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Abstract Due to its effective search mechanism, gravitational search algorithm (GSA) has be-7

came very popular and robust tool for the global optimization in a very short span of time. The8

search mechanism of GSA is based on its two features, namely Kbest archive and gravitational9

constant G. The Kbest archive stores the best agents (solutions) at any evolutionary state and10

hence helps GSA in search globally. Each agent interacts with exactly same agents of Kbest11

archive without considering its current impact on the search process, results, a rapid loss of di-12

versity, premature convergence and the high time complexity in GSA model. On the other hand,13

the exponentially decreasing behavior of G scales the step size of the agent. However, this scaling14

is same for all agents which may cause inappropriate step size for their next move, and thus15

leads the swarm towards stagnation or sometimes skipping the true optima. To address these16

problems, an improved version of GSA called ‘A novel neighbourhood archives embedded gravi-17

tational constant in GSA (NAGGSA)’ is proposed in this paper. In NAGGSA, we first propose18

two novel neighbourhood archives for each agent which helps in increased diversified search with19

less time complexity. Secondly, a novel gravitational constant is proposed for each agent accord-20

ing to the distance-fitness based scaling mechanism. The performance of the proposed variant21

is tested over different suites of well-known benchmark test functions. Experimental results and22

statistical analyses reveal that NAGGSA remarkably outperforms the compared algorithms.23
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1 Introduction26

It is required to develop a mechanism that effectively makes a proper balance between exploration27

and exploitation in GSA. Exploration is the ability to produce a highly randomized behavior in28

the mechanism of an algorithm such that its candidate solutions (agents) explore the wide regions29

of the search space, whereas exploitation produces the neighbourhood search mechanism for the30

algorithm in which agents refine the promising regions of the search space. The performance31

metrics of an algorithm like efficiency, reliability, accuracy and the convergence speed greatly32

depend upon the trade-off between exploration and exploitation. For the best performance of33

these metrics, an algorithm should perform exploration in the early stages and execute refined34

exploitation in the latter stages of the search process. However, how to achieve a proper balance35

between these two remains an unsolved challenge [32].36

The gravitational search algorithm (GSA) is a recent and very robust meta-heuristic algorithm37

inspired by the gravity rules [21]. In GSA, the social interaction among agents is guided by Kbest38

archive which stores the superior agents of the current evolutionary state. Each agent interacts39

with the agents of the Kbest archive to get the diverse knowledge of the different directions of40

the search space. Moreover, by lapse of time, the size of Kbest archive linearly decreases from41

N (population size) to 1, results, a search mechanism that explores the search space in early42

stages and exploits in the later stages of the search process. Although the Kbest archive in GSA43

provides a good trade-off between exploration and exploitation, it has the major problem due to44

the presence of global neighbourhood concept. Throughout the search process, agents learn from45

the same elites all the time. If the elites stagnate somewhere in the local optima, all agents may46

stagnate around this pseudo optimal region, resulting a premature convergence. Additionally, the47

large size of Kbest in the early stages of the search process increases the time complexity of the48

GSA model, whereas the small size of Kbest in the later stages provides a less knowledge about49

the search process, which inevitably causes quick loss of search diversity. Except Kbest archive,50

Gravitational constant G is the second most important entity in GSA model which deals in the51

trade-off between exploration and exploitation by scaling the step size of the agents. Basically,52

G is the exponential decreasing function of time having two constant parameters G0 and α.53

Through this deceasing behavior, exploration fades out and the exploitation turns to fade in.54

However, due to constants G0 and α, G does not change significantly according to the search55

requirement, especially in the middle phase of the search process. In addition, in spite of having56

different masses, the value of G remains the same for each agent, which may cause inappropriate57

step size of agents for the next move, and thus leads the swarm towards stagnation or sometimes58

skipping the true optima.59

To address the aforementioned drawbacks of GSA, many GSA variants have been developed by60

embedding new learning strategies into it. Mirjalili et al. [14] assigned a memory to each agent of61

GSA to improve the search ability. Sarafrazi et al. [23] improved the exploration and exploitation62

ability of GSA by using disruption operator. To overcome the premature convergence, Li et al.63

[10] hybridized differential evolution (DE) with GSA. To improve the exploitation, Chen et al64

[3] proposed a local search operator as a multi-type local improvement scheme. To improve the65

convergence speed of GSA, Shaw et al. [24] used the opposition-based learning. To prevent the66

premature convergence and improve the convergence characteristic of GSA, Doraghinejad et al.67

[5] used the application of black hole principle. In [16], the agents move their position under the68

influence of the Gbest agent (best solution obtained so far). This influential movement improves69

the exploitation ability of the search process. To improve the exploitation ability of GSA, Susheel70

et al. [7] introduced the encircle behavior of grey wolf in GSA. To provide better tradeoff between71

exploration and exploitation, Zhang et al. [32] used a dynamic neighbourhood-based learning72

strategy. In the proposed strategy, local neighbourhoods are formed randomly which further73
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reformulated dynamically as per the guidance of population diversity. In GSA, the concept of74

adaptive parameter is proposed by Mirjalili et al. [13]. In the proposed variant, the gravitational75

constant (G) adapts the chaotic behaviour using 10 different chaotic maps. For a fix chaotic map,76

G follows a fix chaotic nature throughout the search process. To overcome stagnation and improve77

the convergence speed of GSA, Bansal et al.[2] introduced a dynamic gravitational constant which78

varies according to the fitness of the agents. Wang et.al. [31] proposed a three layered hierarchical79

GSA model having a modified gravitational constant. The proposed hierarchical model is capable80

to understand the population topology which further enhances the search ability of GSA. To81

provide a better trade-off between exploration and exploitation, Susheel et. al. [8] proposed a82

generic method of parameter tuning and tuned α in G. Pelusi et. al. [18] introduced hyperbolic83

sine functions in GSA to find the optimal value of the gravitational constant which further84

improves the search mechanism.85

Another strong research trend towards the improvement of GSA performance is to tune the86

parameter α in G. For this context, a number of α-adjusting strategies have been proposed. To87

avoid the possibilities of premature convergence, A. Sombra et al. [26] used a fuzzy strategy88

to adjust the α parameter. Chaoshun Li et al. [9] introduced a hyperbolic function to model89

α as a variable entity with respect to iteration. This variability of α reduces the chance of90

premature convergence. To prevent the possibilities of premature convergence, Saeidi-Khabisi et91

al. [22] introduced an adaptive α strategy with the help of fuzzy logic controller. To alleviate the92

premature problem, Sun et al. [28] proposed a self adaptive α which is guided by the variation93

of an agent’s position and its fitness. However, the optimal setting of α and G0 in G is still a94

challenging job.95

Besides the aforementioned variants of GSA, some work has been done to overcome the96

shortcomings of the Kbest archive in GSA. In this context, Sun et al. [30] and Zhang et al [32]97

used different approaches to employ the local neighbourhood with the global topology in Kbest98

archive.99

In this paper, a new variant of GSA, named as ‘A novel neighbourhood archives embed-100

ded gravitational constant in GSA (NAGGSA)’ is proposed. The NAGGSA has the following101

novelties:102

– To overcome the shortcomings of the Kbest archive in the GSA model, two neighbourhood103

archives are proposed through which each agent obtains the best neighbours based on its104

current position (F archive) or its distance (D archive) from the most promising regions105

of the landscape. These obtained neighbours navigate the agent as per its search require-106

ments. Additionally, the small size of these neighbourhood archives significantly reduces the107

computational complexity of the algorithm.108

– A novel fitness-distance ratio based gravitational constant FDGi,Neigh is proposed which109

individually scales the step size of the agent Xi towards the direction of its each neighbour110

XNeigh
i assigned by the proposed archives.111

The combined effect of both proposed concepts produces a novel search mechanism that searches112

the optimal and sub-optimal regions, simultaneously.113

The remainder of this paper is organized as follows. Section 2 briefly describes the frameworks114

of GSA. In Section 3, a detailed introduction of the proposed NAGGSA is given. The experimental115

setting and simulation results are presented in Section 4. Finally, Section 5 concludes the paper.116
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2 Basic Gravitational Search Algorithm117

Gravitational Search Algorithm (GSA) is a new swarm intelligence technique for optimization118

developed by Rashedi et al [21]. This algorithm is inspired by the law of gravity and the law of119

motion.120

The GSA algorithm can be described as follows:121

Consider the swarm of N agents, in which each agent Xi in the search space S is defined as:122

Xi = (x1i , ....., x
d
i , ....., x

n
i ), ∀ i = 1, 2, ....., N (1)

Here, Xi shows the position of ith agent in n-dimensional search space S. The mass of each agent123

depends upon its fitness value calculated as below:124

125

qi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

(2)

126

Mi(t) =
qi(t)∑N
j=1 qj(t)

, ∀ i = 1, 2, ....., N (3)

Here, fiti(t) is the fitness value of agent Xi at iteration t and Mi(t) is the mass of agent Xi at127

iteration t. worst(t) and best(t) are worst and best fitness of the current population, respectively.128

The acceleration of ith agent in dth dimension is denoted by adi (t) and defined as:129

130

adi (t) =
F di (t)

Mi(t)
(4)

where F di (t) is the total force acting on the ith agent by a set of K best heavier masses in dth131

dimension at iteration t. F di (t) is calculated as:132

133

F di (t) =
∑

j∈Kbest,j 6=i

randj × F dij(t) (5)

Here, Kbest is an archive of first K agents with the best fitness values (say Kbest agents) and134

biggest masses and randj is a uniform random number between 0 and 1. The cardinality of Kbest135

archive decreases from N to 1 iteratively. At the tth iteration, the force applied on agent i by136

agent j in the dth dimension is defined as:137

F dij(t) = G(t)
Mi(t)Mj(t)

Rij + ε
(xdi (t)− xdj (t)) (6)

Here, Rij(t) is the Euclidean distance between two agents, i and j. ε (ε > 0) is a small number.138

Finally, the acceleration of an agent in dth dimension is calculated as:139

adi (t) =
∑

j∈Kbest,j 6=i

randjG(t)
Mj(t)

Rij + ε
(xdi (t)− xdj (t)), (7)

d = 1, 2, ..., n and i = 1, 2, ..., N .140

G(t) is called gravitational constant and is a decreasing function of time:141

G(t) = G0e
−α t

T (8)

G0 and α are constants and set to 100 and 20, respectively. T is the total number of iterations.142
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The velocity update equation of an agent Xi in dth dimension is given below:143

144

vdi (t+ 1) = randi × vdi (t) + adi (t) (9)

Based on the velocity calculated in equation (9), the position of an agent Xi in dth dimension is145

updated using position update equation as follow:146

147

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (10)

where vdi (t) and xdi (t) present the velocity and position of agent Xi in dth dimension, respectively.148

randi is uniform random number in the interval [0, 1].149

3 Neighbourhood archives embedded gravitational constant in GSA (NAGGSA)150

The performance of a meta-heuristic algorithm depends upon the social interaction among its151

agents. In the basic GSA, the social interaction among agents is controlled by a set of K best fit152

agents, named as Kbest archive. The size of Kbest archive is equivalent to the number of different153

directions an agent can have, to explore the search space in a particular evolutionary state. Figure154

1 illustrates the size of Kbest archive with respect to time (iteration). Although the Kbest archive155

maintains the balance between exploration and exploitation, it has the following shortcomings:156

– The Kbest archive is common for all the agents of the swarm for a current evolutionary state.157

Each agent interacts with the same agents of the Kbest archive irrespective of its individual158

requirement for the current search i.e., both best and worst fit agents have the same K best159

fit agents.160

– Although the large size of Kbest archive helps to explore the search space in the initial phase,161

it increases the computational complexity of the basic GSA model.162

– Due to having a small size of Kbest archive in the later iterations, GSA suffers from quick163

loss of search diversity.164

– In the last state of the search process, the Kbest archive has only one best fit agent (Figure165

1). It means all the agents (except the best one) exploit the optimal region of the landscape166

but at the same time, the best fit agent does not have any agent for interaction. Therefore,167

in the last state of the search process, the best fit agent does not change its position.168

Due to the above mentioned shortcomings in the Kbest archive, it is replaced by two novel169

neighbourhood archive (D archive and F archive). Both archives provide a set of p number of170

neighbours for agent Xi, define as:171

Nbd(Xi) = {XNeigh
i : Neigh = 1, ..., p} (11)

172

Insert Figure 1 here.173

174

The following subsections describe the formulation of these proposed neighbourhood archives.175

3.1 Distance based K5 neighbourhood archive (D neighbourhood archive)176

Algorithm 1 presents the pseudo-code to find the D neighbourhood archive for agent Xi. In this177

strategy, a set K5 is constructed by five superior agents, say XK1
, XK2

,...XK5
from the current178

swarm. Let K5 = {XK1
, XK2

, ...XK5
}. The agents of set K5 represent the five most promising179
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regions of the search landscape. Out of these five promising regions, a non-K5 agent chooses three180

nearest regions for the social interaction. This kind of learning enables a local approach in the181

global neighbourhood that provides a self diversified search as per the search requirement. On182

the other hand, a K5 agent further exploits the most promising regions through the agents of its183

own set using the same neighbourhood mechanism. Since this neighbourhood structure emphasis184

nearest distance therefore if two or three regions out of five have equal nearest distances from185

the agent than both two or three regions will be considered as its neighbour regions. If more186

than three regions have equal nearest distances from the agent than the algorithm will select any187

three regions arbitrarily.188

Algorithm 1 D neighbourhood archive:
1: Calculate the fitness of each agent of the swarm (Xi, i = 1 : N);
2: Sort the fitness in ascending order;
3: Define set K5 of five superior agents from the sorted array. K5 = {XK1 , XK2 , ...XK5};
4: Calculate Disi = {DiKj

: DiKj
= ||Xi, XKj

||2 , j = 1 : 5}
5: Nbd(Xi) = {XKl

, XKm , XKn : where DiKl
, DiKm , DiKn are less than other two

distances from Xi}

3.2 Neighbourhood archive based on the agent’s current fitness level (F archive)189

Algorithm 2 presents a novel neighbourhood archive of each agent that is based on its current190

fitness. In this approach, the whole swarm is divided into five different fitness hierarchical sets191

(or neighbourhood classes) according to the agent’s current fitness. The neighbours of an agent192

are decided by the set (or class) in which the agent belongs. In this neighbourhood structure,193

some agents of the swarm exploit the superior regions of the landscape while some agents explore194

the fixed regions of the landscape, simultaneously. In Algorithm 2, the agents of set S1 always195

exploit the superior regions of the landscape by interacting with the other agents of the set S1196

itself. On the other hand, agents of set Si, (∀i = 2 : 5) interact with their neighbours which197

belong to different level of fitness hierarchy. This kind of hierarchical model helps to avoid the198

possibility of stagnation. The common best agent (first agent of S1) in each neighbourhood class199

navigates each agent towards the most promising region of the landscape which further accelerate200

the convergence speed of the algorithm. It is worth mentioning here that the best three agents201

of the swarm which belongs to the set S1 are neighbours of each other. Figure 2 presents the202

interaction of these three agents in a landscape of the minimization problem. The best agent (red203

ball) posses two neighbours having opposite directions from the optimal point of the landscape.204

The second best agent (green ball) has two neighbours in which one is in the direction and one205

is away from the optimal point. The third best agent (black ball) have both neighbours in the206

direction of the optimal point of the landscape. By following these directions, these three agents207

exploit the top optimal region of the landscape in the later iterations. This kind of exploitation208

avoid the possibility of stagnation of the best agent in the basic GSA model which further im-209

prove the exploitation ability of the algorithm in the terminal phase of the search process.210

211

Insert Figure 2 here.212

213
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Algorithm 2 F neighbourhood archive:
1: Calculate the fitness of each agent of the swarm (Xi, i = 1 : N);
2: Sort the fitness in ascending order;
3: Create the five sets (S1 to S5) of agents as follows:
4: S1= {Agents from 1 to N/5 of the sorted array};
5: S2= {Agents from (N/5 + 1) to (2×N/5) of the sorted array};
6: S3= {Agents from (2×N/5 + 1) to (3×N/5) of the sorted array};
7: S4= {Agents from (3×N/5 + 1) to (4×N/5) of the sorted array};
8: S5= {Agents from (4×N/5 + 1) to N of the sorted array};
9: for i=1 to SN/5 do

10: if Xj is the ith agent of S1 then
11: Nbd(Xj)={First three agents of S1};
12: end if
13: if Xj is the ith agent of S2 then
14: Nbd(Xj)={First agent of S2, first agent of S1};
15: end if
16: if Xj is the ith agent of S3 then
17: Nbd(Xj)={First agent of S3, first agent of S2, first agent of S1};
18: end if
19: if Xj is the ith agent of S4 then
20: Nbd(Xj)={First agent of S4, first agent of S3, first agent of S2, first agent of S1};
21: end if
22: if Xj is the ith agent of S5 then
23: Nbd(Xj)={First agent of S5, first agent of S4, first agent of S3, first agent of S2, first agent of S1};
24: end if
25: end for

3.3 Selection of the neighbourhood archive214

Initially, each agent Xi maintains the social interaction through F archive. Whenever the agent215

Xi stagnates, its neighbourhood archive is shifted from F archive to D archive. To estimate216

stagnation of Xi agent, a counter ctr is defined which counts the number of sequential iterations217

in which the agent does not improve itself. It is obvious that Xi is more likely to be trapped218

in suboptimal region as ctr increases. The upper limit of the counter ctr is set to a fixed value219

stg. If ctr exceeds stg, it means the agent Xi is facing a big risk of stagnation. Generally, the220

value of stg should be neither too large nor too small. A large stg value will consume more221

computation resources due to excessive perturbation on the agent Xi, while a small value slows222

the convergence speed because agents will take a long time to search around the local optimum.223

In this study, the value of stg is set to 10 (based on numerical experiments).224

3.4 The proposed gravitational constant FDGi,Neigh225

In basic GSA, the gravitational constant G (equation (8)) is the exponential decreasing function226

of time having the following shortcomings:227

– The presence of the maximum number of iterations (T ) in equation (8) makes G less effective228

with respect to the search requirements. G scales the step size of the agent according to the229

pre-defined span of the search process (T ), irrespective of its actual search requirements.230

– The constant parameter G0 is responsible for the initial exploration in the search process.231

Figure 3 shows the significance of G0 in the evolutionary process. Different values of G0232

produce different initial exploration phases which effect the search process accordingly. Any233

constant value of G0 does not provide an optimal ability to explore the search process.234

– Since the reducing constant α is responsible to navigate the search process from exploration235

to exploitation phase. This navigation provides a good convergence speed to GSA. Figure236
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4 presents different navigations with respect to different values of α. Optimal navigation237

through a constant α is not realistic.238

– The gravitational constant G(t) does not have any direct relation with the search requirement.239

Except the current evolutionary state (t), three constant values G0, α and T do not provide240

an adaptive behaviour in terms of the search requirement.241

– In GSA, each agent individually interacts with the agents of Kbest archive through the gravi-242

tational forces. This force provides a direction to the agent towards the Kbest agent. Now the243

question is ‘how far the agent should travel in this direction to get the maximum beneficial244

information about that particular region of the landscape?’. In the basic GSA, each agent245

travels the same distance through the common G(t) towards all the directions of the common246

K best fit agents neglecting the fact that how beneficial it could be.247

To overcome the above shortcomings of gravitational constantG(t) in basic GSA, the following248

attributes of the proposed neighbourhood archives (either D or F archive) associated with each249

agent Xi, i = 1 : N are used:250

– The size p of Xi’s neighbourhood archive251

– The neighbours (XNeigh
i , Neigh = 1, ..., p), which provides the optimal information to the252

agent Xi about the most promising regions of the landscape according to its necessity in253

terms of the current evolutionary state.254

– The distance (Ri,Neigh) between the agent Xi and its neighbour XNeigh
i .255

– A set of fitness differences FDi ={∆fi,Neigh = f(Xi)−f(XNeigh
i ), Neigh = 1, ..., p} which de-256

fines the position of the agentXi related to the position of its assigned neighbours (XNeigh
i , Neigh =257

1, ..., p), in terms of the optimality. With respect to FDi, an agent Xi can classify into three258

categories as follows:259

Category :1 Xi ∈ category 1⇒ ∆fi,Neigh > 0, ∀ Neigh = 1, ..., p260

Category :2 Xi ∈ category 2⇒ ∆fi,Neigh < 0, ∀ Neigh = 1, ..., p261

Category :3 Xi ∈ category 3⇒ some ∆fi,Neigh > 0 and some ∆fi,Neigh < 0262

Insert Figure 3 here.263

264

Insert Figure 4 here.265

266

With the help of these attributes, a novel fitness-distance ratio based gravitational constant267

FDGi,Neigh(t) is proposed. For the current iteration t, FDGi,Neigh(t) individually scales the step268

size of the agent Xi in each direction of its neighbours XNeigh
i , Neigh = 1, ..., p. DFGi,Neigh(t)269

is defined as:270

FDGi,Neigh(t) = MDi + β

(
fi,Neigh
di,Neigh

)2

, ∀Neigh = 1, ..., p (12)

MDi =

∑p
Neigh=1Ri,Neigh

p
(13)

fi,Neigh =



∆fi,Neigh∑p
Neigh=1∆fi,Neigh

if Xi ∈ category 1
δ×|∆fi,Neigh|∑p

Neigh=1∆fi,Neigh
if Xi ∈ category 2

∆fi,Neigh∑p
Neigh=1∆fi,Neigh

if Xi ∈ category 3 and ∆fi,Neigh > 0
γ×|∆fi,Neigh|∑p

Neigh=1∆fi,Neigh
ifXi ∈ category 3 and ∆fi,Neigh < 0

(14)
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di,Neigh =
Ri,Neigh∑p

Neigh=1Ri,Neigh
, ∀ Neigh = 1, ..., p (15)

where MDi is the mean distance of the agent Xi with its current neighbours. di,Neigh and271

fi,Neigh are the normalized distance and normalized fitness difference between the agent Xi and272

its neighbour XNeigh
i , respectively. β is a linearly decreasing function from 1 to 0 over the course273

of iterations. It is clear from equation (12) that FDGi,Neigh ∝ fi,Neigh. It means that the step274

size of the agent Xi in the direction of its individual neighbour XNeigh
i is directly proportional275

to the fitness difference (∆fi,Neigh) between them.276

Figure 5 presents all the above three categories for the minimization problem. subgraph (5(a)),277

subgraph (5(b)) and subgraph (5(c)) present category 1, category 2 and category 3, respectively.278

In the subgraph (5(a)), all the neighbours of agent Xi belong to the better optimal regions279

of the landscape compare to its current position. The social interaction by these neighbours280

navigates the agent towards the more optimal regions of the landscape which further increases281

the convergence rate of the search process. On the contrary, in Figure (5(b)) the agent itself has282

the optimal position compare to all its neighbours. Although all the less fit neighbours downgrade283

the fitness of the agent, this kind of social interaction avoids the stagnation possibility on the284

best fit agent (either the global best agent or the currently best agent of the swarm). The red285

ball in Figure 2 presents the mentioned state of the best fit agent for the minimization problem.286

Moreover, these interactions with a large step size may lead the best fit agent far away from287

the optimal region of the landscape, against the search requirement. Therefore, the small step288

sizes are beneficial for making this category as a stagnation avoidance tool for the multi-modal289

landscape. To do so, a small positive value δ is used to reduce the step size for category 2 in the290

equation (14). Finally, Figure (5(c)) presents the third category which is responsible to maintain291

the diversity of the search due to having both less and more fit neighbours compare to the292

agent itself. Like category 2, the agent should have a small step size to interact with its less fit293

neighbour. In this regards, a small positive value γ < δ is used for ∆fi,Neigh < 0 in category 3.294

Further, the ratio (
fi,Neigh

di,Neigh
) in equation (12) controls the step size of the agent more precisely.295

This ratio provides the maximum weight to the nearest best fit neighbour for the agent’s next296

move. Due to its monotonic decreasing behaviour, β annihilates the effect of di,Neigh in the297

terminal phase of the search process.298

Under the influence of the proposed FDGi,Neigh, the agent Xi interacts with its neighbour299

XNeigh
i through the gravitational force defined as300

Fi,Neigh(t) = FDGi,Neigh
Mi(t)MNeigh(t)

Ri,Neigh + ε
(Xi(t)−XNeigh

i (t)) (16)

Finally, the total gravitational force acting on the agent Xi by its all neighbours of its neigh-301

bourhood archive for the current iteration (t) is defined as:302

Fi(t) =

p∑
Neigh=1

Fi,Neigh(t) (17)

Insert Figure 5 (subfigures as Figure5a, Figure5b and Figure5c) here.303

304

Insert Figure 6 (subfigures as Figure6a, Figure6b, Figure6c and Figure6d) here.305

306

Insert Figure 7 (subfigures as Figure7a, Figure7b, Figure7c and Figure7d) here.307

308
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Insert Figure 8 (subfigures as Figure8a, Figure8b, Figure8c and Figure8d) here.309

310

Insert Figure 9 (subfigures as Figure9a, Figure9b, Figure9c and Figure9d) here.311

312

Algorithm 3 NAGGSA algorithm for minimization problem:
1: /*Initialization*/
2: Initialize the position and velocities of agents
3: ctr=0, stg=10;
4: /*Main Loop*/
5: while Termination criteria is not satisfied do
6: Calculate the fitness of each agent of the swarm
7: Find best and worst fitness
8: Calculate masses of each agents
9: for i=1 to SN do

10: if Iteration>1 then
11: if fitness(Xi) < fitness old(Xi) then
12: ctr=0;
13: else
14: ctr=ctr+1;
15: end if
16: end if
17: if ctr < stg then
18: Xi follows F neighbourhood archive (using Algorithm 2)
19: else
20: Xi follows D neighbourhood archive (Algorithm 1)
21: end if
22: With respect to the selected neighbourhood archive, calculate the proposed FDGi,Neigh (using equation

(12)) of Xi for its neighbours
23: Calculate total force (using equation (17)) acting on Xi by its neighbours
24: Find acceleration for Xi

25: end for
26: fitness old =fitness;
27: Update velocities and positions of agents
28: end while

The implementation of the proposed NAGGSA is summarized in Algorithm 3. Figures 6, 7, 8313

and 9 present different attributes of the first agent X1 of the swarm under the mechanism of the314

proposed NAGGSA on f1 (Unimodal function), f5 (Multimodal function), f8 (Hybrid function)315

and f11 (Composite function) (refer section 4.1). In each figure, the first subgraph (a) presents316

the number of neighbours of the first agent X1 of the swarm through out the search process317

provided by either F or D archive. It is clear from Subgraph (a) that the agent can possess318

minimum 2 and maximum 5 neighbours in any evolutionary state. Subgraph (b) presents the319

mean distance of X1 with its neighbours. Subgraph (c) presents the proposed FDG1,Neigh(t) of320

X1 for its neighbours associated with the basic gravitational constant G(t) of GSA model. For321

the better graphical analysis, a magnified version of subgraph (c) is presented in subgraph (d).322

4 Results and Discussion323

4.1 Testbeds under consideration324

In this section, the proposed NAGGSA is tested over 12 unconstrained continuous test functions325

of CEC 2015 test suite (Testbed 1)[12] and 22 test functions of CEC 2014 test suite (Testbed 2)326
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[11]. According to the different topological characteristics, the 12 test functions of Testbed 1 are327

categorized into four groups : uni-modal functions (f1(F1cec15)), simple multi-modal functions328

(f2(F3cec15) and f3(F4cec15)), hybrid functions (f4(F6cec15), f5(F7cec15) and f6(F8cec15)) and329

composite functions (f7(F9cec15), f8(F10cec15), f9(F12cec15), f10(F13cec15), f11(F14cec15) and330

f12(F15cec15)). The 22 test functions of Testbed 2 are categorized into three groups: uni-modal331

functions ( g1(F1cec14)-g3(F3cec14)), simple multi-modal functions (g4(F4cec14)-g16(F16cec14))332

and hybrid functions (g17(F17cec14)-g22(F22cec14)). These 34 benchmark functions involve a di-333

verse set of characteristics namely, multimodality, impurity, ill-conditioning and rotation, which334

can be utilized to completely investigate the optimization performance of the NAGGSA al-335

gorithm. The dimension (n) and the range of the search space of both testbeds are 30 and336

[−100, 100], respectively.337

4.2 Experimental setting338

In order to validate the effectiveness and robustness of proposed algorithm, NAGGSA is compared339

with basic GSA along with some state-of-the-art algorithms like Covariance Matrix Adaptation340

Evolution Strategy (CMA-ES) [6], Biogeography-based optimization (BBO) [25], Disruption in341

biogeography-based optimization (DBBO) [1], Differential evolution (DE) [27] and Grey wolf op-342

timizer (GWO)[17]. NAGGSA is also compared with some recent variants of GSA like MGSA[9],343

Fuzzy gravitational search algorithm (FGSA) [22], FSα(Increase) [26], FSα(Decrement) [26] and344

SCAA [28]. All the comparisons have been done over Testbed 1 with the popular experimental345

setting (as per recommendations of CEC 2015 test suite) given as follows:346

4.2.1 Experimental setting for Test bed 1347

– The number of simulations/run =51,348

– Swarm size N=50,349

– Dimension n=30,350

– The maximum number of function evaluations for the stopping criteria of the algorithms are351

set to be 10, 000× n,352

– Parameters for the algorithms GSA [21], CMA-ES [6], BBO [25], DBBO [1], DE [27] and353

GWO [17] are considered from the corresponding resources while the results of all considered354

GSA variants are reproduced from SCAA [28].355

For further evaluation of NAGGSA, it is tested over testbed 2 along with the original GSA356

[21] and four competitive GSA variants namely, GAGSA [29], PSOGSA [15], FVGGSA [2] and357

PTGSA [8]. Since the results of GSA [21], GAGSA [29] and PSOGSA [15] over Testbed 2 are358

reproduced from [30]. Therefore for fair comparison, the experimental setting for Testbed 2 has359

been adopted from [30] and given as follows:360

4.2.2 Experimental setting for Test bed 2361

– The number of simulations/run =30,362

– Swarm size N=60,363

– Dimension n=30,364

– The maximum number of function evaluations for the stopping criteria of the algorithms are365

set to be 60, 000,366

– Parameters for the algorithms GSA [21], GAGSA [29], PSOGSA [15], FVGGSA [2] and367

PTGSA [8] are considered from the corresponding resources.368
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4.3 Result and statistical analysis of experiments369

4.3.1 Testbed 1370

Following the experimental setting explained in section 4.2.1, the searching behavior of the pro-371

posed NAGGSA is compared with some state-of-the-art algorithms over Testbed 1. The experi-372

mental results of fitness errors are summarized in Table 1. Table 1 lists the three metrics of fitness373

error: Mean error(Mean), Standard Deviation of error (SD) and Wilcoxon Signed-Rank Test (h-374

value) [4]. The fitness error is the absolute difference between the best fitness value obtained by375

the algorithm and the actual global optimum of the optimization problem. The Mean and SD376

of these results validate the searching accuracy of the algorithms, while Wilcoxon Signed-Rank377

Test checks whether the results obtained by NAGGSA and other considered algorithms are sig-378

nificantly different or not. This non-parametric statistical test is performed on these results at379

5% level of significance with the null hypothesis, ‘There is no significant difference between the380

results’ obtained by NAGGSA and other considered algorithms. In Table 1, ‘+’ or ‘-’ h-value381

indicates that NAGGSA is significantly better or worse than the other considered algorithms,382

while ‘=’ h-value stands for similar performance between NAGGSA and others. The bold entries383

indicate the best results. As shown in Table 1, NAGGSA outperforms others in terms of mean384

value for 7 test functions including one unimodal (f1), one multi-modal(f2), two hybrid (f4 and385

f6) and three composite functions (f8, f9 and f12). Among all metrics of comparison NAGGSA386

proves its supremacy over 5 test functions (f1, f4, f6, f8 and f9). Furthermore, 43 ‘+’ h-value387

out of 60 comparison confirms that the proposed NAGGSA is a significantly better algorithm388

than other considered algorithms. To further verify the exploitation of NAGGSA, the conver-389

gence behavior of the considered algorithms over unimodal (f1), hybrid (f4) and composite (f8)390

functions is illustrated in Figure 10. It is clear from Figure 10 that NAGGSA outperforms others391

in terms of exploitation ability due to its fastest convergence rate.392

393

Insert Table 1 here394

In order to show the efficiency of the proposed NAGGSA over the recent variants of GSA,395

five GSA variants namely, MGSA-α [9], Fuzzy GSA [22], FSα(Increase) [26], FSα(Decrement)396

[26] and SCAA [28] are considered for comparison. Table 2 presents the experimental results of397

fitness errors with two metrics: Mean and SD. The bold entries indicate the best results. Except398

result of NAGGSA, other results are reproduced from SCAA [28]. As per the results shown in399

Table 2, in terms of the mean value, NAGGSA have the better search accuracy for eight test400

functions (f3, f4, f6, f8, f10 and f12). For f1, NAGGSA is better than others except SCAA.401

For f7, NAGGSA is better than Fuzzy GSA, FSα(Increase) and FSα(Decrement). For five test402

functions (f4, f6, f8, f10 and f12) NAGGSA outperforms others in both metrics of comparison.403

f2, f7, f9 and f11 are the problems for which NAGGSA is not better in either criteria. However404

only for f2, FSα (Decrement) is better than NAGGSA. While for f5, MGSA-α is better than405

NAGGSA. For other problems no single algorithm is better than NAGGSA in both criteria.406

Therefore, overall NAGGSA works better than all other α-adjusting variants of GSA.407

Based on the comparison of NAGGSA with state-of-the-art algorithms and the recent variants408

of GSA, it is clear that NAGGSA have an excellent search mechanism for unimodal, multi-modal,409

hybrid and composite test functions.410

411

Insert Table 2 here.412

413

Insert Figure 10 (subfigures as Figure10a, Figure10b and Figure10c) here.414

415
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4.3.2 Testbed 2416

In order to show the efficiency of NAGGSA more clearly, it is re-evaluated over 22 benchmark417

functions of Testbed 2. Table 3 presents the experimental results which are followed by the the418

experimental setting given in section 4.2.2. The criteria of comparison are mean (Mean), best419

(Best) and standard deviation (SD) of the error values. The bold entries indicate the best results.420

Table 3 shows that NAGGSA outperforms in terms of mean value for the functions g1, g2, g5,421

g9, g11, g14, g16, g20, g21 and g22. For g3, g7 and g17, NAGGSA is better than others except422

PTGSA. For g8, NAGGSA is better than others except PSOGSA. For g10, NAGGSA is better423

than GAGSA and PSOGSA. For g12 and g15, NAGGSA is better than GSA and GAGSA. For424

g18, NAGGSA is better than GAGSA, PSOGSA and PTGSA. For g4 and g13, NAGGSA is better425

than GAGSA, PSOGSA and FVGGSA. For g19, NAGGSA is better than others except GSA.426

For g6, NAGGSA is better than GAGSA only. In terms of the best value, NAGGSA outperforms427

for the functions g1, g2, g3, g4, g5, g8, g9, g10, g11, g14, g16, g17, g18, g20, g21 and g22. For three428

functions (g2, g20 and g22), NAGGSA outperforms others in all criteria of comparison. Based on429

these results, it is clear that the proposed NAGGSA performs significantly well for unimodal,430

multi-modal and hybrid test problems under shifted and rotated conditions.431

432

Insert Table 3 here.433

434

To statistically compare the performance of all the above algorithms simultaneously, a two-435

stage method (i.e., the statistical Friedman test and then a post-hoc test) is used. This non-436

parametric statistical test is performed pairwise at 1% level of significance with the null hypoth-437

esis, ‘There is no significant difference between the results obtained by the considered pair’. The438

Friedman test p-value is 2.382E − 12, that clearly indicates the significant difference between439

the performance of the algorithms even at 1% level of significance. According to Friedman test440

results, a post-hoc statistical analysis is needed. In this study, for pairwise comparisons, we also441

reported the adjusted p-values achieved by five post-hoc test procedures. All these procedures442

are implemented in R [20, 19]. Table 4 presents the p-values for each comparison which involves443

the proposed algorithm. From Table 4, the following observations are made:444

– For all considered post-hoc test procedures, the proposed NAGGSA is significantly better445

than other considered algorithms.446

– Based on the multiple comparison analysis, the proposed NAGGSA is an overall better algo-447

rithm as compare to other considered GSA variants.448

Insert Table 4 here.449

450

5 Conclusion451

In this paper, two novel neighbourhood archive (D archive and F archive) are proposed to452

overcome the shortcomings of the Kbest archive in basic GSA model. In D archive, each agent453

extracts the information of its nearest most promising regions of the landscape. This kind of454

learning enables the algorithm to sufficiently explore the feasible search space. On the other hand,455

the F archive provides a five level of neighbourhood strategy based on the agent’s current fitness.456

The first level neighbourhood avoids the possibility of global best stagnation and exploits the457

most promising region of the landscape while second to fifth level neighbourhood helps to explore458

the different regions of the landscape. Since these small size archives are accountable for the social459
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interaction therefore the proposed variant reduces the computational complexity compared to460

the Kbest archive of GSA model. Secondly, a novel fitness-distance based gravitational constant is461

proposed which scales the agent’s next move in each direction of its neighbours. The performance462

of the proposed variant is compared with some state-of-the-art algorithms along with some recent463

variants of GSA over CEC 2015 and CEC 2014 test suites. Based on the comparisons, NAGGSA464

has proved its excellent search ability for shifted unimodal, shifted and rotated multimodal,465

hybrid and composite test problems. The efficiency of the proposed variant is based on the fitness466

distance ratio criteria which employs a local search tool in each global search of an individual467

agent. This embedded local search tool can be improve the performance of the proposed variant468

in the binary search space, more efficiently. Therefore, In future, the proposed variant can be469

applied on combinatorial optimization problems of binary and discrete search space.470
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(a) category 1 (b) category 2

(c) category 3

Fig. 5 The 2-D graphical representation of the three categories with respect to the position of an agent Xi (black
ball) and its neighbours (blue balls) for the minimization problem
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Fig. 6 The different attributes of the first agent X1 for f1 (uni-modal function)
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Fig. 7 The different attributes of the first agent X1 for f5 (Multimodal function)
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Fig. 8 The different attributes of the first agent X1 for f8 (Hybrid function)
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Fig. 9 The different attributes of the first agent X1 for f11 (Composition function)
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Fig. 10 Convergence graphs for function f1, f4 and f8
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Table 1: Fitness errors of NAGGSA along with the considered state-of-the-art
algorithms over Testbed 1 (TP denotes Test Problem under consideration and
SD stands for Standard Deviation )

TP metrics GSA CMA-ES BBO DBBO DE GWO NAGGSA

f1(F1cec15)
Mean 8.12E+05 2.04E+07 8.63E+06 3.77E+06 1.52E+07 2.01E+07 4.32E+05
SD 3.42E+05 7.39E+06 4.51E+06 2.31E+06 3.14E+06 2.41E+07 1.23E+06
h value (+) (+) (+) (+) (+) (+)

f2(F3cec15)
Mean 2.00E+01 2.10E+01 2.01E+01 2.00E+01 2.07E+01 2.09E+01 2.00E+01
SD 6.80E-05 5.22E-02 2.96E-02 1.44E-07 5.20E-02 5.10E-02 7.79E-05
h value (-) (+) (+) (=) (+) (+)

f3(F4cec15)
Mean 2.12E+02 1.16E+02 6.09E+01 8.55E+01 1.20E+02 9.21E+01 1.70E+02
SD 1.93E+01 6.62E+01 1.36E+01 2.31E+01 1.06E+01 3.51E+01 2.56E+01
h value (+) (-) (-) (-) (-)

f4(F6cec15)
Mean 1.33E+05 2.64E+06 4.14E+06 9.93E+05 1.47E+06 1.16E+06 7.72E+03
SD 5.22E+04 1.46E+06 3.10E+06 1.01E+06 7.05E+05 9.46E+05 5.57E+03
h value (+) (+) (+) (+) (+) (+)

f5(F7cec15)
Mean 1.54E+01 8.67E+00 1.47E+01 1.72E+01 1.27E+01 1.87E+01 2.11E+01
SD 9.09E+00 9.11E-01 1.32E+01 1.93E+01 6.27E-01 3.36E+00 4.74E+00
h value (-) (-) (-) (=) (+)

f6(F8cec15)
Mean 2.41E+04 1.90E+06 2.12E+06 3.30E+05 2.87E+05 2.78E+05 1.17E+04
SD 9.84E+03 1.22E+06 2.13E+06 5.69E+05 1.10E+05 3.97E+05 5.62E+03
h value (+) (+) (+) (+) (+) (+)

f7(F9cec15)
Mean 1.37E+02 1.52E+02 1.05E+02 1.03E+02 1.03E+02 1.12E+02 1.67E+02
SD 1.02E+02 9.38E+01 6.08E-01 2.47E-01 1.88E-01 2.33E+02 1.59E+02
h value (-) (+) (+) (-) (-) (=)

f8(F10cec15)
Mean 3.98E+05 2.54E+06 2.04E+06 2.85E+05 4.66E+05 1.41E+06 3.43E+04
SD 1.49E+05 1.58E+06 1.50E+06 8.33E+05 1.94E+05 1.05E+06 7.79E+04
h value (+) (+) (+) (+) (+) (+)

f9(F12cec15)
Mean 1.04E+02 1.92E+02 1.09E+02 1.85E+02 1.07E+02 1.10E+02 1.01E+02
SD 8.45E-01 2.56E+01 1.59E+00 3.38E+01 6.24E-01 1.84E+01 5.93E-01
h value (+) (+) (+) (+) (+) (+)
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Table 1 Continued:

TP metrics GSA CMA-ES BBO DBBO DE GWO NAGGSA

f10(F13cec15)
Mean 1.38E+03 6.95E-03 3.58E-02 6.14E-03 2.59E-02 5.36E-02 1.05E+02
SD 1.26E+03 9.72E-05 4.00E-03 2.48E-04 2.22E-04 2.23E-02 8.79E+01
h value (+) (-) (-) (-) (-)

f11(F14cec15)
Mean 1.00E+02 1.02E+04 3.34E+04 6.75E+03 3.35E+04 3.58E+04 3.20E+04
SD 9.63661E-08 7.72E+03 1.05E+03 9.55E+03 2.96E+02 2.39E+03 1.87E+04
h value (-) (+) (+) (-) (+) (+)

f12(F15cec15)
Mean 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.27E+02 1.00E+02
SD 1.34832E-10 1.41E-13 2.98E-02 1.12E-03 1.25E-13 1.79E+01 4.45E-05
h value (=) (=) (+) (+) (=) (+)
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Table 2: Fitness errors of NAGGSA along with α adjusting GSA variants over
Testbed 1 (TP denotes Test Problem under consideration and SD stands for
Standard Deviation )

TP metrics MGSA-α FuzzyGSA FSα(Increase) FSα(Decrement) SCAA NAGGSA

f1(F1cec15)
Mean 1.012E+06 2.707E+06 2.046E+06 1.428E+07 4.093E+05 4.32E+05
SD 3.907E+05 5.063E+06 1.297E+06 8.813E+06 2.405E+05 1.23E+06

f2(F3cec15)
Mean 2.000E+01 2.000E+01 2.000E+01 2.000E+01 2.094E+01 2.000E+01
SD 6.594E-05 8.113E-05 1.109E-04 6.150E-05 5.840E-02 7.79E-05

f3(F4cec15)
Mean 1.963E+02 2.194E+02 2.084E+02 2.363E+02 2.173E+02 1.70E+02
SD 2.811E+01 1.924E+01 2.023E+01 2.261E+01 2.223E+01 2.56E+01

f4(F6cec15)
Mean 3.553E+05 6.856E+05 9.472E+05 1.704E+06 5.587E+04 7.72E+03
SD 1.725E+05 2.962E+05 3.593E+05 6.204E+05 2.566E+04 5.57E+03

f5(F7cec15)
Mean 1.524E+01 2.236E+01 2.441E+01 6.397E+01 9.779E+00 2.11E+01
SD 9.643E+00 1.949E+01 2.058E+01 2.388E+01 3.133E+00 4.74E+00

f6(F8cec15)
Mean 2.388E+04 3.050E+04 5.557E+04 1.007E+05 2.154E+04 1.17E+04
SD 7.509E+03 1.152E+04 3.344E+04 1.141E+05 8.329E+03 5.62E+03

f7(F9cec15)
Mean 1.265E+02 1.151E+02 1.262E+02 2.025E+02 1.358E+02 1.67E+02
SD 8.221E+01 1.218E+02 7.943E+01 1.627E+02 1.016E+02 1.59E+02

f8(F10cec15)
Mean 6.936E+05 9.961E+05 1.280E+06 2.485E+06 1.921E+05 3.43E+04
SD 2.310E+05 3.994E+05 6.108E+05 1.004E+06 5.998E+04 7.79E+04

f9(F12cec15)
Mean 1.036E+02 1.053E+02 1.047E+02 1.449E+02 1.034E+02 1.020E+02
SD 8.215E-01 1.104E+00 9.304E-01 2.771E+01 7.031E-01 5.95E-01

f10(F13cec15)
Mean 4.759E+03 1.673E+03 1.602E+03 2.100E+03 1.550E+03 1.05E+02
SD 3.987E+03 1.083E+03 1.571E+03 1.121E+03 1.296E+03 8.79E+01

f11(F14cec15)
Mean 1.000E+02 1.000E+02 1.000E+02 2.821E+04 1.000E+02 3.20E+04
SD 8.716E-13 6.668E-10 0.000E+00 7.551E+03 3.565E-13 1.87E+04

f12(F15cec15)
Mean 1.000E+02 1.000E+02 1.002E+02 1.232E+02 1.000E+02 1.000E+02
SD 4.295E-13 2.422E-10 1.435E-13 7.414E+00 1.435E-13 9.65E-01

567



A
n

o
v
el

n
eig

h
b

o
u

rh
o
o
d

a
rch

iv
es

em
b

ed
d
ed

g
ra

v
ita

tio
n

a
l

co
n

sta
n
t

in
G

S
A

2
7

Table 3: Fitness errors of NAGGSA along with GSA variants over Testbed 2
(TP denotes Test Problem under consideration and SD stands for Standard
Deviation)

TP metrics GSA GAGSA PSOGSA FVGGSA PTGSA NAGGSA

g1(F1cec14)
Mean 1.13E+08 1.78E+09 2.16E+08 4.03E+07 1.89E+08 2.95E+07
Best 8.94E+07 1.413E+09 5.11E+07 2.57E+07 3.63E+07 6.14E+06
SD 2.12E+07 2.41E+08 1.59E+08 1.49E+07 1.24E+08 1.88E+07

g2(F2cec14)
Mean 9.81E+08 8.07E+10 1.41E+10 4.19E+08 1.25E+10 7.05E+05
Best 6.65E+08 6.48E+10 1.45E+09 6.33E+03 5.01E+09 1.99E+03
SD 3.07E+08 1.03E+10 1.76E+10 3.33E+08 5.79E+09 3.48E+06

g3(F3cec14)
Mean 7.57E+04 8.51E+04 1.03E+05 6.84E+04 7.79E+03 9.73E+03
Best 7.17E+04 8.39E+04 3.96E+04 5.34E+04 3.97E+03 1.36E+03
SD 3.57E+03 9.37E+02 7.00E+04 6.41E+03 2.26E+03 4.81E+03

g4(F4cec14)
Mean 2.89E+02 1.60E+04 9.44E+02 4.16E+02 2.88E+02 3.25E+02
Best 2.57E+02 1.43E+04 2.46E+02 2.84E+02 2.05E+02 1.54E+02
SD 2.81E+01 1.01E+03 8.52E+02 1.17E+02 3.18E+01 1.16E+02

g5(F5cec14)
Mean 2.00E+01 2.11E+01 2.01E+01 2.00E+01 2.00E+01 2.00E+01
Best 2.00E+01 2.10E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
SD 1.45E-04 4.88E-02 1.42E-01 3.28E-04 5.50E-04 5.03E-04

g6(F6cec14)
Mean 2.75E+01 4.52E+01 2.28E+01 3.38E+01 2.38E+01 3.56E+01
Best 2.36E+01 4.39E+01 1.96E+01 2.95E+01 1.92E+01 2.96E+01
SD 2.86E+00 1.06E+00 2.03E+00 2.12E+00 2.55E+00 3.40E+00

g7(F7cec14)
Mean 1.00E+01 7.60E+02 9.09E+01 1.55E+01 1.51E-03 1.93E-01
Best 2.46E+00 6.39E+02 3.54E+01 2.07E+00 1.90E-07 1.35E-05
SD 7.46E+00 8.10E+01 5.43E+01 8.72E+00 4.05E-03 3.71E-01

g8(F8cec14)
Mean 1.44E+02 3.70E+02 1.14E+02 1.46E+02 1.44E+02 1.16E+02
Best 1.37E+02 3.62E+02 1.00E+02 1.20E+02 1.16E+02 9.25E+01
SD 6.87E+00 5.26E+00 1.40E+01 1.13E+01 1.08E+01 1.37E+01

g9(F9cec14)
Mean 1.64E+02 3.46E+02 2.55E+02 1.77E+02 1.67E+02 1.30E+02
Best 1.52E+02 3.30E+02 2.18E+02 1.50E+02 1.32E+02 9.25E+01
SD 1.25E+01 1.45E+01 2.93E+01 1.64E+01 1.78E+01 1.95E+01

g10(F10cec14)
Mean 3.73E+03 8.29E+03 4.33E+03 3.84E+03 3.65E+03 4.08E+03
Best 3.22E+03 7.96E+03 3.33E+03 3.22E+03 2.91E+03 2.65E+03
SD 3.57E+02 2.50E+02 5.97E+02 3.88E+02 4.32E+02 5.02E+02

g11(F11cec14)
Mean 4.68E+03 8.73E+03 4.56E+03 4.54E+03 4.47E+03 4.40E+03
Best 3.94E+03 8.24E+03 3.78E+03 3.61E+03 3.41E+03 3.03E+03
SD 5.56E+02 3.37E+02 6.61E+02 5.10E+02 4.24E+02 6.19E+02
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Table 3 Continued:

TP metrics GSA GAGSA PSOGSA FVGGSA PTGSA NAGGSA

g12(F12cec14)
Mean 1.47E+00 3.43E+00 1.43E-01 1.10E-02 5.51E-03 2.76E-01
Best 1.32E+00 2.71E+00 7.45E-02 8.37E-04 6.31E-04 1.06E-01
SD 1.66E-01 5.51E-01 6.37E-02 8.19E-03 5.31E-03 1.22E-01

g13(F13cec14)
Mean 3.66E-01 9.16E+00 2.37E+00 4.70E-01 3.28E-01 4.42E-01
Best 3.03E-01 8.76E+00 6.42E-01 2.76E-01 2.25E-01 3.02E-01
SD 4.08E-02 3.60E-01 1.38E+00 3.49E-01 5.61E-02 8.54E-02

g14(F14cec14)
Mean 1.58E+00 3.25E+02 6.34E+01 6.76E+00 2.49E-01 2.42E-01
Best 2.18E-01 2.97E+02 3.19E+00 1.94E-01 1.70E-01 1.60E-01
SD 3.00E+00 1.66E+01 6.59E+01 1.03E+01 3.66E-02 3.86E-02

g15(F15cec14)
Mean 6.05E+01 4.45E+05 1.14E+05 3.17E+01 2.25E+01 1.07E+02
Best 3.30E+01 3.94E+05 5.27E+01 2.13E+01 9.81E+00 7.32E+01
SD 2.05E+01 3.52E+04 2.07E+05 7.29E+00 7.80E+00 2.17E+01

g16(F16cec14)
Mean 1.35E+01 1.39E+01 1.31E+01 1.36E+01 1.36E+01 1.29E+01
Best 1.29E+01 1.37E+01 1.25E+01 1.29E+01 1.31E+01 1.23E+01
SD 3.87E-01 1.90E-01 4.91E-01 2.44E-01 2.20E-01 3.40E-01

g17(F17cec14)
Mean 4.96E+06 1.77E+08 6.40E+06 5.83E+05 2.75E+05 3.65E+05
Best 3.79E+06 7.08E+07 9.77E+04 2.78E+05 7.56E+04 5.09E+04
SD 1.19E+06 8.51E+07 1.00E+07 2.14E+05 2.17E+05 3.13E+05

g18(F18cec14)
Mean 6.21E+02 6.50E+09 8.80E+03 4.81E+02 1.04E+07 1.41E+03
Best 2.59E+02 4.91E+09 4.92E+02 1.75E+02 1.48E+02 9.11E+01
SD 5.12E+02 1.49E+09 1.00E+04 3.01E+02 5.28E+07 1.84E+03

g19(F19cec14)
Mean 6.78E+01 6.19E+02 1.37E+02 1.60E+02 1.06E+02 8.86E+01
Best 3.01E+01 5.26E+02 9.69E+01 4.56E+01 2.35E+01 3.70E+01
SD 3.17E+01 5.41E+01 5.39E+01 3.95E+01 3.15E+01 3.57E+01

g20(F20cec14)
Mean 1.58+05 7.76E+06 4.36E+04 5.18E+04 1.85E+04 1.62E+04
Best 1.18E+05 9.36E+05 8.08E+03 3.93E+04 1.46E+04 8.46E+03
SD 3.01E+04 1.34E+07 5.03E+04 8.29E+03 2.27E+03 5.59E+03

g21(F21cec14)
Mean 1.63E+06 1.36E+08 1.96E+06 1.73E+05 1.41E+05 1.14E+05
Best 4.88E+05 5.35E+07 5.68E+05 8.15E+04 6.84E+04 1.03E+04
SD 7.64E+05 8.34E+07 2.04E+06 4.82E+04 4.23E+04 1.14E+05

g22(F22cec14)
Mean 1.06E+03 5.63E+03 1.07E+03 1.21E+03 1.03E+03 8.96E+02
Best 4.42E+02 2.76E+03 6.78E+02 4.16E+02 5.84E+02 4.12E+02
SD 5.24E+02 4.27E+03 3.13E+02 3.26E+02 2.85E+02 2.72E+02
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Table 4: p-values for comparison of NAGGSA with other considered GSA vari-
ants over Testbed 2

Post-hoc procedure GSA GAGSA PSOGSA FVGGSA PTGSA

Holm 0.01004 < 2E − 16 3.4E − 14 3.0E − 06 0.83059
Hochberg 0.01004 < 2E − 16 3.4E − 14 3.0E − 06 0.83059
Hommel 0.01004 < 2E − 16 3.4E − 14 3.0E − 06 0.83059
Benjamin-Hochberg(BH) 0.00386 < 2E − 16 8.5E − 15 7.4E − 07 0.83059
Fdr 0.00386 < 2E − 16 8.5E − 15 7.4E − 07 0.83059
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