
A Raspberry Pi computer vision system for self-driving

cars

Zach Isherwood1 and Emanuele Lindo Secco1[0000-0002-3269-6749]

1 School of Mathematics, Computer Science & Engineering, Liverpool Hope University, L16

9JD, UK
18004704@hope.ac.uk, seccoe@hope.ac.uk

Abstract. This paper presents a prototype of a self-driving vehicle that can

detect the lane that it is currently in and can aim to maintain a central position

within that lane; this is to be done without the use of special sensors or devices

and utilizing only a low-cost camera and processing unit. The proposed system

uses a hand-built detection system to observe the lane markings using computer

vision, then using these given lines, calculate the trajectory to the center of the

lane. After locating the center of the lane, the system provides the steering

heading that the vehicle needs to maintain to continuously self-correct itself;

this process is real-time performed with a sampling frequency of 20 Hz. Due to

the increased number of calculations, the heading is smoothed to remove any

anomalies in observations made by the system. Since this system is a prototype,

the required processing power used in an actual vehicle for this application

would be much higher since the budget of the components would be more

significant; a higher processing speed would lead to an overall increased frame

rate of the system. In addition, a higher frame rate would be required for higher

speeds of the vehicle to allow for an accurate and smooth calculation of

heading. The prototype is fully operational within an urban environment where

road markings are fully and clearly defined along with well-lit and smooth road

surfaces.

Keywords: Self-Driving System, Raspberry Pi, Low-Cost System.

1 Introduction

1.1 Outline of the field of work

Driving a vehicle is a complex process due to the number of parameters that need

to be evaluated and reacted to accordingly each second. Some examples of this may

include but are not limited to (i) the vehicle’s speed compared to that of the vehicle

ahead, (ii) offset to the center of the road, (iii) lighting conditions, (iv) stopping

distances, (v) road conditions or road occupancy, and so on.

The ongoing increase of licensed vehicles entering the road per year as well as the

increased population and town sizes results in busier roads and therefore more room

for human error, partially due to a lack of observational awareness, device distraction,

mailto:18004704@hope.ac.uk
mailto:seccoe@hope.ac.uk

lack of concentration, or other road users poor driving standards; these facts result in

an increased requirement to remain aware of other road users, their actions or indeed

inactions. Hence, car manufacturers are seeking out assistive features for some of

these processes which can seek to account for any lapses that drivers may incur due to

this increased congestion.

Tesla is arguably the leading car manufacturer working towards autonomous

vehicles; in the UK alone, there is recorded to be 90,900 Tesla vehicles on the road

(as of November 2020); this was a 336% increase from 2019, where 27,000 vehicles

were recorded [1]. Current Tesla autopilot system can control the car with limited

assistance from the driver. The car can maintain central road positioning, avoid

collisions with obstacles in its path, adhere to traffic laws such as road markings and

signs. The system uses 8 surrounding cameras to provide full 360° of vision with a

potential distance of up to 250 m; there are also 12 ultrasonic sensors around the

vehicle and a forward-facing radar for low-visibility conditions such as fog or heavy

rain [2].

Although Tesla models have the capability of completing an entire journey with

little to no intervention from the driver, the autopilot feature is still marketed as an

assistive feature to aid with the most burdensome parts of driving and that the car

requires active supervision while the autopilot feature is enabled.

1.2 Ethics of the system

False or poor marketing, or more particularly the poor user understanding of the

implemented safety systems, can lead to an increased belief of complete full

autonomous travel. These beliefs can, and have, been known to be the root cause of

avoidable accidents due to the driver not being fully attentive or engaged, or, in a

recent extreme circumstance, not even in the driver’s seat [3].

The sensationalistic media coverage of these incidents can often misrepresent the

assistive features that these vehicles present, most commonly from overestimating

their functions and ability to navigate without human aid by seeking to lay blame for

these incidents on the vehicle or devices themselves rather than the lack of required

interactions or social responsibility that the owner/occupier of the vehicle should have

had at the time of the incident, i.e. not being in the driving seat at the time of a crash.

The fact that as humans we are already willing to adapt and or surrender our controls

within vehicles based on the existence of such devices, and capabilities, is an ongoing

conundrum. We like our control, we like to be able to drive where, when and how we

like, but conversely, we’re happy to relinquish this control when it suits us. Based on

the content of sci-fi films we can see such elements becoming a reality and,

ultimately, we are willing to accept these changes.

The prototype system detailed within this paper is not designed to drive the whole

journey of the vehicle but instead to reduce fatigue on long and relatively unchanging

parts of the journey, such as a motorway or long consistent road. When combined

with other safety devices on the vehicle it can allow light touch driving rather than

full hand on steering and control. As with other manufacturers' systems, the driver

should always be conscious and aware of their surroundings even when the system

has control.

The advances of such systems in vehicles leads to the ethical dilemmas of moral

decision-making being handed to autonomous systems or Artificial Intelligence rather

than remaining in the hands of the fully functioning and morally capable individual.

These dilemmas are at the heart of today’s developments and will continue to be so as

both current and future consumers will not seek to take the lesser of two safe options

where choices are available.

In the end, such systems should be used correctly and fairly - users should always

follow the guidelines set by the manufacturer without fail. This is a point that should

be reiterated to vehicle users at the point of sale and in all literature thereafter. Such

reiterations would seek to ensure that the user does not become too reliant on the

system and start to make poor decisions due to lack of attention as a result.

This paper is not seeking to address these here but rather to identify that one step

forward leads inexorably to the next but in doing so we must also be aware that the

path will contain a large number of obstacles and resistance to change. It does seek to

demonstrate the effective use of computer vision for practical everyday use to help

with a repetitive task, leading into the work towards self-driving vehicles, capable of

adhering to local speeds limits, maintaining road position - even in changing road

conditions - and avoiding collisions with fixed or moveable obstacles such as road

furniture, pedestrians, cyclists or similar.

Fig. 1. The Raspberry Pi 4 board, the Vitada webcam and the PiCar-S

2 Materials & Equipment

2.1 Hardware

Embedded system - The main controller of the system is a Raspberry Pi model 4

which is a small, lightweight and inexpensive computer. This embedded system will

handle all of the computation, from controlling the car itself to detecting and tracking

the lane. The installed operating system is Raspbian, which is a free Linux version

built solely for the Raspberry Pi line (Figure 1, top left panel - [4]).

Camera - The visual input of the system is implemented by using a Vitade 928A Pro

USB Computer WebCam; this device was selected over a standard Raspberry Pi

camera due to its more rigid structure and its automatic light correction functionality

(Figure 1, top right panel). This camera has a 80° wide-angle lens and allows video

acquisition with a resolution of 1080 pm and a frame rate of 30 fps.

Sunfounder PiCar-S - The car used for the prototype model of the system is a PiCar-S

from Sunfounder (Figure 1, bottom panel). This PiCar is designed to run from a

Raspberry Pi using a PiCar library which is provided online. The car comes with

correct drivers and wires to run the motors safely as well as accurately control the

front servo for the steering heading. Three different front modules are also included;

these are an ultrasonic sensor and 2 types of infrared sensors for line following

capabilities; however, these additional modules are not used in our design.

Power supply - The PiCar system requires two 18650 Lithium-ion Rechargeable

Batteries to operate with sufficient power. These batteries are often used for high-

drain applications such as this project, these batteries plug into the hat attached to the

Pi to power the whole system including the Pi and the USB camera. Each battery

supplies 3.7 V and 4800 mAh.

2.2 Software

Python - The programming language used to control the system is Python. Python is a

high level and highly versatile programming language that allows for the use of

various types of libraries and different programming paradigms. The language’s

design tries to help produce logical and easily readable code; this therefore not only

helps in the development of a system but also in the debugging and maintenance

phases of the system. The version used in the system is Python 3.8, this is the most up

to date version compatible with the use of the OpenCV library.

OpenCV - OpenCV is an open-source computer vision library that provides many

programming functions for the use of real-time computer vision and claims to have

more than 2500 optimized algorithms to aid in this process. Typical uses of the library

include object and face recognition, object tracking and simple to complex image

manipulation [5]. In this work, OpenCV is used to capture a frame from the camera,

pass that frame through the image manipulation pipeline to prepare it for line

detection [6]. This pipeline is as follows: (i) Load in the frame, (ii) convert the frame

from BGR to RGB, (iii) grayscale the frame, (iv) blur the frame and (v) apply edge

detection. In addition, functions from the library such as (vi) hough lines and (vii)

canny edge detection are also used to find the road’s edges.

VNC Connect - Virtual Network Computing (VNC) Connect is a remote desktop

software that enables the user to control another device/computer over an internet

connection as long as that device also has VNC Connect installed and allows remote

access. The device that is being connected to has VNC server installed, and the device

used to control from has VNC Viewer installed. Sends inputs such as mouse

movements and keystrokes over the internet to the other device. The display is also

sent over the internet so the user can see in near real-time what is happening on the

device. Used to control the pi without need to have a keyboard and mouse along with

a monitor constantly plugged in. Allows the project to be constantly tested and

improved upon without interference.

Pycharm IDE - Before the system was deployed to the Raspberry Pi, it was

programmed using the Pycharm IDE. Pycharm was developed specifically for the use

of the Python Programming Language and aims to improve the user’s experience in

terms of productivity and useability. Functions, classes, loops and conditional

statements can all be collapsed to allow a user to traverse a larger program with less

hassle.

Fig. 2. Implementation of the ‘Loading an Image Frame’ and of the ‘Gaussian Blur

and Canny Edge Detection’ (left and right panels, respectively)

3 Methods & Results

3.1 Basic Requirements

Within a lane assist system, two fundamental processes need to occur. The first is

perceiving and tracking the lane lines; the second uses these given lines to calculate

the wheel heading to steer the vehicle in the correct direction to remain within the

lane. Finally, the system needs to work on a live video feed from the USB webcam.

However, throughout the development, the system can be tested on an image frame

since live video is just an iterative loop of loading in image frames.

3.2 Implementation – image processing

Loading an Image Frame - The first step needed for the image processing is to load

the image frame into a variable; in this case, the sample image is test.jpg, the frame is

loaded and stored in the variable frame using the cv2.imread() function (Figure 2).

The frame can then be converted into a single-color channel using the cv2.cvtColor()

function; here, the loaded frame is passed into the function along with the code for the

color conversion. The color formatting for OpenCV is Blue, Green, Red (BGR)

instead of the standard RGB; therefore, the color conversion required is from BGR to

Grayscale using cv2.COLOR_BGR2GRAY. The two frames are then displayed on the

screen using cv2.imshow().

Gaussian Blur and Canny Edge Detection - Once the image frame has been loaded

and converted into a grayscale format, the next step is to detect any edges that the

image can find. Before this can be done, the frame needs to be blurred slightly to

remove noisy parts of the image that may interfere with finding the lines (Figure 2).

The frame is blurred using the following function:

cv2.GaussianBlur(src, ksize, σx, σy, borderType)

where

src - Image source / Frame to be used

ksize - Kernel size, the standard is a 5x5 matrix

σx - Standard deviation of the kernel in the horizontal axis

σy - Standard deviation of the kernel in the vertical axis

borderType - Applies a border to the boundaries of the image while the

kernel is applied

Gaussian Blur - The Gaussian blur function checks each pixel in the image and

compares it to the pixels in the surrounding predefined box (kernel). A weight is then

applied to each pixel within this kernel; more weight is added to the pixel in the

center of the kernel compared to the pixels further away from the center [7]. All of the

pixels within the kernel are then added together and an average is taken, the central

pixel is then replaced with this average value. This is an iterative process that occurs

for every pixel in the image.

𝐾 =
1

25

[

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1]

The kernel value can be any number, however, it is strongly recommended to use

an odd-square kernel such as (5,5) or (7,7) to allow for a central pixel in the kernel.

The σ parameter controls the variation around the mean value of the kernel, larger

values of σ allow for more variety around the mean, whereas smaller values allow less

variety; if the value is zero, then the kernel is applied to every pixel in the image. If

only σx is specified, σy is taken as equal to σx. If both are given as zeros, they are

calculated from the kernel size [5]. Once the frame has been blurred, it is then stored

in a new variable called blurred_frame that can be used to detect the edges of the

lines within the frame.

Fig. 3. Completed Edge Detected Frame

Canny Edge Detection - Once the frame has been blurred, the next step is to detect the

edges of any lines using cv2.Canny(). The summary of the multiple stages of the

command is as follows [8]:

1. Find intensity Gradient of the frame - identify parts of the frame with the most

substantial intensity gradients (using Sobel kernel)

2. Non-maximum Suppression - Thin out edges to removes pixels that might not be

part of the edge

3. Hysteresis thresholding

▪ Accepting pixels as edges if the intensity gradient value exceeds an upper

threshold (maxVal).

▪ Rejecting pixels as edges if the intensity gradient value is below a lower

threshold (minVal).

▪ If a pixel is between the two thresholds, accept it only if it is adjacent to a

pixel that is above the upper threshold.

The Canny function takes the following arguments:

cv2.Canny(src, threshold1, threshold2)

where

Src - This is the frame to input into the Canny function

Threshold1 - This the minimum value (minVal)

Threshold2 - This is the maximum value (maxVal)

These two defined thresholds are used in the hysteresis process. Figure 3 shows the

result of this image processing.

Fig. 4. Region of Interest (RoI)

Region of Interest (ROI) - The Canny frame is a step closer to detecting lines in the

frame; however, the frame is full of lines that the system would find redundant and

noisy. The best way to remove this excess noise is to mask out a region of interest;

only lines within this region will be detected [9].

Defining an effective region requires the camera to be calibrated correctly since

the region of interest is not dynamic; the region is defined before the program runs.

Incorrectly calibrating the camera or defining the region of interest to be too small can

result in the system being unable to find the lane lines. On the other hand, making the

region too large can cause a noisy estimation of the heading; therefore, this region

needs to be fine-tuned to each setup it is used in. We use a function which declares a

polygon named mask_area using a NumPy array; anything outside this polygon is

disregarded as noise since it is not within the vehicle’s path and could cause

complications such as detecting other lanes lines, which would in turn, return an

incorrect steering heading. Therefore, it holds:

▪ mask = np.zero_like(frame) sets a NumPy array full of zeros, with the same

dimensions as the original frame.

▪ cv2.fillPoly(mask, mask_area, 255) This command fills the empty mask with 1’s

instead of the region defined by the mask area, the rest of the array is left as

zero’s.

Figure 4 shows the result of this further step of the image processing. The next

step is to store only the masked area into the masked image frame, this is done using

masked_image = cv2.bitwise_and (frame, mask). The bitwise uses the AND operator

to detect where edges are detected in both the frame and the mask.

Fig. 5. Adding lines to the original frame

3.3 Implementation – line definitions

Hough Lines Transform - The Hough line transform is an extraction method used to

detect straight lines in an image frame, which works perfectly with the previously

created isolated region from the Canny frame. OpenCV has two methods of using the

hough lines transform, the first is the standard cv2.HoughLines, the second is the

cv2.HoughLinesP() which is the Probabilistic Hough Lines Transform. The proposed

system uses the cv2.HoughLinesP() as it finds the extremities of each line which gives

a much more accurate reading to be used to calculate the heading required to correct

the current heading of the vehicle. The values minLineLength and maxLineGap need

to be adjusted depending on the camera resolution, distance to the road and the size of

the region defined. If the values are too large, no lines will be found, if the values are

too small too many lines will be detected as well as many false. This function does

not display the lines on the image, it instead finds the coordinates of any line that is

found and stores it in a NumPy array called lines.

Draw Lines - The lines found in the previous function are passed through, along with

the empty frame to allow for the lane lines to be calculated and drawn onto the empty

frame. This returned frame can then later be overlapped onto the original image [10].

Drawing Lane Lines – Then the first step is to allocate each line found in the array to

either the right or left lanes. This can be done using a nested for loop that separates

the x1, y1 and the x2, y2 points in each line from the array; these points are then passed

through the np.polyfit() function to get the gradient and y-intercept of the line. If the

gradient of the line is negative, the line is from the left lane; otherwise, the line is

from the right lane. After all the lines in the frame have been allocated to a lane, the

next step is to check there are both lane lines found, as, for the current test frame, both

lanes are present. To do this, the system checks that there are coordinates stored in the

left_gradient and right_gradient arrays. The maximum and minimum values of the Y-

axis are already known and are defined by the region of interest. All that is required to

find the points of each line is to find the x1 and x2 values, this can be done by

rearranging the y = mx+c equation into x = (y-c)/m. Once these points have been

calculated, they can then be drawn onto the image using the cv2.line() function which

takes the arguments: (x1, y1), (x2, y2), color, thickness.

Add lines to the original frame - Once the lines have been drawn onto the empty

frame, they can be overlapped onto the original frame using cv2.addWeighted(). The

weighted frame overlays the two frames with the opacity of the original frame

reduced slightly in order for the yellow lane line drawn on the image to show through

the white of the actual lane line (Figure 5).

Heading Line - Adding a trajectory line is a fairly simple process once the lane lines

have been detected, the lower point of the line will always come from the center of

the frame, this is assuming the camera is calibrated to the center of the vehicle. The

upper point of the line takes the average between the right and left lane lines as this is

the center of the lane (regardless of where the vehicle is positioned within the lane).

This line has no other purpose than a visual representation of the desired vehicle path

for the user [11].

Calculating Heading - The heading function reads in four parameters, the first being

the line_frame; this is the frame that the heading text will be displayed on. The

upper_left_width and upper_right_width are the x2 values for the right and left lane.

Finally, min_height is the highest y-coordinate value recorded for the lines. The front

wheels of the PiCar are controlled by a servo with a range of motion from 0° to 180°,

therefore when the line is straight, the servo control should receive a 90°, a left turn

should be between 0° and 89°, whereas a right turn should be between 91° and 180°.

The steering angle is calculated using trigonometry with the offset of both the x-axis

and y-axis.

Detecting Only One Lane - Until this point, the system has only been able to calculate

headings and line trajectories if both lanes were detected. If only one lane was found,

the system would stop giving a steering heading and break the lane tracking, which is

not optimal and should be amended [12, 13]. The approach is taken to this with the

theory that if only one lane is detected, the vehicle is on a curve/turn as shown in the

images above and should send a sharp steering heading to the wheels to straighten the

vehicle along the current path. Once straightened, the system should then successfully

detect both lanes again (Figure 6).

Fig. 6. Left turn (i.e. right lane found) and right turn (i.e. left lane found) on the left

and right panels, respectively.

3.4 Implementation – steering & self-driving

Using Webcam as Video Feed - In OpenCV using a live video feed is the same as

reading a new image frame from the camera, therefore, to read the frame each time is

it available a while loop is used since there is no time limit to this loops operation,

however, with this method, the loop cannot be stopped without closing the entire

script which is why the cv2.waitKey command is included. This checks every loop if

the user has pressed the q key, if they have, the loop breaks. The frame can be

processed between each cycle by calling the process_frame function for the current

image; this begins the image processing pipeline outlined throughout the previous

parts of this documentation [14].

Controlling the PiCar - The PiCar system runs off the Raspberry Pi using two driver

modules and a Pi Hat to provide the system with enough power to run using the two

18650 rechargeable 3.7 V Lithium-ion batteries. The files were transferred from the

computer they were created on, to the pi using VNC viewer. The Raspberry Pi comes

with VNC viewer automatically installed which allows the remote connection process

without the prior use of a screen and keyboard. After installing all the correct

packages required for the system to work, running the code on the Pi gave the

following results as reported in Figure 7.

Now the code successfully runs on the Raspberry Pi, all that is left to do is output

the calculated heading to the servo motor and move the PiCar forward. During the

PiCar setup, the picar library is installed onto the Raspberry Pi to allow easy control

of the vehicle. The front wheels are declared as fw using the front_wheels class from

the library. The wheels are then turned from 45° to 135° one step at a time and then

back to 45°, through testing this function it was found that the servo would not update

its position if the previous command did not have a delay of at least 0.05 s. Since the

front wheels are able to turn to the selected heading, once the heading calculation is

completed in the code, the system will turn the servo to that heading, the time delay is

then added into the while loop to ensure the servo position changes each time the

system updates.

Fig. 7. Determination of the steering angles according to 4 different scenarios as

captured by the camera and processed with the Raspberry Pi board

Steering Smoothing - The final addition needed to allow the system to work correctly

is to smooth the heading value using previously calculated values. Without heading

smoothing the steering can be very violent as any anomalies can create drastic

changes in the value calculated. For example, the vehicle can be driving in a straight

line and suddenly only detect one line for a few frames, it would cause the heading

value to change from 90° to 135° (or 45°) without warning, which in a real-world

vehicle would be a safety hazard. To combat this issue, the system only allows the

angle to deviate from its current heading by a maximum of 5° if both lanes are

detected and only 1° if a single lane is detected. When the system detects both lanes,

it is reasonably confident the new calculated angle is correct; therefore, the deviation

from the current value can be higher, whereas if only one lane is detected, the steering

angle will change to the extremity point value based on which lane is found. To

prevent this from being a drastic change to the current heading, the deviation is set to

1° per cycle to prevent overshooting the lane once the opposite line has been detected.

If the new angle does not deviate more than the maximum assigned deviation, that

heading is output to the servo without being smoothened. The smoothing method

works by adding the required angle change to the current heading. The required angle

change is calculated by subtracting the current heading value from the new heading

value: change = desired position - current position. The direction of the required

change should return a value of 1 or -1, which is handled by:

Direction of change = (actual_angle_change/abs(actual_angle_change))

where the abs() function turns the number positive regardless of its previous state.

This direction value is then multiplied by the maximum deviation and added to the

current heading, this final value is the new heading that the vehicle will turn to in

order to stay on track.

4 Conclusion & Discussion

This work only preliminary analyses computer vision application in an industrial

environment and real-world scenarios [15-17]; many improvements could be made to

the system to make it more reliable, since current system is capable of tracking

straight lines, but curved lines are not accounted. At present (i) the system detects

both lane lines and calculates an offset heading to the right or left and (ii) detects a

single lane line and turns the right or left extremity point. With the smoothing of the

heading calculations, this is not a significant issue; however, it is still not practical

given that the tracking of lane lines on a curve can be inconsistent. The vehicle can

still successfully remain within its lane given this flaw, but currently, this is limited to

reasonably slow speeds since the frame rate is locked at 20 given the 0.05 s delay per

cycle. However, this is not a significant concern as with a higher processing speed

and improved equipment, it is expected that this limitation would be solved.

A major drawback of the current system is that it would not work in an

environment that has a lack of well-defined road markings/lane edges. Future

iterations of the system could use a deep learning machine model to handle the

steering inputs for lane control instead of the current hand-coded model; this, in turn,

allows for the implementation of object detection for road signs and obstacle

avoidance. Detecting road signs could allow the vehicle to comply with speed limits

and road traffic law automatically.

Another benefit of a machine model would be the handling of curves as these can

be taught during the training stage of the system [18, 19]. The use of a machine model

would also allow for the system to be used on urban roads and in environments where

lane lines are less visible, however it would require a large dataset to be able to train

such a model to successfully identify all these opportunities, but in such a rapidly

expanding industry, these issues could be quickly solved.

Acknowledgment

This work was presented in dissertation form in fulfilment of the requirements for the

BEng in Robotics for the student Zach Isherwood at the School of Mathematics,

Computer Science & Engineering, Liverpool Hope University.

References

1. Statista. 2021. Number of cars in the UK 2000-2016 | Statista. [online] Available at:

https://www.statista.com/statistics/299972/average-age-of-cars-on-the-road-in-the-united-

kingdom/ [Accessed 23 April 2021].

2. Tesla.com. 2021. Autopilot. [online] Available at: https://www.tesla.com/en_GB/autopilot

[Accessed 27 April 2021].

3. The MagPi magazine. 2021. Raspberry Pi 4 specs and benchmarks — The MagPi

magazine. [online] Available at: https://magpi.raspberrypi.org/articles/raspberry-pi-4-

specs-benchmarks [Accessed 24 April 2021].

4. The Verge. 2021. Two people killed in fiery Tesla crash with no one driving. [online]

Available at: https://www.theverge.com/2021/4/18/22390612/two-people-killed-fiery-

tesla-crash-no-driver [Accessed 1 May 2021].

5. Opencv24-python-tutorials.readthedocs.io. 2021. Smoothing Images — OpenCV-Python

Tutorials beta documentation. [online] Available at: https://opencv24-python-

tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html

[Accessed 25 March 2021].

6. OpenCV. 2021. Canny Edge Detection in OpenCV. [online] Available at:

https://docs.opencv.org/master/da/d22/tutorial_py_canny.html [Accessed 25 March 2021].

7. Datacarpentry.org. 2021. Blurring images – Image Processing with Python. [online]

Available at: https://datacarpentry.org/image-processing/06-blurring/ [Accessed 26 March

2021].

8. Sahir, S., 2021. Canny Edge Detection Step by Step in Python — Computer Vision.

[online] Medium. Available at: https://towardsdatascience.com/canny-edge-detection-step-

by-step-in-python-computer-vision-b49c3a2d8123 [Accessed 20 April 2021].

9. Wang, Z., 2021. Self Driving RC Car. [online] Zheng Wang. Available at:

https://zhengludwig.wordpress.com/projects/self-driving-rc-car/ [Accessed 5 January

2021].

10. Medium. 2021. Tutorial: Build a lane detector. [online] Available at:

https://towardsdatascience.com/tutorial-build-a-lane-detector-679fd8953132 [Accessed 11

February 2021].

11. Arduino Project Hub. 2021. Lane Following Robot using OpenCV. [online] Available at:

https://create.arduino.cc/projecthub/Aasai/lane-following-robot-using-opencv-da3d45

[Accessed 15 February 2021].

12. Hassan, M., 2021. self-driving-car-using-raspberry-pi. [online] Available at:

https://www.murtazahassan.com/courses/self-driving-car-using-raspberry-pi/ [Accessed 15

February 2021].

13. Desegur, L., 2021. A Lane Detection Approach for Self-Driving Vehicles. [online]

Medium. Available at: https://medium.com/@ldesegur/a-lane-detection-approach-for-self-

driving-vehicles-c5ae1679f7ee [Accessed 22 March 2021].

https://www.statista.com/statistics/299972/average-age-of-cars-on-the-road-in-the-united-kingdom/
https://www.statista.com/statistics/299972/average-age-of-cars-on-the-road-in-the-united-kingdom/
https://www.tesla.com/en_GB/autopilot
https://magpi.raspberrypi.org/articles/raspberry-pi-4-specs-benchmarks
https://magpi.raspberrypi.org/articles/raspberry-pi-4-specs-benchmarks
https://www.theverge.com/2021/4/18/22390612/two-people-killed-fiery-tesla-crash-no-driver
https://www.theverge.com/2021/4/18/22390612/two-people-killed-fiery-tesla-crash-no-driver
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html
https://docs.opencv.org/master/da/d22/tutorial_py_canny.html
https://datacarpentry.org/image-processing/06-blurring/
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://zhengludwig.wordpress.com/projects/self-driving-rc-car/
https://towardsdatascience.com/tutorial-build-a-lane-detector-679fd8953132
https://create.arduino.cc/projecthub/Aasai/lane-following-robot-using-opencv-da3d45
https://www.murtazahassan.com/courses/self-driving-car-using-raspberry-pi/
https://medium.com/@ldesegur/a-lane-detection-approach-for-self-driving-vehicles-c5ae1679f7ee
https://medium.com/@ldesegur/a-lane-detection-approach-for-self-driving-vehicles-c5ae1679f7ee

14. Tian, D., 2021. DeepPiCar — Part 4: Autonomous Lane Navigation via OpenCV. [online]

Medium. Available at: https://towardsdatascience.com/deeppicar-part-4-lane-following-

via-opencv-737dd9e47c96 [Accessed 24 March 2021].

15. Assets.publishing.service.gov.uk. 2021. Reported road casualties in Great Britain: 2019

annual report. [online] Available at:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_d

ata/file/922717/reported-road-casualties-annual-report-2019.pdf [Accessed 18 May 2021].

16. Buckley N, Sherrett L, Secco EL, A CNN sign language recognition system with single &

double-handed gestures, IEEE Signature Conference on Computers, Software, and

Applications, 2021, accepted

17. K. Myers, E.L. Secco, A Low-Cost Embedded Computer Vision System for the

Classification of Recyclable Objects, Congress on Intelligent Systems (CIS - 2020),

Intelligent Learning for Computer Vision, Lecture Notes on Data Engineering and

Communications Technologies 61

18. D. McHugh, N. Buckley, E.L. Secco, A low-cost visual sensor for gesture recognition via

AI CNNS, Intelligent Systems Conference (IntelliSys) 2020, Amsterdam, The Netherlands

19. A.T. Maereg, Y. Lou, E.L. Secco, R. King, Hand Gesture Recognition Based on Near-

Infrared Sensing Wristband, Proceedings of the 15th International Joint Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP

2020), 110-117, 2020

https://towardsdatascience.com/deeppicar-part-4-lane-following-via-opencv-737dd9e47c96
https://towardsdatascience.com/deeppicar-part-4-lane-following-via-opencv-737dd9e47c96
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/922717/reported-road-casualties-annual-report-2019.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/922717/reported-road-casualties-annual-report-2019.pdf

