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Abstract

Relating graph structures with words which are finite sequences of
symbols, Parikh word representable graphs (PW RGs) were introduced.
On the other hand in chemical graph theory, graphs have been associated
with molecular structures. Also several topological indices have been de-
fined in terms of graph parameters and studied for different classes of



graphs. In this paper, we derive expressions for computing certain topo-
logical indices of PW RGs of binary core words, thereby enriching the
study of PW RGs.

1 Introduction

Among various studies that involve graphs for analyzing and solving different
kinds of problems, relating words that are finite sequences of symbols with
graphs, is an interesting area of investigation (see, for example, [8, 16, 22, 23]).
Based on the notion of subwords (also called scattered subwords) of a word
and the concept of a matrix, called Parikh matrix of a word, introduced in [26]
and intensively investigated by many researchers (see, for example, [2, 3, 6, 27,
31, 33, 34] and references therein) with entries of the Parikh matrix giving the
counts of certain subwords in a word, a graph called Parikh word representable
graph (PWRGQ) of a word, was introduced in [5] and its relationship with the
corresponding word and partition was studied in [25].

On the other hand there has been a great interest in various topological in-
dices associated with graphs (see, for example, [1, 13, 14, 21] ) due to their
application in the area of chemical graph theory [11], which deals with repre-
sentations of organic compounds or equivalently their molecular structures as
graphs, with atoms other than hydrogen often represented by vertices and cova-
lent chemical bonds by edges. In fact in chemical graph theory there have been
attempts to capture the molecular structure in terms of the topological index
of the corresponding graph.

There are a number of studies (see, for example, [15]) of various topological
indices of graphs establishing formulae for computing the indices and also pro-
viding upper and lower bounds on the values of such indices. Recently, in [35],
properties of one of the important topological indices, namely, Wiener index
and some of its variants related to PW RGs of binary words, were studied. In
this paper, certain distance-based topological indices of PW RGs of binary core
words are investigated.

2 Preliminaries

The basic definitions and notations relating to words are as given in [24, 29].
We recall here some of the needed notions.

An ordered alphabet ¥ is a set of symbols with an ordering on its symbols.
For example, ¥ = {ay, a9, - ,ar} with an ordering a1 < ag < -+ < aj is
an ordered alphabet, written as ¥ = {a1 < ag < --- < ax}. A word w over ¥
is a finite sequence of symbols belonging to ¥. A word w’ is a scattered sub-
word or simply called a subword of a word w over ¥ if and only if there exist
Up, U,y 5 Uy, u; € 3 for 1 <4 < n and words (possibly empty) vg,v1,- -, vp



over 2, such that w’ = ujus -+ Up, W = VoU1V1ULV2 * - - Upy—1 UpVp. Lhe number
of occurrences of a word u as a subword of w is denoted by |w/|,. For example,
in the word w = aababb over the ordered binary alphabet {a < b}, the number
of a’s is |w|, = 3, the number of b’s is |w|, = 3 and the number of subwords ab’s
is |w|qey = 8. In fact the word ab as a subword of aababb is shown below with
the symbols a and b of ab shown in bold in aababb.

aababb, aababb, aababb, aababb, aababb, aababb, aababb, aababb.

The set of all words over an alphabet ¥, including the empty word A with no
symbols, is denoted by ¥*. Unless stated otherwise, we consider only a binary
alphabet 3 = {a < b}.

Definition 1 [84] Let w € £*. The core of w, denoted by core(w), is the unique
word wg of w with the smallest possible length such that w € b*woa™. A word
w € ¥* is called a core word if and only if core(w) = w.

Clearly, a non empty binary word w € ¥* is a core word if and only if w starts
with a and ends with b.

In [5], a simple graph, called Parikh word representable graph (PW RG), was
defined corresponding to a word over an ordered alphabet. Restricting our at-
tention to binary words, we recall now this PW RG.

Definition 2 [5] For a binary word w of length n over ¥ = {a < b}, we define
a simple graph G = G(w), called Parikh word representable graph (PW RG),
with n labeled vertices 1,2,--- ,n representing the positions of the consecutive
letters of w such that for each occurrence of the subword ab in w, there is an
edge between the vertices in G, corresponding to the positions of a and b in w.
We say that the binary word w represents the graph G = G(w) and a graph G
is Parikh word representable if there exists a binary word w that represents G.

It is to be noted that PW RG G(w) of a binary word w over {a < b} is a bipartite
graph [5] with as many vertices as the length |w| of w and as many edges as
the number of occurrences of the subword ab in w. Fig. 1 shows the PW RG
of a binary word aababab over the ordered binary alphabet ¥ = {a < b}. The
graph G(aababab) has 7 vertices and 9 edges. Note that the length of the word
aababab is 7 and there are 9 occurrences of the subword ab in aababab.

In this paper, we deal with only binary core words and the corresponding
PW RGs. Also, we note that for a nonempty binary core word of the form w =
a™ba™b---a™*hbb where n; > 1 and ny, is nonnegative for each k, 2 < k < |w|y,
the number of edges in the corresponding PW RG G(w) is

|wlap = (N1 +n2 4 - 4+ NYy|,) + -+ (11 +n2) + 0.

Note that in the word w, ng,1 < k < |w|, which is a power of a, indicates that
there are ny vertices labelled a in the graph G(w) with each of these joined to
all the vertices that correspond to the subsequent b's in the word w.



3 5 7
G(aababab)

Figure 1: The PW RG of the word aababab

3 Distance-based Topological Indices

We consider only simple graphs and for notions related to graphs we refer to [7].
Let G = (V, E) be a connected graph with vertex set V(G) = V and edge set
E(G) = E. The distance between the vertices u and v of G, denoted by d(u,v),
is defined as the length of a shortest path between w and v in G. The degree of a
vertex u of G, which is the number of edges incident at u, is denoted by deg(u).
For a given vertex u in a connected graph G, the eccentricity e(u) is defined as
the maximum distance between u and any other vertex in G.

Definition 3 [19] The Harary index of a connected graph G is defined as the
sum of the reciprocals of distances between all pairs of vertices of G. i.e.,

HE) = ), d(ulv)‘

{uv}CV(G)

The Harary index [19] of a connected graph is a topological index which has
been extensively investigated (see, for example, [10, 36, 37]).

Theorem 3.1 The Harary index of the PW RG G(w), for w = a™ba™2b- - - a™b,
ny > 1, ng >0 for 2 <k <I, is given by

1
H(G(w)) = = (3hwla(fwla = 1) + 3l (fuly = 1) + Slula + wlafly ).

Proof We consider pairs of vertices (u,v) in the PW RG G(w) corresponding
to the word w = a™ba™2b...a™b, with u,v € {1,2,--- ,n} where the label of u
appears before the label of v in w. There are now four cases to be considered.
We will refer to a pair (u,v) of such vertices with

(i) both u and v labeled a
(ii) u labeled a and v labeled b



(iii) w labeled b and v labeled a
(iv) both u and v labeled b

as a pair of type 1, 2, 3 and 4 respectively. There are (n; +ns + -+ n;)Co =
lw|eCo = 3|w|o(|wle — 1) pairs of vertices of type 1 and ICy = |w|,Cy =
2wy (Jw|, — 1) of type 4 and the distance between each such pair is 2. (Here
»Cy is the binomial representing the number of ways of choosing r objects from
n objects). There are Iny + (I —1)na+- - - +n; = |w|qp pairs of vertices of type 2
with distance 1 and no+2ng+-- -+ (I —1)n; = |w|q|w|p — |w|ap pairs of vertices of
type 3 with distance 3, since |w[sp = (n1+n2+- -+ Ny, ) +- -+ (11 +12) +n1.
Hence

H(G(w)) =  (Iwlallwla = 1) + ol ~ 1)) + folas + 5 (lolaloly ~ ol

which yields the required result.

Theorem 3.2 The Harary index H(G(w)) of a PWRG G(w) = (V1 UV, E)
with V1| = |w|a = p, |Va| = |w|p = ¢ for the word w = a™*ba™2b---a™b,ny > 1,
ng > 0 for 2 < k <, is bounded below by

1
E(3p2 + 3¢ + 4pq + 5p + 5q — 8)

and above by

1
E(p2 +¢*+4pg—p—q).
The bounds are attained on G(ab? taP~1b) and G(aPb?) respectively.

Proof
Since G(w) is connected, |w|ep = |E| > p+q—1 [7]. Also |w|a < pq [26].
Hence from Theorem 3.1, the Harary index of G(w) is

1
H(G(w) < 15(3p" +3¢" +12pg = 3p — 3q)
1
= Z(p2+q2+4pq—p—q)

which is the Harary index of the PW RG G(a?Pb?) and

1
H(G(w)) > —2(3p +3¢% + 4pq + 5p + 5q — 8)

which is the Harary index of the PW RG G(ab?~taP~1b).

Definition 4 [30] The eccentric connectivity index of a connected graph G with
vertezx set V., is defined as (.(G) = 3 e(v)deg(v) where e(v) is the eccentricity

veV
of v.



The total eccentricity index [12] of the graph G is ((G) = Y €(v).
veV

The topological index, namely, eccentric connectivity index, was introduced
in [30] and has been widely investigated for different classes of graphs (See, for
example, [9, 17, 28, 38] and references therein).

Theorem 3.3 The eccentric connectivity index of the PWRG G(w), for w =
a™ba™b---a™b,ny > 1 is given by

6|w|ap — K|lw|a — ni|wlp, if lwle > 1 and |w], =1> 1
Blwlp, if n1 =1,n; =0, for l<i<landl>1
Blwla, ifm1 >1andl=1

2 ifny =1,0=1

Ce(G(w)) =

where k be the number of b’s succeeding the last a in w.

Proof

Let G(w) be the PW RG corresponding to w = a"'ba™?b---a™b. Then the
vertices representing all a’s preceding the first b and all b’s succeeding the last a
are of eccentricity two whereas the eccentricity of each of the remaining vertices
is three. The vertices u and v in G(w) are adjacent if and only if u represents a
and v represents b such that the position of b in w is greater than the position
of a in w. This implies that the contribution to the eccentric connectivity index
from the vertices in G(w) representing

(i) @’s in the first block a™b is 2n1|w|, as each vertex corresponding to such
an a has degree |wlp,

(ii) b’s succeeding the last a is 2k|w|, (where k > 1 is the number of b’s
succeeding the last a) as each vertex corresponding to such ab has degree
|w|, and

(iii) the remaining a’s and b’s in w is 3(2|w|ap — n1|w|p — k|w|,), since the sum
of the degrees of all vertices in G(w) is 2|w|qp.

Therefore,
C(Gw) = 2wl + 2kwla + 32wl — na|wly — klwla)
= 6lwlap — nawly — klwla

Now, if n; = 1 and n; = 0 for 1 < i < [, then w = ab! and a is of eccentricity
one and degree [ and each b is of eccentricity two and degree one. Therefore,

C(G(w)) =3lwlp, if ni =1landn; =0, 1 <i <1

Similarly, if ny > 1 and I = 1, w = a™'b and b is of eccentricity one and degree
ny while each a is of eccentricity two and degree one. Thus (.(G(w)) = 3|w|,.
Again if ny =1 and [ = 1, then w = ab and both vertices have eccentricity one
and degree one and so (.(G(w)) = 2. Hence the result.



Remark 1 It can be seen that the total eccentricity index of the PW RG G(w),
forw =a"ba™b---a™b,ny > 1 is given by

lw| —k —ny, if lwlg >1 and 1> 1

Qwlp+ 1, ifni=1,n; =0, for L<i<landl>1
2wl + 1, ifn1 >1andl=1

2, ifni=11=1

((G(w)) =

where k is the number of b’s succeeding the last a in w.

Theorem 3.4 The eccentric connectivity index (.(G(w)) of a PWRG G(w) =
(Vi U Vo, E) with |Vi| = |w|la = p > 1,|Va] = |wly = ¢ > 1 for the word
w = a"ba™b---a"bny > 1, n; >0 for 2 <i <1, is bounded above by ("
and below by (™™ where

4pq ,ifp+q<6
M =S 4pg+p+q—6 ,ifp+q>6 and 2pqg—8p —8¢+24 <0
6pg—Tp—Tq+18 ,ifp+qg>6 and2pqg—8p—8q+24>0

and _
T =5p+45q — 6

The upper bound is attained on G(aPb?) when p +q < 6, on G(aP~1babi™1)
when p+q > 6,2pq — 8p — 8q + 24 < 0 and on G(aba?~2b9~2ab) when p + q >
6,2pq — 8p — 8q + 24 > 0 while the lower bound is attained on G(ab?™'aP~1b).

Proof Since |wl, = p > 1,|w|y = g > 1, using Theorem 3.3, the eccentric
connectivity index (.(G(w)) = 6|w|ap — k|w|, — n1|w|p, will be a maximum if
|wlap is as large as possible while ny and k are as small as possible. (Here k
is the number of b’s succeeding the last @ in w.) It is known [27] that for a
binary word w,|w|., < pg when |w|, = p,|w|y, = ¢. The word aPb? has the
maximum number pg of subwords ab and so the eccentric connectivity index
of the PW RG corresponding to this word is maximum but only when p + ¢ <
6. We note that p > 1, and ¢ > 1 and the word w is a core word by the
hypothesis. When p + ¢ > 6, it can be verified that this word fails to provide
the maximum eccentric connectivity index for the corresponding PW RG due
to the fact that all the vertices in the PW RG of aP?b? have only eccentricity 2.
When |w|,, = pg — 1, which is the largest number nearer to the maximum pg,
the word a?~'bab?~! has pq — 1 subwords ab while the vertices in the PWRG
corresponding to the first b and the next a in this word, have eccentricity 3 and
degrees p — 1 and q — 1 respectively. The eccentric connectivity index of the
PW RG corresponding to this word a?~'bab?~! is maximum when p+q > 6 but
only when 2pq —8p —8q+24 < 0. When p+¢ > 6 and 2pg —8p —8q+24 > 0, it
can be verified that the word a?~'bab?~! fails to provide the maximum eccentric
connectivity index for the corresponding PW RG. On the other hand the word
abaP~2b972ab has the minimum value 1 for n; and k and has as many a's as



possible to the left and as many b's as possible to the right of the word, thus
providing maximum degrees for the vertices in the PW RG corresponding to the
a’s and b's in aP~2b9~2 which have eccentricity 3. In fact, more formally, for
w=a"ba"b---a"bny >1,q>1,n; +n2+---ng =p > 1, we can show that

Ce(G(w)) = 6pg—n1g—3qng+2p—3(n1+3ne+dns+- - -+(2g—3)ng—1+(g—1)ng).

In order to maximize this expression with the constraint ny +ng +---+ng_1 +
ng = p > 1, we have to minimize the negative terms and so we have to take
ny =ng = 1 and ng = p—2 while n; =0, for 3 <7 < ¢—1. Note that we cannot
choose ny = 0 as there are p > 1 number of a’s. Hence it may be observed that
for given values of p and ¢, the maximum value of (.(G(w)) is attained on one
of the three words w; = aPb?,wy = aP~'bab?™! or wg = abaP~2b? 2ab whose
corresponding PW RGs G(w1), G(ws), G(ws) have their eccentric connectivity
indices as 1 = 4pq,n2 = 4pg+ p+ q — 6,13 = 6pg — Tp — Tq + 18 respectively.
Note that 77 > 1o when p 4+ ¢ < 6 while the expression 2pg — 8p — 8¢ + 24 is
the difference 15 — 1. Hence the maximum value is attained on G(aPb?) when
p+q <6, on G(aP~tbab?™ ') when p+ q > 6,2pg — 8p — 8¢ + 24 < 0 and on
G(aba?~2b%2ab) when p + ¢ > 6 and 2pq — 8p — 8¢ + 24 > 0.

On the other hand, for p > 1,¢ > 1, ((G(w)) is minimum when |w|q, is
minimum and this happens for w = a™ b7 *aP~"1b* with |w|., = n1q+pk—nik
minimum when n; = k = 1. Hence the minimum value 5p 4+ 5¢ — 6 of {.(G(w))
is attained on G(ab? laP~1b).

Theorem 3.5 The total eccentricity index ((G(w)) of a PWRG G(w) = (V1 U
Vo, E) with |V1| = |w|, = p, |Va2| = |w|s = ¢ for the word w = a™ba™?b- - - a"b,
ny > 1, n; >0 for 2 <i < gq, is bounded above by 3p + 3¢ — 2 and below by
2p + 2q. This upper bound is attained on G(w), for any word w = abuab where
lule = p — 2,|ulp = ¢ — 2. In particular it is achieved on G(ab? taP~b). The
lower bound is achieved on G(aPb?).

Proof If k is the number of b’s following the last a in w, it is clear that the
maximum value of ((G(w)) is attained when ny = 1,k = 1 and the minimum is
attained when ny = p, k = ¢q. Hence the result.

Yet another topological index, called eccentricity connectivity coindex [4, 18]
of a connected graph, is defined as the eccentricity sum of all non-adjacent
vertex pairs in the graph. We consider this index here for PW RGs.

Definition 5 [/, 18] The eccentric connectivity coindex (.(G) of a connected
graph G with edge set E(G) is defined as

@)= D (elu) +e(v))

wwé E(G)

where €(x) is the eccentricity of the vertez x of G.



Theorem 3.6 The eccentric connectivity coindex (.(G(w)) of the PW RG G(w),
forw=a"ba™b---a™b,ny > 1, ng >0 for 2 <k <1 is given by

(lw] =1)Blw| = n1 = k) = 6lwlap + k|wla + 11 |wls,
if lwlg >1,1>1

C(G(w)) = 2ulp(lwly — 1), fm=1n=01<i<ll>1
2wy (Jwla — 1), ifny>1,1=1
07 lfnlzl,l:].

where k is the number of b’s succeeding the last a in w.

Proof It has been shown [4, 18] that (.(G) = >Puev(c) €W (n — 1 —deg(u))
which can be written as (.(G) = (n — 1) >uev(c) €(w) — ¢°(G) where n is the
number of vertices in the graph G and e(u) is the eccentricity of the vertex w.
If |w|, > 1 and I > 1, then the vertices corresponding to the first block a’s and
k b’s succeeding the last a are of eccentricity two and the remaining vertices are
of eccentricity three.

Therefore,

C(G(w)) = (|w] = DBw| =11 — k) = 6lwlap + klwla + nafwle.

Now, if ny =1,n;, =0 for 1 < ¢ <!l and [ > 1, then the vertex corresponding to
a is of eccentricity one and the remaining vertices are of eccentricity two.
Therefore, {.(G(w)) = 2|wl|y(jw|p — 1).

Now if n; > 1 and [ = 1, then the vertex corresponding to b is of eccentric-
ity one and the remaining vertices are of eccentricity two. Then (.(G(w)) =
dul(lwle—1).

If ny = 1,1 =1, then (.(G(w)) = 0.

4 An Illustration

Bipartite graphs have been used in investigating structural features in the areas
of molecular biology and chemistry (see, for example, [20, 32]). We consider here
a complete bipartite graph K, ,,m,n > 1, with the bipartition V; U V5 of the
vertices such that V3 = {uq,- -+, up} and Vo = {v1,--- ,n, }. The graph K,, ,, is
a PWRG G(w) corresponding to the word w = a™b™ over the alphabet {a < b}.

First we observe the following facts relating to Ky, .

(i) For 1 <i,j <m,1<r,s<n,u;,u; € Vi,i# j, and vy, vs € Vo, r # s, we
have d(u;, u;) = d(vy,vs) = 2,d(u;, vr) = 1, €(u;) = €(vy) = 2.

(ii) In the graph K,, ,,m,n > 1, there are m(m — 1) unordered pairs of
vertices (u;,u;),i # j, 3n(n— 1) unordered pairs of vertices (v,,vs),” # s,
and mn unordered pairs of vertices (u;, v;.).



(iii) The degree of each vertex u;,1 < < m is deg(u;) = n and the degree of
each vertex v,.,1 <r <nis deg(vr) =m.

We now illustrate the computation of the topological indices considered in the
earlier sections, both directly from the definition and from the formulas in The-
orems 3.1, Theorem 3.3 and Remark 1.

The Harary index of K, ,, by direct computation from the definition, is

1 11 1 1
H(Kpp) = im(m—l)x§+§n(n—l)x§+mn =1 (m* +n®+ —m —n+ 4mn) .

The same value is obtained from the formula for the Harary index, namely,
H(G(w)) = 15 (3uwla(wla — 1) + Bfuly (s — 1) + 8fuwlas + 4fuofafu ) since
|wle = m, |w]p = n, |wW|ep = mn.
The eccentric connectivity index of K, ,, by direct computation from the defi-
nition, is

Ce(Kmn) =m X 2n+n x 2m = 4mn.

The same value is obtained from the formula for the eccentric connectivity in-
dex, namely, (.(G(w)) = 6|w|ap — k|lw|s — n1|w|y, where k = the number of V's
succeeding the last @ and ny = the number of a’s prior to the first b in G(w) so
that k = n,n; = m.

The total eccentricity index of K, ,, by direct computation from the defini-
tion, is
C(Kmpn) =mx24+nx2=2m+2n.

The same value is obtained from the formula for the total eccentricity index,
namely, ((G(w)) = 3|w| — k — ny where |w| = |w|, + |w|p = m + n.

The eccentric connectivity coindex of Ky, ,, by direct computation (using the
modified expression for the eccentric connectivity coindex given in the proof of
Theorem 3.6), is

Ce(Kmn) = (N =1) Z €(u) = ¢ (Km,n)

UEV (K ,n)
where N is the number of vertices in the graph K, ,, so that
C(Kmn) = (m+n—1)(m+n) x2—4mn = 2(m* +n?* —m —n).

The same value is obtained from the formula for the eccentric connectivity
coindex, namely,

C(G(w)) = (Jw] = DBJw] =11 — k) = 6|wlap + klwla + nafwls

=(m+n—1(3(m+n) —m—n) —6mn+nm-+mn)=2(m?+n*—m—n).

10



5 Conclusion

The distance-based topological indices considered in this paper have been exten-
sively investigated by researchers for different classes of graphs and so we were
motivated to study these indices for a recently introduced special class of graphs,
called PW RGs. An advantage of this study is that this provides a link between
two different areas of research, namely, word combinatorics and graph theory.
Specifically, we have obtained expressions for evaluating certain distance-based
topological indices for PW RGs [5] of binary core words and established bounds
on their values when the vertex set is fixed. It will be of interest to study bounds
on these indices when the number of edges is fixed.
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