a comparison, a model of optimum fixed signal times was developed 

using PSO as well. Both models were developed and tested on Simulation of Urban 

Mobility (SUMO) program with a sample of Santo Domingo’s road network as an 

environment. 

2 Literature Review 

2.1 Approaches to Traffic Signal Control 

Qadri et al. [3] also categorized three different approaches of Traffic Signal Control 

(TSC) [4]: 

• Fixed TSC: This approach (referred by FTSC) mostly uses offline optimization 

that returns predetermined TST parameters; hence, it is only appropriate for settings 

where there are predictable patterns of traffic. 

• Actuated TSC:  It alters TST directly after present data is captured by sensors. 

• Adaptive TSC: Here called ATSC, it is the modified form of the Actuated TSC, 

as the TSC is trained to optimize the overall traffic in real-time using present data. 

Any of these approaches can be achieved with a variety of computational tech-

niques, the most common listed below. 

Fuzzy Logic. Adacher [5] formulated a discrete delay cost function and converted it 

into a continuous function with a surrogate method in order to solve it with gradient 

algorithms. Alvarez Gil et al. [6] also used a surrogate model simulated in IT 

MICROSIM, which was optimized using fuzzy logic. Hartanti et al. [7] also opti-

mized their model using the Fuzzy Mamdani method. Another fuzzy logic approach 

was presented by Tchuitcheu et al. [8] using the data from smart cameras that are able 

to identify special vehicles to prioritize them. They also suggested this approach 

would be able to identify traffic violations and emergency situations. 
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Fuzzy Logic, as many other approaches, can be enhanced by neural networks. This 

was demonstrated by the work of Araghi et al. [9] [10], who developed an Adaptive 

Neuro-Fuzzy Inference System (ANFIS) that was optimized using metaheuristics. 

Metaheuristics. García-Nieto et al. [11] used PSO to find optimum traffic light cy-

cles in an adaptive approach for Bahía Blanca city in Argentina and Málaga city in 

Spain and tested the results in SUMO. Malecki et al. [12] also used SUMO to for 

different metaheuristic algorithms including Differential Evolution (DE), Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES), Monte Carlo, Archipelago, Genetic 

Algorithm (GA) and PSO, where CMA-ES obtained the best results. 

Zhang et al. [13] used a multi-objective optimization for signal cycle and the pro-

portion of green light on a given intersection in a modified Webster function, using 

GA after converting it to single-objective and achieving a delay reduction of 15.64%. 

Yu et al. [14] had a similar multi-objective approach using fuzzy compromise pro-

gramming, which assigns weight coefficients to each optimization objective depend-

ing on traffic measurements. 

Multi-objective GA (NSGA-II) was used by Nguyen et al. [15] and Zheng et al. 

[16]. The first one implemented a Local Search (LS) within the algorithm, forming 

NSGA-II-LS which obtained good results in early steps of optimization [15]. The 

latter used it to optimize surrogate models developed from simulations in PTV Vissim 

program [16]. 

On a different approach, Bemas et al. [17] enhanced evolution algorithms with 

neural networks, proving their results with SUMO. 

Sanchez-Medina et al. [18] and Inoue et al. [18] demonstrated that metaheuristics 

combined with powerful hardware result in high-performance models. The former one 

used a Beowulf Cluster (a multi-instruction multi-data (MIMD) computer of good 

performance/price ratio) to run cellular-automata-based microsimulators that were 

optimized using GA, obtaining good results when the number of vehicles per hour 

increased in simulations set in La Almorzara (Saragossa, Spain) [18]. The latter one 

modelled a road network as an Ising model of 50x50 nodes and to optimize it they 

went a step further by developing a Quantum Annealing algorithm (a variation of 

Simulated Annealing for quantum particles) that they ran on a quantum machine 

called Quantum Annealer 2000 from D-Wave Systems Inc [19]. However, the number 

of parameters in this model is limited by the Quantum Annealer hardware and the 

whole approach is based on the transformability of the road network to an Ising mod-

el. 

Despite having these effective models, Ferrer et al. [20] state that no traffic simula-

tion is an accurate representation of a real system due to the complexity and variabil-

ity of a city, thus, the fitness of any solution will vary when deployed in a real setting. 

They claim to overcome this issue by using larger scenarios (58 intersections, 275 

traffic-lights and 4827 vehicles derived from real data from the city of Málaga, Spain) 

and incorporating classical and iterative resampling strategies for simulating multiple 

scenarios in SUMO for each optimization run [20]. These strategies were tested with 

DE, GA, PSO and irace, which obtained the best results. irace is a software package 
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that combines heuristic optimization with a racing method, based on F-race, that itera-

tively optimizes candidate solutions for noisy problems [21]. 

Reinforcement Learning (RL) is one of the most popular techniques for developing 

ATSC. Unfortunately, for centralized methods the computational complexity grows 

exponentially with the number of considered intersections. Multi-Agent Reinforce-

ment Learning (MARL) decentralizes the approach, reducing the complexity with the 

cost of reducing the observability of the agents, as each intersection is optimized by a 

local RL agent. To solve this problem, Chu et al. [22] developed a MARL algorithm 

based on Advantage Actor Critic (A2C), where neural networks are used to estimate 

Q values and policies in RL. 

Ozan et al. [23] used a Q-Learning RL combined with Transfyt-7F to find optimum 

TST. It obtained higher results than other RL approaches reviewed by Qadri et al. [4] 

because it was able to create sub-environments for each learning event. 

Genders and Razavi [24] implemented some of the most used ATSC approaches 

including Webster function, Max-pressure and Self-Organizing Traffic Lights, along 

with deep Q-network and deep deterministic policy gradient reinforcement learning. 

The different controllers were optimised and tested in SUMO and the best perfor-

mance was achieved by Max-pressure algorithm, stating that insights from heuristic 

approaches result in higher performance than many deep learning algorithms [24]. 

Nevertheless, they also suggest that learning methods can be further developed to 

outperform the other methods. 

Dynamic Programming. Compared to the Control Optimization of an Intersection 

(COP) algorithm, with a time complexity of 𝑂(𝑇3), Samra et al. used dynamic pro-

gramming for a traffic cost function defined in time steps T that included all possible 

states of an intersection TSC, minimizable in 𝑂(𝑇) [25]. 

He et al. [26], Mehrabipour & Hajbabaie [27] and Yan et al. [28] used Mixed Inte-

ger Linear Programming (MILP) to model traffic: the first as a lane-based optimiza-

tion solved with branch and bound algorithm, the second modelled network-level 

signal timing and found the solution with rolling horizon algorithm and the third 

modelled a network-level multiband signal coordination and used vehicle trajectory 

records to compute progression bands for high traffic demands. In contrast, 

Mohebifard & Hajbabaie [29] and Yu et al. [30] used Mixed Integer Non-Linear Pro-

gramming (MINLP): the former based their approach on the Cell Transmission Model 

(CTM) and achieved a narrow convergence area and the latter implemented a double 

queue traffic flow model to keep real-time track of traffic dynamics and queue 

spillback. Yu et al. [31] also used quadratic programming to optimize vehicular and 

pedestrian TST for an isolated intersection. 

 

2.2 Traffic in Greater Santo Domingo 

In Dominican Republic, more than 2 million people are concentrated in the Greater 

Santo Domingo with a 545.4 km² area [32], having in this area the largest population 
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density in the Caribbean [33]. The Distrito Nacional, capital city of Dominican Re-

public and located in the center of Greater Santo Domingo, has only 92 km2 and hosts 

more than 1 million vehicles [34]. This creates the need of providing transportation to 

3,097,106 trips per day [33]. Of these trips, 40% are made in a private vehicle, 40% in 

public transport and 20% by foot [33]. Because of this, traffic congestions occur dai-

ly, especially in the peak hours that take place from 7:30am to 9:30am, from 12:00pm 

to 1:30pm and from 5:00pm to 7:00pm [35]. 

In 2018, the local newspaper Diario Libre used data from General Direction of 

Transit and Land Transport Security (DIGESETT in Spanish) to create a map of the 

ten key points of traffic congestion in Santo Domingo [36], shown in Fig. 1. 

 

Fig. 1. Ten key traffic congestion points in Santo Domingo [36]. The one with the white dot is 

the focus of this work. 

The primary option to address traffic bottlenecks in Dominican Republic has al-

ways been the construction of new highways and tunnels, but in the longer term, these 

alternative structures haven’t solved the problem [37]. 

Recently, in June 2020, the National Institute of Transit and Land Transport 

(INTRANT in Spanish) installed cameras that detect traffic levels in some key inter-

sections of Santo Domingo city and adjust TST accordingly [38]. However, no effects 

of this are perceived, as communicated by Eusebio Rivera Almódovar [39] when he 

stated earlier this year that Santo Domingo still needs “real intelligent traffic lights”. 

3 Methodology 

This project proposes two TSC optimization models: 

1. A FTSC model with TST optimized using PSO. 

2. An ATSC model with a PSO-optimized neural networks that control traffic 

signals. 
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Both models were developed and tested using a SUMO simulation based on the in-

tersection of 27 de Febrero Avenue corner with Winston Churchill Avenue, one of the 

key traffic congestion points of Santo Domingo [36]. These two models were com-

pared against the actual traffic signal timings currently used in the given intersection. 

The compared metrics are the Mean Time Loss among all vehicles, provided by 

SUMO at the end of the simulation, and the fuel consumption and CO2 emission per 

vehicle, estimated by SUMO during the simulation. 

The PSO was implemented using PySwarms library which connects via python 

programming to the API provided by SUMO. 

 

3.1 Simulation 

The selected intersection joins two of the largest avenues in Santo Domingo, hosting 

high traffic levels variable throughout the day. The proximity that this intersection has 

to other key points means that improving traffic in this intersection can possibly result 

at improving traffic in the neighbouring areas. 

 

Fig. 2. 27 de Febrero Av. corner with Winston Churchill Av. from Google Maps [40]. 

For simulation purposes, green light phases are even numbers 0, 2, 4, 6 and the 

consecutive odd numbers 1, 3, 5, 7 are the respective yellow light phases. The traffic 

signal operates with fixed TST as specified in Figures 3-6 and Table 1. 
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Table 1. Current TST in seconds for 27 de Febrero Av. corner with Winston Churchill Av. 

from INTRANT [40] 

Phase SN NS WE EW 

Green 28 36 36 34 

Yellow 4 4 4 4 

Red 118 110 110 112 

Cycle 150 

 

Even though this intersection has just one set of TST for the whole day, the cross-

ing times vary a lot, which demands a variable TST, as visible in Table 2. 

Fig. 3. Traffic Phase 0: West to East (WE) 
 

Fig. 4. Traffic Phase 2: South to North (SN) 

Fig. 5. Traffic Phase 4: East to West (EW) 
 

Fig. 6. Traffic Phase 6: North to South (NS) 
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Table 2. Crossing times in seconds for 27 de Febrero Av. corner with Winston Churchill Av. 

from INTRANT [41] 

Phase SN NS WE EW 

Crossing time in 

AM hours 
175 240 32 No data 

Crossing time in 

PM hours 
647 325 438 705 

 

Because of the lack of data of actual vehicle flow in the intersection, an arbitrary 

variable vehicle flow is generated for the simulation by defining nine Traffic Assign-

ment Zones (TAZs) including road segments (called edges in SUMO) on the border of 

the road network and defining Origin-Destination (OD) matrices between those TAZs 

for a total of 5244 vehicles during 3600 seconds of simulation runtime. 

 

3.2 Traffic Optimizer Models 

PSO-Optimized Fixed Traffic Signal Control (PSO-FTSC). The FTSC operates 

with the following algorithm: 

Table 3. Algorithm for Fixed Traffic Signal Control 

Pseudocode for FTSC 

1. while active: 

2.        if current_traffic_phase in [0, 2, 4, 6]: //green phases 

3.             if time_in_phase ≥ phase_time[current_traffic_phase]: 

4.                 current_traffic_phase += 1 

5.       else if current_traffic_phase in [1, 3, 5, 7]: //yellow phases 

6.            if time_in_phase ≥ 4 seconds: 

7.                  current_traffic_phase += 1 

8. end while 

 

phase_time is an array of four dimensions, only indexable by even numbers be-

tween 0 and 6. The PSO-FTSC model is a 4-dimensional optimization of the green 

phases time, which is bound to a minimum value of 7 seconds for safety purposes 

[41]. Each optimization iteration requires a new simulation instance. The mean time 

loss value provided by SUMO at the end of simulation is the cost function to be min-

imized with PSO algorithm (see Fig. 7). 
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Fig. 7. PySwarms and SUMO interactions in PSO-FTSC 

PSO-Optimized Neural Network for Adaptive Traffic Signal Control (PSO-NN-

ATSC). In the proposed approach here, the traffic lights are controlled by the same 

rules of previous algorithm, except that phase_time varies on every cycle with the 

following algorithm: 

Table 4. Algorithm for the proposed Adaptive Traffic Signal Control. 

Pseudocode for ATSC 

1. for phase in [0, 2, 4, 6]: //green phases      

2.                 time_predictor[phase] = neural_network(parameters[phase]) 

3. while active:  

4.        data = get_vehicle_count() 

5.        if changing_to_phase in [0, 2, 4, 6]: //green phases      

6.                 current_traffic_phase = assign_phase_number() 

7.                 phase_time = time_predictor.predict(data) 

8. end while 

 

time_predictor is an array of four neural networks which predict the phase time re-

spective to the four green phases. Parameters is an array of four groups of 49 parame-

ters respective to each neural network. Thus, it is required to optimize 196 parameters 

in total. 

When the traffic light turns green, vehicle counts are taken from edges adjacent to 

the intersection and processed by the correspondent neural network, which returns the 

amount of seconds that the green phase should last. 

Hence, The PSO-NN-ATSC requires a 196-dimensional optimization (see Fig. 8). 
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Fig. 8. PySwarms, SUMO and Neural Network interactions 

Neural Network for traffic times predictions. The proposed neural network is illustrat-

ed here: 

 

Fig. 9. Proposed Neural Network 
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The input layer receives data from SUMO. It has twelve input placeholders for the 

number of vehicles of the eight adjacent edges of the intersection, i.e., before (_i suf-

fix) and after (_o suffix) the intersection in each of the four directions, and four more 

for the vehicles that are aligned on the left waiting to turn left on each side of the 

intersection (_t suffix). 

This is done because, in the simulation, sometimes most of the vehicles want to 

turn left, thus, they align to the left lane and leave the middle and right ones empty. 

Without this data, the neural network might mistakenly perceive that there are not 

many jammed vehicles on that side of the intersection. 

In addition, the vehicle count after the intersection lets the neural network know if 

the edge ahead is empty or full, avoiding the mistake of allocating much green phase 

time for vehicles that will find no space to cross. 

As predictions are taken every 5 seconds, SUMO adds the counts taken in each 

second. 

 

Fig. 10. Data collection points (in yellow) 

For each side of the intersection, the Movement Aggregation layer computes the 

weighted sum of: 

• The number of vehicles that will go straight with the number of vehicles af-

ter the intersection (_s suffix). 

• The number of vehicles that will turn left with the number of vehicles after 

the intersection on its correspondent side (_t suffix). 

This is formulated in Equation 1. 
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[
 
 
 
 
 
 
 
𝑚𝑊𝐸𝑠
𝑚𝑊𝐸𝑡
𝑚𝐸𝑊𝑠
𝑚𝐸𝑊𝑡
𝑚𝑁𝑆𝑠
𝑚𝑁𝑆𝑡
𝑚𝑆𝑁𝑠
𝑚𝑆𝑁𝑡 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑤𝑊𝐸𝑖

∗ 𝑣𝑊𝐸𝑖
+ 𝑤𝑊𝐸𝑜

∗ 𝑣𝑊𝐸𝑜
+ 𝑏𝑊𝐸𝑠

𝑤𝑊𝐸𝑖𝑡
∗ 𝑣𝑊𝐸𝑡

+ 𝑤𝑊𝐸𝑜𝑡
∗ 𝑣𝑆𝑁𝑜

+ 𝑏𝑊𝐸𝑡

𝑤𝐸𝑊𝑖
∗ 𝑣𝐸𝑊𝑖

+ 𝑤𝐸𝑊𝑜
∗ 𝑣𝐸𝑊𝑜

+ 𝑏𝐸𝑊𝑠

𝑤𝐸𝑊𝑖𝑡
∗ 𝑣𝐸𝑊𝑡

+ 𝑤𝐸𝑊𝑜𝑡
∗ 𝑣𝑁𝑆𝑜

+ 𝑏𝐸𝑊𝑡

𝑤𝑁𝑆𝑖
∗ 𝑣𝑁𝑆𝑖

+ 𝑤𝑁𝑆𝑜
∗ 𝑣𝑁𝑆𝑜

+ 𝑏𝑁𝑆𝑠

𝑤𝑁𝑆𝑖𝑡
∗ 𝑣𝑁𝑆𝑡

+ 𝑤𝑁𝑆𝑜𝑡
∗ 𝑣𝑊𝐸𝑜

+ 𝑏𝑁𝑆𝑡

𝑤𝑆𝑁𝑖
∗ 𝑣𝑆𝑁𝑖

+ 𝑤𝑆𝑁𝑜
∗ 𝑣𝑆𝑁𝑜

+ 𝑏𝑆𝑁𝑠

𝑤𝑆𝑁𝑖𝑡
∗ 𝑣𝑆𝑁𝑡

+ 𝑤𝑆𝑁𝑜𝑡
∗ 𝑣𝐸𝑊𝑜

+ 𝑏𝑆𝑁𝑡 ]
 
 
 
 
 
 
 
 
 

     (1) 

With this equation, the Movement Layer sums up to 24 parameters, counting 2 

weights and 1 bias for each of the options, straight and turning, for each of the 4 di-

rections. 

The Edge Aggregation layer takes the movement data and aggregates it one step 

further by computing the weighted sum of the straight and turning values for each 

direction (see Equation 2). 

[

𝑎𝑊𝐸

𝑎𝐸𝑊
𝑎𝑁𝑆

𝑎𝑆𝑁

] =

[
 
 
 
 
𝑤𝑊𝐸𝑠

∗ 𝑚𝑊𝐸𝑠
+ 𝑤𝑊𝐸𝑡

∗ 𝑚𝑊𝐸𝑡
+ 𝑏𝑊𝐸

𝑤𝐸𝑊𝑠
∗ 𝑚𝐸𝑊𝑠

+ 𝑤𝐸𝑊𝑡
∗ 𝑚𝐸𝑊𝑡

+ 𝑏𝐸𝑊

𝑤𝑁𝑆𝑠
∗ 𝑚𝑁𝑆𝑠

+ 𝑤𝑁𝑆𝑡
∗ 𝑚𝑁𝑆𝑡

+ 𝑏𝑁𝑆

𝑤𝑆𝑁𝑠
∗ 𝑚𝑆𝑁𝑠

+ 𝑤𝑆𝑁𝑡
∗ 𝑚𝑆𝑁𝑡

+ 𝑏𝑆𝑁 ]
 
 
 
 

     (2) 

 

The Edge Aggregation layer has 12 parameters, including 2 weights and 1 bias for 

each of the 4 directions. 

The hidden layer is a standard fully connected layer with 2 neurons. 

[
𝑙1
𝑙2

] = [
𝑤1𝑊𝐸

𝑤1𝐸𝑊
𝑤1𝑁𝑆

𝑤1𝑆𝑁
𝑤2𝑊𝐸

𝑤2𝐸𝑊
𝑤2𝑁𝑆

𝑤2𝑆𝑁
] × [

𝑎𝑊𝐸

𝑎𝐸𝑊
𝑎𝑁𝑆

𝑎𝑆𝑁

] + [
𝑏1

𝑏2
]     (3) 

 

In order to add some non-linearity, the hidden layer neurons arepassed through a 

vectorised sigmoid function, 

[
𝑙1𝑆

𝑙2𝑆

] = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ([
𝑙1
𝑙2

])           (4) 

 

where the sigmoid function is: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑙) =
1

1+𝑒−𝑙           (5) 

 

The hidden layer has 10 parameters: 2 weights and 1 bias for each of the 2 outputs. 

 

The output layer computes the current green phase time as the weighted sum of 

the 2 neurons from the hidden layer: 

𝑃ℎ𝑎𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑤1𝑙1𝑠
+ 𝑤2𝑙2𝑠

+ 𝑏         (6) 

 

The output layer has only 2 weights and 1 bias, thus, only 3 parameters. 
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3.3 Particle Swarm Optimization Implementation 

PSO is a metaheuristic optimization algorithm proposed for the first time by Kennedy 

and Eberhart in 1995 [43] that uses the way in which different swarm-organized ani-

mals (e.g., birds) move in group in order to converge on a certain point. A set of 

agents (particles) 𝒙 ∈ 𝑿 are defined which move in the search space of solutions in 

every iteration, all influenced by their local best and the overall global best cost 

among all the particles. 

In PSO-FTSC, each agent is a set of the four green phase timings, and in PSO-NN-

ATSC, each agent is a set of 196 parameters for the neural networks. Each agent is 

aiming to compute the lowest Mean Time Loss in a simulation. and obtaining the cost 

function requires running a complete simulation with a given set of timings to com-

pute the mean time loss at the end of the simulation. 

Table 5. Algorithm for Particle Swarm Optimization 

Pseudocode for PSO 

1. instance_n_agents 

2. i = 0  // Iteration number 

3. while terminating criteria not reached: 

4.        for a in agent  do: 

5.             instance_simulation(agents) 

6.             run_simulation() 

7.             cost = computeMeanTimeLoss() 

8.             𝑣𝑎
𝑖+1 = 𝑤𝑣𝑎

𝑖 + 𝑟𝑎𝑛𝑑(0, 𝑐1) ∗ (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑎
𝑖 ) + 𝑟𝑎𝑛𝑑(0, 𝑐2) ∗ (𝑥𝑎

𝑏𝑒𝑠𝑡 − 𝑥𝑎
𝑖 ) 

9.             𝑥𝑎
𝑖+1 = 𝑥𝑎

𝑖 + 𝑣𝑎
𝑖+1  

10.        end for 

11. end while 

 

In this algorithm: 

• 𝒙𝒂
𝒊

 is the value of agent a in the iteration i. 

• 𝒙𝒂
𝒃𝒆𝒔𝒕 is the value of agent a correspondent to its lowest mean time loss. 

• 𝒙𝒃𝒆𝒔𝒕 is the agent value correspondent to the lowest mean time loss among 

all agents. 

• 𝒗𝒂
𝒊  is the velocity of each agent in the swarm. 

• 𝒓𝒂𝒏𝒅(𝟎, 𝒄) is a function that generates a uniform stochastic number be-

tween 0 and c. 

• 𝒘, 𝒄𝟏 and 𝒄𝟐 are hyperparameters of PSO and have the same dimensionali-

ty of the agents. 

In that way, the value of each agent in the next iteration 𝑥𝑎
𝑖+1 is influenced by: 

1. The current value. 

2. The weighted sum of: 

a.  The current velocity. 

b. the difference between the current value and the global best. 

c. the difference between the current value and the agent best. 
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The following PSO parameters were defined: 

• w = 0.9 

• c1 = c2 = 0.2 

4 Results 

4.1 Baseline model 

As baseline model, the real FTSC was modelled in SUMO, generating the following 

traffic pattern: 

 

Fig. 11. Traffic pattern of baseline model 

4.2 PSO-FTSC 

The PSO-FTSC model optimized the green signal timings using 3 agents through 20 

iterations of PSO, creating the Mean Time Loss curve in Fig. 12. 

PSO converged in the solution in Table 6. 

Table 6. PSO-optimised FTSC timings 

Phase SN NS WE EW 

Green 48 59 47 55 

Yellow 4 4 4 4 

Red 173 162 174 166 

Cycle 225 
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Fig. 12. PSO-FTSC cost history 

 

This is the resulting traffic pattern in the intersection: 

 

Fig. 13. Traffic pattern of PSO-FTSC 
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4.3 PSO-NN-ATSC 

The PSO-NN-ATSC model optimized the 196 parameters for four neural networks 

using 6 agents through 10 iterations of PSO, creating the Mean Time Loss curve in 

Fig. 14. 

 

Fig. 14. PSO-NN-ATSC cost history 

Unlike the other models, it is not practical to show the solution here, as it is an ar-

ray of 196 parameters. The neural networks decide the green phase duration in each 

cycle, generating the traffic pattern in Fig 15. 
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Fig. 15. Traffic pattern of PSO-NN-ATSC 

4.4 Comparison between models 

 

Fig. 16. Comparison of Traffic Pattern in the NS side 
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Fig. 17. Comparison of Fuel Consumption pattern 

 

Fig. 18. Comparison of CO2 Emission pattern 

Table 7. Overall results 

Metric Baseline model PSO-Fixed TSC PSO NN-ATSC 

Number of vehicles 5244 5244 5244 

Last vehicle appearance time 3600 seconds 3600 seconds 3600 seconds 

Last vehicle finishes on 4885 seconds 4367 seconds 4221 seconds 

Simulation software running time* 55.83 seconds 49.76 seconds 47.04 seconds 

Mean Time Loss 204 seconds 169 seconds 155 seconds 

Estimated Total Fuel Consumption 1870 litters 1698 litters 1605 litters 

Estimated Total CO2 Emission 4352 kilograms 3954 kilograms 3736 kilograms 
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* These runtime results depend on hardware specifications. 

 
Fig. 19.. Mean Time Loss 

differences 

 
Fig. 20.. Fuel Consumption 

differences 

 
Fig. 21. Fuel Consumption 

differences 

 

5 Discussion 

The results shown here are subject to SUMO driving algorithm and thus, the numbers 

can change when analyzing specific driving patterns of drivers in Dominican Repub-

lic. The variability can be huge when adding human behavior concerns to the variable. 

The PSO-FTSC was able to reduce 17% of the time loss from the original model, 

reducing up to 35 seconds of mean loss time per vehicle. Apart from that, it also re-

duced 172 litters of fuel consumption and 398 kilograms of CO2 emission. 

The PSO NN-ATSC on its side was able to reduce the numbers even further, tak-

ing off 24% of mean time loss (49 s) per vehicle. The difference in fuel consumption 

between the real TSC and PSO NN-TSC is 265 litters, and in CO2 emission is 616 

kilograms. 

A mean time loss reduction of 49 seconds means that in average, each of those 

5244 vehicles could arrive 49 seconds faster in their short path through the simula-

tion. That is: the PSO NN-TSC saved 𝟐𝟓𝟔, 𝟗𝟓𝟔 s = 71.38 h of vehicle time for the 

total 5244 vehicles. 

Compared to the PSO-Fixed TSC, the PSO NN-TSC saved 14 s of Mean Time 

Loss. For the total of 5244, this scales up to 71,3416 = 20.39 h of vehicle time. 

The perceived traffic congestion is observed from the simulation in Figures 22-27. 
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Fig. 22. Real model traffic congestion 1  

Fig. 23. Real model traffic congestion 2 

 
Fig. 24. PSO-Fixed TSC traffic congestion 1 

 
Fig. 25. PSO-Fixed TSC traffic congestion 1 

 
Fig. 26. PSO NN-ATSC traffic congestion 1 

 
Fig. 27. PSO NN-ATSC traffic congestion 2 
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• In the real model, a constant congestion is perceived. 

• In the PSO-FTSC, larger congestions are accumulated sometimes but they 

disappear once the correspondent side turns green. However, after the green 

phase, these vehicles can cumulate again on the next intersection. 

• In the PSO-NN-ATSC, the congestions seem equal to the PSO-Fixed TSC, 

but the road network is able to receive those vehicles without causing more 

congestion after the intersection. 

6 Conclusions 

Both the proposed models can improve the current traffic situation in Santo Domingo, 

with PSO-NN-ATSC having the best results. 

Creating an ATSC supposes the investment in Internet of Things (IoT) for vehicle 

count system, data processing and traffic signal controls. Because of this, providing 

stakeholders with a PSO-FTSC could temporarily improve the transit in Santo Do-

mingo as a preliminary solution while the infrastructure for a more complex system is 

prepared. However, as mentioned by Skanda Vivek [44], there is always the possibil-

ity of having events such as sports, concerts. The city needs to be prepared even to 

emergencies like evacuations, accidents and more. In such events, the traffic is unpre-

dictable and might present a very severe variability. Because of this, having an Adap-

tive Traffic Signal Control is always recommended. 

7 Future Work 

This work can be extended by researching real traffic data of Santo Domingo and 

modelling it in SUMO, measuring the performance of both, PSO-FTSC and PSO-NN-

ATSC on this data. 

Consecutively, the models can be applied. To implement the PSO NN-ATSC in re-

al world, there are, among others, two ways in which the data currently generated by 

SUMO could be collected in real-time: 

• Sensors (e.g., smart cameras)  

• Data from a satellite data provider (e.g., Google Maps) 

Additionally, the PSO-NN-ATSC can be applied to multiple intersections simulta-

neously. In this project, although only one intersection was optimized, the overall 

time loss of the road network was taken as a cost function, guaranteeing that this in-

tersection was optimized to its best to improve the overall traffic. However, bigger 

improvements could be achieved if multiple signalized intersections are considered. 

For this, PSO can be scaled to optimize parameters to all intersections parallelly. 
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