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Abstract

This study introduces the extension of currently developed Seagull Optimization Algorithm
(SOA) in terms of multi-objective problems, which is entitled as Multi-objective Seagull
Optimization Algorithm (MOSOA). In this algorithm, a concept of dynamic archive is
introduced, which has the feature to cache the non-dominated Pareto optimal solutions.
The roulette wheel selection approach is utilized to choose the effective archived solutions
by simulating the migration and attacking behaviors of seagulls. The proposed algorithm
is approved by testing it with twenty-four benchmark test functions, and its performance is
compared with existing metaheuristic algorithms. The developed algorithm is analyzed on
six constrained problems of engineering design to assess its appropriateness for finding the
solutions of real-world problems. The outcomes from the empirical analyzes depict that the
proposed algorithm is better than other existing algorithms. The proposed algorithm also
considers those Pareto optimal solutions, which demonstrate high convergence.
Keywords: Convergence;Diversity;Pareto Solutions; Multi-objective Optimization;Seagull
Optimization Algorithm; Engineering Design Problems.

1 Introduction

Metaheuristic strategies have received more attention from researchers to solve real-
life problems (Wu, Qian, Ni, & Fan, 2012b; Hajiaghaei-Keshteli & Aminnayeri, 2013;
Cheraghalipour, Hajiaghaei-Keshteli, & Paydar, 2018). These techniques were commonly
used in various engineering fields (Dhiman & Kumar, 2017; Baykasoglu & Akpinar, 2017,
2015; Rao, Savsani, & Vakharia, 2012) due to the computationally inexpensive. Hence, the
distinguishing characteristic of these methods is the multi-objective approach.

The multi-objective optimizer has the capability of operating together with multiple
objective functions. The multi-objective optimizer must compromise for optimal solutions
in most of the situations. Conflicts are also often found among the optimal solutions. Using
three main stages, such as priori, posteriori and interactive approaches (R. T. Marler &
Arora, 2004; Branke, Deb, Dierolf, & Osswald, 2004; R. Marler & Arora, 2004; Y. Zhang,
Gong, & Ding, 2011), these conflicts can be eliminated. In the priori step, a single-objective
with a collection of weights is transferred from a multi-objective problem that characterizes
each segment’s importance in solving domain-specific problems. On the other hand, in
the posteriori step, by solving the benchmark problem (Deb, 2012), an exclusive result is
attempted to obtain based on certain obligations. Interactive approaches also known as
the human-in-the-loop technique, continuously extracting decision-maker preferences and
integrating them during the optimization process to find the correct Pareto optimal solutions
(R. T. Marler & Arora, 2004).

Conversely, multi-objective optimization (MOO) does not have a single solution and
varying consensus among the different objectives. To get the Pareto fronts is extremely
difficult for any MOO, as it needs delivering multiple points for successful hypothesis on
the Pareto line. Even so, there is no assurance that the MOO’s solutions on a Pareto
front will spread equally on the front (Yang, Karamanoglu, & He, 2014). It can generate
extremely complex hyper-surface in terms of the Pareto front (R. Marler & Arora, 2004;
Yang, 2010; Madavan, 2002) when dealing with multi-dimensional issues. Therefore,
predicting the solution of these multi-dimensional problems is quite difficult. The concept
of MOO using stochastic techniques was initially introduced by David Schaffer (Coello,



2006). The mastery of these methods is limited to optimal prevention and gradient-
free method, which makes them applicable to various problems. Such multi-objective
methods can be implemented in various fields of engineering and science, such as: bio-
informatics (Handl, Kell, & Knowles, 2007), civil engineering (Luh & Chueh, 2004), network
engineering (Chen & Hammami, 2015), mechanical engineering (Kipouros et al., 2008; Dhi-
man & Kumar, 2019b), software engineering (Kaur & Dhiman, 2019), and so on. Some
examples of optimization techniques that solve multi-objective problems include the Non-
dominated Genetic Algorithm 2 (NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan, 2002),
Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) (Q. Zhang
& Li, 2007), and Multi-objective Particle Swarm Optimization (MOPSO) (Coello Coello
& Lechuga, 2002). Though, these strategies can not provide solutions to all kinds of
optimization problems, but they can approximate the true optimal Pareto solutions (POSs)
(Wolpert & Macready, 1997). A MOO algorithm is used in this study which is an
advancement of the newly developed Seagull Optimization Algorithm (SOA) (Dhiman &
Kumar, 2019a). The proposed algorithm is applied to solve the MOO problem, so entitled
as Multi-objective Seagull Optimization Algorithm (MOSOA). Contributions are arranged
according to the following:

e The SOA algorithm integrates an archive part, which is liable to accumulate the
non-dominated Pareto solutions all over.

e [t is suggested that a leader selection method choose the solutions regarding the prey
position from the collection.

e To improve the non-dominated solutions, a grid mechanism is embedded in the
MOSOA to remove the most crowded sections.

The efficacy of the proposed MOSOA is tested on ten IEEE CEC-9 multi-objective
research problems (Q. Zhang et al., 2008). It is also tested on five multi-objective evaluation
problems with the ZDT (Zitzler, Deb, & Thiele, 2000) and nine DTLZ (Deb, Thiele,
Laumanns, & Zitzler, 2005). Six well-known optimization methods, such as MOPSO
(Coello Coello & Lechuga, 2002), NSGA-II (Deb et al., 2002), MOEA/D (Q. Zhang & Li,
2007), PESA-II (Corne, Jerram, Knowles, Oates, & J, 2001), MOSHEPO (Dhiman, 2020),
and MOACO (Angus & Woodward, 2009), are compared for experimental performance.
This research also uses the four performance metrics to test the efficiency of algorithms.
It can be inferred from the experimental results that the MOSOA is a highly promising
multi-objective metaheuristic strategy for finding solutions to real world problems.

The remainder section of this article is structured as follows. Section 2 presents
the background for the MOO and related works. Section 3 introduces SOA algorithm’s
mathematical principles, accompanied by the proposed MOSOA technique in Section 4.
Section 5 contains the findings of experiments and the discussions. In Section 6, the efficacy
of the proposed MOSOA is assessed on six engineering design MOO problems. Finally,
conclusions and future works are given in Section 7.



2 Background
2.1 Definitions of MOO

Multi-objective technique can be described as an optimization method that can have
functions of a given problem with more than one objective (Coello Coello, 2009):

Minimize : F(2) = [f1(2), f2(2),. .., fn(2)] (1)
Subject to:
ect e (2)
9i(2) >0, i=1,2,...,m
where Z = [z1, 29, ..., 2|7 is the decision variables vector, g; is the it" in-equality constraint,

h; is the it" equality constraint, m is the number of in-equality constraint, and p is the
number of equality constraint.

2.2 Related works

Several MOO algorithms have recently been published in the literature. There are
a number of issues related to multi-objective metaheuristic techniques, such as the variety
of complex, infallible solutions (Deb, 2012) and distinctive optimum performance. The
principle of knowledge moving between search space and agents should solve those problems.
In the single iteration, optimal Pareto front should be obtained by using M OO algorithms.
Non-dominated Sorting Genetic Algorithm 2 (NSGA-II) (Deb et al., 2002) is one of the most
popular multi-objective metaheuristic technique. Non-dominated sorting method along with
rigid and niching operator is used in this technique to get the best outputs. In NSGA-II, the
random population is generated and individuals are clustered according to the technique
of non-dominated sorting. Another random population is created to assist operators in
selection, mutation, and recombination. A new population is created in each simulation
and the sorting is done via non-dominated sorting. The viability of selecting a new one
entirely depends on the degree of control of the final population. The whole cycle remains
iterative before the correct findings are found. The most common MOOQO algorithm is the
MOPSO (Coello Coello & Lechuga, 2002). It is an extension variant of a PSO algorithm
with a single-objective. In the MOPSO, the archive concept is used to store and retrieve
the POSs. Additionally, in the MOPSO, the mutation operator is often used to boost its
efficiency.

Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D)
(Q. Zhang & Li, 2007) is a well-known MOO algorithm. It is based on the parallel and
distributed computing principle for the decomposition of a problem. All of the sub-problems
and weighting vector are assigned to a single-objective function which results multi-sub-
problem. The another method is commonly divided into two sub-processes: cooperation
and completion. Cooperation as the name implies may help to solve the problem by mutual
cooperation between neighboring members. If neighbors have better solutions then they
can substitute the solutions to get the better solutions. This task of finding the best
answer by challenging neighbors is called the process of competition. MOFEA /D has minimal
computational complexity and the convergence speed is agile than NSGA-IL



In 2009, Angus and Woodward (Angus & Woodward, 2009) created the Ant Colony
Optimization (ACO) multi-objective method, called the MOACO. It uses concepts like
the pheromone model, the design process, the estimation of the solution and the method
of updating. Gong et al. (Gong, Jiao, Du, & Bo, 2008) has created a neighbor’s Non-
dominated Immune Algorithm (NNIA) for MOO problems. It depends on the ideas of
non-dominated neighbor selection, immune operator motivated, heuristic search operators,
and elitism. However, one of the NNIA’s fundamental drawbacks is the lack of diversity.
This problem has been resolved in the NNIA’s updated version and the latest method is
being developed called the NNIAZ2.

In addition to these MOO algorithms, several other algorithms are also proposed in
literature, such as Multi-objective Cat Swarm Optimization (MOCSO) (Pradhan & Panda,
2012), Multi-objective Artificial Bee Colony Algorithm (MOABC) (Hancer, Xue, Zhang,
Karaboga, & Akay, 2015), Multi-objective Flower Pollination Algorithm (MOFPA) (Yang
et al., 2014), a self-adaptive Artificial Bee Colony algorithm (Xue, Jiang, Zhao, & Ma,
2018), hybrid Harmony Search and Artificial Bee Colony algorithm (Wu, Qian,
Ni, & Fan, 2012a), Multi-objective Spotted Hyena Optimizer (Dhiman & Kumar, 2018b),
Multi-objective Spotted Hyena and Emperor Penguin Optimizer (MOSHEPQO) (Dhiman,
2020), and external archive guided Multi-objective Evolutionary Algorithm based on
decomposition (Cai, Li, Fan, & Zhang, 2014).

While several optimization algorithms are mentioned in the literature, yet no
algorithm is capable of solving these optimization problems. For example, in MOPSO
and MOACO, when the region where the particles or ants explore happens to be of lower
quality than the particles’ previous best positions, the algorithm is in high risk of becoming
trapped and being unable to improve any further. In this case, increasing the diversity
of the population by making it larger, does not work because the larger the population,
the stronger is the bias toward the centroid of the swarm. Chances may be that newly
designed optimization algorithm can solve these issues and new problems that have not
been previously solved. An advancement of the currently developed SOA is defined next to
find the optimal solution of multi-objective problems.

3 Seagull optimization algorithm (SOA)

In this section, the inspiration and mathematical modeling of proposed algorithm is
discussed in detail.

3.1 Biological paradigm

Seagulls, scientific named as Laridae, are sea birds which can be found all over the
planet. There is a wide range of seagulls species with different masses and lengths. Seagulls
are omnivorous and eat insects, fish, reptiles, amphibians, earthworms, and so on. Body
of most seagulls is covered with white plumage. Seagulls are very intelligent birds. They
use bread crumbs to attract fish and produce rain-like sound with their feet to attract
earthworms hidden under the ground. Seagulls can drink both fresh and salt water. Most
of animals are unable to do this. However, seagulls have a special pair of glands right
above their eyes which is specifically designed to flush the salt from their systems through
openings in the bill.



Generally, seagulls live in colonies. They use their intelligence to find and attack
the prey. The most important thing about the seagulls is their migrating and attacking
behaviors. Migration is defined as the seasonal movement of seagulls from one place to
another to find the richest and most abundant food sources that will provide adequate
energy (Hoyo, Elliott, & Sargatal, 1996). This behavior is described as follows:

e During migration, they travel in a group. The initial positions of seagulls are different
to avoid the collisions between each other.

e In a group, seagulls can travel towards the direction of best survival fittest seagull,
i.e., a seagull whose fitness value! is low as compared to others.

e Based on the fittest seagull, other seagulls can update their initial positions.

Seagulls frequently attack migrating birds over the sea (Macdonald & Mason, 1973)
when they migrate from one place to another. They can make their spiral natural shape
movement during attacking. A conceptual model of these behaviors is illustrated in Fig.
1. These behaviors can be formulated in such a way that it can be associated with the
objective function to be optimized. This makes it possible to formulate a new optimization
algorithm. This paper focuses two natural behaviors of seagulls.

Fig. 1. Migration and attacking behaviors of seagulls.

3.2 Mathematical model

The mathematical models of migration and attacking the prey are discussed.

3.2.1 Migration (exploration). During migration, the algorithm simulates how
the group of seagulls move towards one position to another. In this phase, a seagull should
satisfy three conditions:

e Avoiding the collisions: To avoid the collision between neighbours (i.e., other
seagulls), an additional variable A is employed for the calculation of new search agent
position (see Fig. 2).

!The term fitness value is defined as a process which evaluates the population and gives a score or fitness.
Whereas, the process is a function which measures the quality of the represented solution.
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Fig. 2. Collision avoidance between search agents.

C, = A x P,(2) (4)

where C, represents the position of search agent which does not collide with other

search agent, Ps represents the current position of search agent, x indicates the current
iteration, and A represents the movement behavior of search agent in a given search
space.

A= fe— (JU X (fc/Mainteration))
where: © =0,1,2,..., MaZteration

()

where f. is introduced to control the frequency of employing variable A which is
linearly decreased from f. to 0. In this work, the value of f. is set to 2.

e Movement towards best neighbor’s direction: After avoiding the collision
between neighbours, the search agents are move towards the direction of best
neighbour (see Fig. 3).
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Fig. 3. Movement of search agents towards the best neighbour.

M, = B x (Pys(z) — Py(z)) (6)

where M, represents the positions of search agent P, towards the best fit search agent

By (i.e., fittest seagull). The behavior of B is randomized which is responsible for
proper balancing between exploration and exploitation. B is calculated as:

B=2xA%*xrd (7)

where rd is a random number lies in the range of [0, 1].



e Remain close to the best search agent: Lastly, the search agent can update its
position with respect to best search agent which is shown in Fig. 4.
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Fig. 4. Convergence towards the best search agent.

where D represents the distance between the search agent and best fit search agent
(i.e., best seagull whose fitness value is less).

3.2.2 Attacking (exploitation). The exploitation intends to exploit the history
and experience of the search process. Seagulls can change the angle of attack continuously
as well as speed during migration. They maintain their altitude using their wings and
weight. While attacking the prey, the spiral movement behavior occurs in the air (see Fig.
5). This behavior in x, y, and z planes is described as follows.

' =1 x cos(k) (9)
y' =1 x sin(k) (10)
Z=rxk (11)
r=ux ek'u (12)

where r is the radius of each turn of the spiral, k is a random number in range [0 < k <
27]. w and v are constants to define the spiral shape, and e is the base of the natural
logarithm. The updated position of search agent is calculated using Egs. (8) - (12).

Py(z) = (Dy x &’ x y x 2') + Pyy(x) (13)

where f_’;(az) saves the best solution and updates the position of other search agents.

0.5

R o

-1-1

Fig. 5. Natural attacking behavior of seagull.



The proposed SOA starts with a random generated population. The search agents can
update their positions with respect to best search agent during the iteration process. A is
linearly decreased from f. to 0. For smooth transition between exploration and exploitation,
variable B is responsible. Hence, SOA is considered as a global optimizer (see Algorithm :)
because of its better exploration and exploitation capability.

4 Proposed Multi-objective Seagull Optimization Algorithm (MOSOA)
4.1 Motivation

When resolving any metaheuristic problem of optimization, the proper balance
between exploration and exploitation features empowers the optimization algorithm to
find the best solutions. These algorithms are popular among researchers in their basic
architecture, facility of implementation, and derivatives free mechanisms. However, the
major disruption to these algorithms is that most algorithms can change control parameters.
Another flaw is that these algorithms can not always converge with globally optimum, due
to the stagnating situation with sub-optimal solutions throughout searching. The discovery
process determines diversity by undertaking a global quest to produce new solutions in the
quest and exploitation process by looking for neighborhood solutions (Chegini, Bagheri,
& Najafi, 2018) to ensure optimum convergence. MOSOA’s key principle of algorithm is
based on SOA attacking and migration behaviors. The three components are used to build
a MOO (Dhiman & Kumar, 2018a) version of the SOA, as shown in Fig. 6. This depicts the
key integral being archive controller and grid, which reserves the optimal non-dominated
Pareto solutions and the latter integral is a pioneer selection method for selecting the most
effective mover from the archive with regard to prey orientation.

One of the important questions in working with textitMOSOA is why this algorithm
needs to be created? The answer of this question can be given with the support of “No
Free Lunch (NFL)” theorem (Wolpert & Macready, 1997), which states that the there is
no metaheuristic to solve all type of optimization problems. This theorem is the basis for
several developments in the field of metaheuristic and overall optimization.

4.2 Archive controller

All POSs that are best accessed are stored in a storage space, known as the archive.
The controller determines whether to include a specific solution in the list. The Archive
updation rules are given below:

e If the archive is found to be empty the current solution should be acknowledged.

e If an entity within the archive dominates some solution then the particular solution

should be discarded.

e If the external population does not overpower the solution then the particular solution
should be accepted and stored within the archive.

e If the new dimension dominates the solutions, they will be discarded from the list.



Algorithm : Seagull Optimization Algorithm

9:
*/

10:
11:
12:
13:
14:
15:
16:
17:

6: return FIT,

Input: Seagull population P,
Output: Optimal search agent P_g;s
procedure SOA
Initialize the parameters A, B, and MaZiteration

Set fo +— 2

Set u «+ 1

Set v «+ 1

while (r < Maziteration) do

P,; +ComputeFitness(P,) /* Calculate the fitness values of each search

agent using ComputeFitness function*/
/* Migration behavior */
rd < Rand(0, 1) /* To generate the random number in range [0, 1] */
k < Rand(0, 27) /* To generate the random number in range [0, 27]

/* Attacking behavior */
kv

T4 u X e /* To generate the spiral behavior during migration */
Calculate the distance Dy using Eq. (8)

P+ 2 x ¢y x 2 /* Compute x, y, z planes using Eqs. (9) - (12) */
Pix) « (Dyx P)+ P

z — x+1

end while
return Py
end procedure

—

: procedure COMPUTEFITNESS(F)

for i+ 1tondo /* Here, n represents the dimension of a given problem */

FIT[i] <+ FitnessFunction(Pq (2, ) /* Calculate the fitness of each
individual */
end for
FITSbesz
function */

<~ BEST(FIT[]) /* Calculate the best fitness value using BEST

Sbhest

7: end procedure

procedure BEST (FIT;]))
Best « FIT[0]
fori<« 1tondo
if(FIT,[i] < Best) then
Best + FITsli
end if
end for
return Best /* Return the best fitness value */

end procedure
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Fig. 6. Flowchart of the proposed MOSOA algorithm.




4.3 Grid

Adaptive grid approach (Knowles & Corne, 2000) produces distributions of the Pareto
fronts. There are four regions for the objective function which is employed (see Figs. 7 -
8). The grid approach is used to compute individuals from the position of the developed
population if it is outside the grid area. Given the uniform distribution of hypercubes, the
grid space is created.

4.4 Leader selection mechanism

The key problem in multi-objective search space is to compare the new solutions
in a given search space with existing solutions. Using a method for selecting the leader
solves this problem. In this technique, the least crowded search space is filled by using
the roulette-wheel selection method with one of the best solutions from the boundary of
obtained optimum solutions (see Fig. 9). This approach is characterized in terms of:

Ur = (14)

such as ¢ is a constant variable with value greater than 1 and N defines the

count of POSs to kth segment. This method is a popularly used classical method
which defines each individual’s contribution using the proportion of the roulette wheel. The
proposed MOSOA algorithm is an extension of the SOA algorithm, with multi-objectivity
and search space distinction. MOSOA has an archive search space while SOA has to do the
extra job of saving optimal solutions.
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Fig. 7. Selection of individuals from grid.
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4.5 Computational complexity

In this section, we provide the computational efficiency of the proposed technique in
detail.
4.5.1 Time complexity.

1. It takes O(n, x mn,) time to initialize the population, where n, is the
number of population size and n, is the number of objectives

2. The fitness computation of search agents needs O(MaZiteration X Mo X Np)
time, where MaZiieration represents the maximum number of iterations.

3. The proposed algorithm requires O(L) time for leader selection, where L
indicates the computation time to find the leader.

4. It needs O(n, X (nns + ny,)) time to update the archive of non-dominated
solutions.

5. Steps 2 to 4 are repeated until the maximum iteration is reached.

Hence, the time complexity of MOSOA algorithm is O(M aZiteration X o X (Np + Nips) X L).



Algorithm : Multi-objective Seagull Optimization Algorithm (MOSOA)

Input: Seagulls population
Output: Archive of non-dominated optimal solutions

1: procedure MOSOA

2: For each search agent, calculate their corresponding objective values

3: Find all the non-dominated solutions and initialize these solutions to archive

4: while (z < MaZjteration) do

5: for each search agent do

6: Update the position of current search agent

7 end for

8: Compute the objective values of all search agents

9: Find the non-dominated solutions from updated search agents

10: Update the obtained non-dominated solutions to archive

11: if archive is full then

12: Grid method should be run to omit one of the most crowded archive members
13: Add new solution to the archive

14: end if

15: Check if any search agent goes beyond the search space and then adjust it
16: Compute the objective values of each search agent

17: T +— x+1

18: end while

19: return archive
20: end procedure

4.5.2 Space complexity. The spatial complexity of the proposed MOSOA
algorithm is determined as it initializes, i.e., when the population is generated in memory,
which requires O(n, X n,) time.

5 Experimental results and discussions
5.1 Experimental setup

The experimentation and algorithms are implemented in Matlab R2018a (8.3.0.532)
version and run it in the environment of Microsoft Windows 8.1 with 64 bits on Core i-5
processor with 3.20 GHz and 8 GB memory.

5.2 Benchmark test functions

To demonstrate the efficiency of the proposed MOSOA algorithm, experiment on
twenty-four well-known benchmark test functions is performed. The special session
benchmark test suit, i.e., the IEEE CEC-9 (Liu, Zou, Chen, & Wu, 2009), which includes
ten unconstrained test functions, is used. These test functions and their characteristics
are set out in Appendix A of Supplementary Material. The UF1 — UF10 is known as
the unconstrained test functions in these test functions. These test functions have the
potential to solve problems with the MOO bound constraint. The proposed algorithm is



also validated on DTLZ and ZDT test functions, i.e., DT'LZ1 — DTLZ9 (Deb et al., 2005)
and ZDT1 — ZDT6 (Zitzler et al., 2000). Both these types of test functions, along with
their comprehensive characteristics (see Table 1), are described in Appendices B and C of
Supplementary Material, respectively.

5.3 Algorithms for comparison

The proposed algorithm is compared to six well-known optimization methods, such
as: Multi-objective Particle Swarm Optimization (MOPSO) (Coello Coello & Lechuga,
2002), Non-dominated Sorting Genetic Algorithm 2 (NSGA-II) (Deb et al., 2002), Multi-
objective Evolutionary Algorithm based on Decomposition (MOEA/D) (Q. Zhang & Li,
2007), Pareto Envelope based Selection Algorithm II (PESA-II) (Corne, Jerram,
Knowles, & Oates, 2001), Multi-objective Spotted Hyena and Emperor Penguin Optimizer
(MOSHEPO) (Dhiman, 2020), and Multi-objective Ant Colony Optimization (MOACO)
(Angus & Woodward, 2009). According to their original versions, various parameters
associated with these methods are same as mentioned in the literature. The following
initial parameters for MOPSO algorithm are set as (Coello Coello & Lechuga, 2002):

.¢a:¢b:2'05
.¢f:¢a+¢b

2
Inertia weight: w =

G — 2+ /0F — 4oy

Personal coefficient: ¢ = x * ¢,

Social coefficient: co = x * ¢y

Grid inflation parameter: o = 0.1

Leader selection pressure parameter: § = 4
Number of grids: Grid,ymper = 10

For NSGA-II, the following parameters are set as (Gong et al., 2008):

e Population size (X) = 100
e Cross over probability P, = 0.8
e Mutation probability P, = 0.1

For MOEA /D, the following parameters are chosen as (Q. Zhang & Li, 2007):

Subproblems: N = 100

Number of neighbours: T' = 0.1xN

Updated new child maximal copies: M = 0.01xN
Probability of selecting parents: P, = 0.9
Mutation rates: M, = 0.5

Distribution index: D; = 30

The following initial parameters are set for PESA-II (Gong et al., 2008):

e Cross over probability P, = 0.8
e Distribution index for SBX = 15
e Mutation probability P, = 1/n
e Polynomial mutation of distribution index = 20



For MOACO, the following initial parameters are set as (Ab Wahab, Nefti-Meziani, &
Atyabi, 2015):

Initial pheromone = 1.0E-06
Pheromone update constant () = 20
Exploration constant gy = 1

Global pheromone decay rate = 0.9
local pheromone decay rate = 0.5
a=0.5

B =25

5.4 Performance metrics

The four separate performance metrics have been selected to measure the efficiency
of the proposed algorithm, as: Hypervolume (HV) (Zitzler & Thiele, 1999; Coello Coello,
Dhaenens, & Jourdan, 2010), A, (p = 1) (Rudolph, Schiitze, Grimme, Dominguez-Medina,
& Trautmann, 2016; Schiitze, Esquivel, Lara, & Coello, 2012; Schiitze, Laumanns, Tantar,
Coello, & Talbi, 2010), Spread (Li & Zheng, 2009; Coello Coello et al., 2010), and Epsilon
(¢) (Zitzler, Thiele, Laumanns, Fonseca, & da Fonseca, 2003; Coello Coello et al., 2010).

5.5 Performance evaluation

The results of the MOSOA algorithm are explained next on adopted benchmark test
suites, such as: IFEE CEC-9, ZDT, and DTLZ.

5.5.1 Results based on the IEEE CEC-9 (UF1 — UF10) test functions.
Comparison of the efficiency of the proposed methodology is performed in Table 2 using the
IEEE CEC-9 benchmark test problems with well-known approaches. Using the MOSOA,
optimal solutions are calculated in terms of the UF1, UF2, UF4, UF5, and UF6. The
MOPSO obtains strong spread performance in terms of the UF3 test method when
compared with other techniques. By considering the A, and Epsilon as efficiency metrics,
the MOEA/D obtains promising results compared to competing algorithms. The MOSOA
offers best performance in terms of the test functions of UF7, UF9, and U F10. For UF7 on
A,, MOEA/D outperforms than others. Compared with current techniques, the NSGA-
II predicts the best value of A, and Epsilon for the UF8 test function. For UF9, on
Hypervolume and A, performance metrics, MOEA/D and MOSHEPO obtain better
results. For UF10, NSGA — Il and PESA — I1 results are superior on Hypervolume and
A, performance metrics, respectively. Fig. 10 portrays the MOSOA non-dominated Pareto
optimal solutions. It can be seen from this figure that the proposed MOSOA algorithm
non-dominated Pareto solutions are very much similar to Pareto solutions of IEEE CEC-9
benchmark test functions.

5.5.2 Results based on the ZDT (ZDT1 — ZDT6) test functions. Ta-
ble 3 demonstrates the MOSOA’s results using benchmark test problems of ZDT. For
the ZDT test functions, for most cases the MOSOA outperforms other algorithms by
considering the A, Spread, and Epsilon as efficiency metrics. For ZDT'1, MOPSO efficiency
is superior than others on A, performance metric. Whereas, MOSOA obtains better results
on rest of the metrics. For ZDT2 on Spread metric, MOPSO has good performance. For
ZDT3 on Hypervolume metric, PESA-II obtains optimal results than others. For ZDT4



and ZDT6, on Hypervolume and A, performance metrics, MOPSO and MOEA/D non-
dominated solutions are better than competitor approaches, respectively. Fig. 11 shows
the acquired POSs using current techniques. The NSGA-II, MOEA/D, and MOSHEPO
achievement degrades for the benchmark function of ZDT2. The MOSOA offers better
results for the ZDT2, ZDT3, and ZDT6 benchmark test functions.

5.5.3 Results based on the DTLZ (DTLZ1 — DTLZ9) test functions. The
study results of MOPSO, NSGA-II, MOEA/D, PESA-II, MOSHEPO, and MOACO using
the DTLZ benchmark problem are shown in Table 4. The MOSOA offers promising
statistically significant results in terms of the DTLZ1, DTLZ2, DTLZ3, DTLZ5,
DTLZ6, and DIT'LZ9 benchmark functions as opposed to other current techniques. In
terms of A, and Epsilon, the MOEA/D and the NSGA-II outperform other methods as
performance metrics for the DT LZ4 benchmark function. The PESA-II offers maximal
Hypervolume and Spread values. For DTLZ7 and DTLZ8, NSGA-II and MOPSO
algorithms are superior than others in terms of almost all performance metrics. The results
explicitly state that this proposed algorithm successfully converges the DT LZ benchmark
test functions. Fig. 12 provides a comparison of the MOSOA’s expected and actual optimal
Pareto front.

Table 1
Characteristics of ZDT and DTLZ benchmark test functions.

Problems Properties
ZDT1 Convex
ZDTy Convex
ZDT2 Concave
ZDT6 Concave
DTLZ2 Concave
DTLZ3 Concave
DTLZ Concave
ZDTS3 Disconnected
DTLZ7 Disconnected
DTLZ1 Linear
DTLZ5 -

DTLZ6 -




Table 2

The obtained results using proposed and competitor approaches on IEEE CEC-9 benchmark

test functions.

if:f;’g‘ame MOSOA  MOPSO NSGA-Il  MOEA/D  PESA-II  MOSHEPO MOACO
Hypervolume 3.17TE+02  3.70E-01 3.89E-01 6.50E-01 3.71E-01 1.63E-01 1.34E-01
1.20E-04 1.90E-02 3.24E-03 2.70E-03 4.85E-02 1.10E-01 6.69E-02

Ap 2.95E-10 3.11E-04 2.30E-03 4.55E-04 5.30E-03 1.49E-02 2.55E-03
6.99E-10 2.99E-04 6.22E-03 1.90E-04 1.60E-03 1.56E-03 1.80E-03

Spread 1.03E-02 7.42E-01 2.13E+00 3.01E-01 1.30E+4-00 1.91E+400 1.00E+00
1.11E-03  2.30E-01 112E-01 1.73E-01 1.51E-01 1.93E-01 1.91E-01

EBpsilon 4.80E-04  1.01E-01 2.13E-01 1.07E-02 1.64E-01 5.11E-01 1L71E-01
1.09E-04  3.11E-02 4.40E-02 1.05E-02 1.12E-01 157E-01 1.10E-01

Hypervolume 1.95E401  5.00E-01 5.00E-01 5.41E-01 4.82E-01 4.15E-01 3.04E-01
1.21E-04  1.03E-03 6.00E-03 2.77E-03 1.12E-02 1.95E-01 1.16E-01

Ay 2.12E-07  1.50E-03 4.77E-03 3.41E-04 2.62E-03 2.20E-03 2.11E-03
1.10E-07 2.85E-05 4.62E-04 1.74E-04 4.85E-04 1.10E-03 1.97E-03

Spread 2.46E-03 3.97E-01 5.03E-01 3.21E-01 6.38E-01 2.02E4+00 2.15E-01
2.92E-03 1.22E-01 3.71E-02 4.50E-02 7.11E-02 2.22E-01 1.48E-01

Epsilon 2.04E-03 8.22E-02 2.30E-01 4.81E-02 1.78E-01 2.34E-01 3.70E-02
4.75E-05  8.72E-03 2.33E-02 1.26E-02 4.60E-02 151E-01 2.42F-03

Hypervolume  3.18E-01 1.75E-00 1.13E-00 4.03E-00 1.44E-00 1.01E+401 2.63E-00
2.71E-01 2.50E-02 2.58E-02 2.21E-02 2.35E-02 2.74E-02 1.20E-02

A, 1.62E-02 4.87E-03 7.95E-03 1.05E-03  2.53E-02 2.47E-02 1.87E-02
1.60E-02 3.30E-04  1.61E-03 1.00E-04 1.88E-03 1.98E-03 1.41E-03

Spread 7.01E-00 4.23B-01  231E4+00  4.37B-01 200E400  1.OSE400  2.47E+00
5.98E-01 3.18E-01 4.46E-02 2.04E-01 1.02E-01 5.38E-02 1.75E-02

lon 2.40E-00 2.83E-01 2.83E-01 1.30E-01 3.7TE-01 4.54E-01 2.95E-01
2.11E-01 2.43E-03 3.53E-02 4.10E-02 4.30E-02 6.4TE-02 3.47E-02

Hypervolume 1.01E401 1.41E-01 1.45E-01 1.36E-01 1.41E-01 1.51E-01 1.40E-01
1.31E-04 6.70E-03 2.18E-03 1.00E-02 2.12E-03 5.51E-02 1.96E-02

A, 3.14E-05  1.65E-03 1.30E-03 2.88E-03 1.38E-03 4.61E-03 3.98E-03
1.68E-06 1.03E-04 3.44E-05 4.68E-04 1.31E-04 2.63E-03 1.80E-04

Spread 1.01E-02 3.27E-01 3.12E-01 3.02E-01 7.23E-01 2.03E+00 2.75E-01
2.12E-03  5.82E-02 3.13E-02 8.45E-02 431E-02 3.22E-01 3.23E-02

Epsilon 1.11E-03  6ATE-02 1.98E-02 5.80E-02 7.34E-02 1.61E-01 2.71E-02
2.32E-04  4.28E-02 7.14E-03 8.136-03 7.60E-03 2.11E-01 5.84F-03

Hypervolume 1.61E4+01  2.50E-03 171502 3.71E-02 5.21E-02 2.95E-02 2.49E-02
1.09E-03  1.56E-02 3.05E-02 3.61E-02 5.00E-02 3.68E-01 1.48E-02

Ap 1.00E-02  1.62E-01 1.88E-01 2.04E-01 1.99E-01 3.26E-00 2.41E-01
1.07E-03 1.51E-01 2.88E-02 1.90E-02 1.37E-02 2.76E-01 1.98E-02

Spread 1.74E-02 5.56E-01 1.25E400 1.21E+00 1.13E400 3.82E4+00 1.20E4-00
3.77TE-03 7.01E-02 8.94E-02 4.27E-02 1.33E-01 6.38E-02 3.72E-02

Epsilon 2.17E-02 2.26E+00 6.91E-01 6.41E-01 7.80E-01 9.71E-01 4.96E-01
1.06E-02 4.27E-01 1.58E-01 1.42E-01 1.75E-01 1.59E-01 2.46E-01

Hypervolume — 2.41E+400 6.02E-02 2.95E-01 3.07E-01 2.09E-01 4.14E-01 3.88E-01
1.37E-03 2.47E-02 5.98E-02 9.23E-02 4.39E-02 7.60E-02 3.20E-02

Ap 3.30E-04 8.55E-03 4.67E-03 2.13E-03 2.92E-02 5.22E-02 7.79E-02
1.30E-04  3.55E-03 1.50E-03 1.66E-03 2.78E-03 1.44E-03 7.28F-03

Spread 6.08E-02  8.78E-01 LISE+00  113E4+00  1.26E400  LIIE+00  110E+00
3.41E-08  5.73E-02 1.23E-01 8.46E-02 2.69E-01 8.27E-02 4.40E-02

Epsilon 1.01E-02 4.94E-01 4.38E-01 2.54E-01 4.4TE-01 7.71E-01 4.38E-01
1.01E-03 1.81E-01 1.48E-01 1.47E-01 1.90E-01 2.66E-01 1.08E-01

Hypervolume  1.32E-01 2.94E-01 2.28E-01 3.90E-01 1.48E-01 1.21E401  1.85E-01
5.35E-02 2.56E-03 7.84E-03 2.33E-05  7.81E-05 7.81E-03 2.98E-03

Ay 2.60E-02 5.37E-03 6.77E-03 1.50E-04  5.48E-02 2.17E-02 3.365-02
1.44E-02 1.66E-03 1.05E-03 1.43E-05 1.70E-03 2.31E-03 1.74E-03

Spread 1.80E-01 7.51E-01 1.06E+00 2.48E-01 1.17E400 1.00E+400 4.60E-00
1.16E-03 5.62E-02 1.10E-01 1.74E-01 7.76E-02 1.57E-02 2.57E-02

Epsilon 1.04E-03  181E-01 3.27E-01 3.41E-02 5.07E-01 7.00E-01 2.61E-01
2.56E-04  1.06E-01 1.41E-01 2.16F-02 1.18E-01 1.36E-01 1.80E-01

Hypervolume 2.58E+01  2.04E-02 2.26E-01 1.80E-01 1.92E-02 1.28E-01 1LO1E-01
2.57E-04  1.68E-02 3.06E-02 1.00E-01 2.31E-02 7.95E-02 1.78E-02

Ap 2.33E-02 1.91E-03 1.80E-03  2.15E-01 410E-03 3.86E-03 1.94E-03
5.10E-03 1.00E-04 3.44E-05  4.16E-03 3.85E-04 8.08E-04 1.85E-03

Spread 5.06E-00 8.15E-01 6.76E-01 3.68E-01  6.06E-01 7.61E-01 478E-01
4.12E-00 7.21E-02 7.04E-02 6.91E-01 1.10E-01 1.28E-01 1.57E-01

Epsilon 7.02E-00 6.68E-01 5.23E-01 6.00E-01 8.71E-01 7.04E-01 5.96E-01
2.13E-00 7.50E-02 1.10E-01 8.53E-01 4.21E-02 1.30E-01 2.65E-01

Hypervolume  3.08E-01 5.88E-02 1.53E-01 1.75E4+02 8.42E-02 3.56E-01 2.38E-01
5.32E-00 4.71E-02 5.16E-02 3.46E-01 2.50E-02 3.77E-02 1.10E-02

Ap 3.38E-02 1.67E-03 4.34E-03 5.91E-03 3.7TE-03 1.21E-03 2.22E-03
5.11E-03 2.26E-04 1.50E-04 3.47E-03 2.30E-04 1.03E-04  1.75E-03

Spread 1.00E-02  7.20E-01 7.51E-01 5.62E-01 6.54E-01 6.35E-01 3.58E-01
6.36E-01 4.04E-02 5.82E-02 5.40E-02 6.44F-02 5.11E-02 2.45B-02

Epsilon 2.02E-02 7.20E-01 4.13E-01 5.55E-01 7.94E-01 3.80E-01 5.84E-01
4.14E-01 1.41E-01 5.45E-02 4.76E-02 3.15E-02 1.91E-02 4.67E-02

Hypervolume  3.61E-01 LOOE4+00  3.52E401  5.91E-02 3.04E-02 2.37E-02 3.91E-02
1.30E-01 0.00E+00 1.15E-02 4.10E-01 1.96E-02 1.85E-02 2.01E-02

Ap 5.7TE-02 2.78E-02 2.12E-03 3.00E-03 1.82E-03 5.51E-03 3.21E-03
3.90E-02 5.72E-03 2.01E-03 1.80E-03 3.17TE-04 2.46E-04 1.45E-03

Spread 1.61E-02 5.52E-01 6.65E-01 4.20E-01 8.17E-01 1.23E400 3.52E-01
4.81E-01 4.06E-02 5.27E-02 7.61E-01 8.12E-02 1.22E-01 1.85E-01

Epsilon 3.60E-02  181E4+00  LO4E+00  4.32E-01 7.85E-01 7.6TE-01 5.01E-01
4.52E-00 1.44E-01 1.54E-01 6.16E-01 1.06E-01 1.02E-01  1.84E-01




Table 3
The obtained optimal results using proposed and competitor approaches on ZDT benchmark
test functions.

F if;ff;c?ance MOSOA ~ MOPSO  NSGA-II  MOEA/D PESA-II  MOSHEPO MOACO
Hypervolume 5.55E401 5.61E-01 5.61E-01 5.63E-01 5.55E-01 5.61E-01 5.61E-01
2.81E-03 1.41E-04 1.61E-04 2.55E-04 7.57TE-04 2.04E-04 1.45E-04

ZDT1 Ap 2.33E-03 1.32E-04 1.17E-04 5.31E-05 3.02E-04 1.10E-04 3.65E-04
3.02E-06 4.01E-07  2.36E-06 1.43E-06 1.43E-04 2.20E-06 1.01E-06

Spread 1.31E-03 5.86E-02 2.76E-01 1.84E-01 5.48E-01 1.42E-01 1.30E-01
1.10E-05 1.03E-02 1.57E-02 1.81E-03 2.77TE-02 1.61E-02 1.21E-02

Epsilon 4.48E-03 4.86E-03 1.33E-02 2.02E-03 1.30E-02 7.91E-03 6.07E-02
4.72E-03 1.57E-04 1.01E-03 2.81E-04 1.17E-02 5.67E-04 2.40E-04

Hypervolume 2.28E+01 2.27E-01 2.25E-01 2.58E-01 2.12E-02 2.25E-01 2.26E-01
2.70E-06 7.08E-05 2.10E-04 1.57E-04 5.53E-04 5.13E-04 1.08E-04

ZDT2 A, 1.02E-06 1.44E-04 1.36E-04 3.97E-05 2.51E-04 1.21E-04 1.31E-04
1.33E-07 1.56E-06 2.40E-05 5.01E-06 1.34E-05 3.20E-06 1.75E-06

Spread 1.01E-00 5.67E-02 3.60E-01 1.83E-01 5.70E-01 1.48E-01 1.55E-01
8.11E-03 6.84E-03 2.51E-02 1.49E-02 3.21E-02 1.45E-02 2.86E-02

Epsilon 1.21E-04 4.45E-03 1.82E-02 1.67E-03 2.28E-02 7.48E-03 2.06E-03
1.78E-03 1.35E-04 1.31E-03 2.61E-04 1.87E-02 5.15E-04 7.72E-04

Hypervolume ~ 4.11E-00 4.13E-01 4.14E-01 4.15E-01 4.10E401  4.13E-01 4.15E-01
1.21E-03 2.86E-04 2.49E-04 2.08E-05 1.81E-03 1.30E-04 4.81E-04

ZDT3 A, 3.12E-06 1.56E-04 1.32E-04 3.13E-05 1.01E-03 2.20E-04 1.01E-04
2.30E-05 1.07E-06 3.48E-06 4.54E-06 4.28E-04 1.87E-05 3.73E-05

Spread 1.00E-02 6.04E-01 6.41E-01 2.13E4+00 8.01E-01 7.37E-01 5.05E-01
1.16E-04 2.37E-03 1.31E-02 2.37E-03 1.61E-02 3.73E-03 1.52E-03

Epsilon 2.90E-04 4.70E-03 7.86E-03 3.10E-03 2.42E-01 8.61E-03 4.93E-03
5.73E-03 4.48E-04 1.55E-03 1.24E-05 1.53E-01 1.13E-03 1.47E-03

Hypervolume  5.61E-02 1.00E401  5.47E-01 5.64E-01 5.51E-01 5.48E-01 5.44E-01
3.43E-04 1.00E-07 2.52E-03 3.94E-05 3.63E-03 7.61E-03 2.45E-02

ZDT4 A, 3.21E-04 2.40E-01 2.77E-04 3.10E-05 2.11E-04 3.70E-03 1.68E-04
1.81E-03 1.37E-02 4.98E-05 2.03E-05 1.11E-04 1.21E-03 1.01E-04

Spread 1.01E-02 7.85E-01 2.58E-01 1.29E-01 8.11E-01 2.05E-01 1.07E-01
1.97E-04 6.17E-02 2.14E-02 2.01E-03 1.87E-01 1.35E-01 1.06E-02

Epsilon 1.08E-04 4.13E400 1.75E-02 1.93E-03 1.86E-02 5.36E-02 2.27E-02
1.00E-05 1.90E+00 7.11E-03 1.02E-04 1.05E-02 4.28E-02 1.72E-02

Hypervolume 2.18E+00  4.56E-02 3.81E-01 3.04E-02 2.90E-01 2.77E-02 2.25E-01
3.32E-06 4.41E-05 1.45E-03 5.10E-08 1.36E-06 1.71E-03 1.38E-03

ZDT6 A, 1.71E-03 1.36E-03 3.80E-04 2.60E-05 2.06E-04 3.94E-04 2.26E-04
3.10E-07 1.08E-06 6.06E-05 5.40E-08 2.81E-05 2.36E-05 1.31E-05

Spread 1.10E-02 7.00E-01 2.65E-01 1.69E-01 6.58E-01 1.37E-01 2.21E-01
1.23E-05 3.78E-01 2.98E-02 1.62E-04 1.92E-01 2.01E-02 1.62E-02

Epsilon 1.21E-04 3.85E-03 1.50E-02 1.63E-03 1.36E-02 1.55E-02 2.00E-02

2.12E-03 4.15E-04 2.16E-03 1.42E-01 2.65E-03 4.45E-05 1.16E-04




Fig. 10. The obtained Pareto solutions by the MOSOA technique on the IEEE CEC-9 test
functions.
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Fig. 11. The obtained Pareto solutions by the MOSOA technique on the ZDT test func-
tions.
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Fig. 12. The obtained Pareto solutions by the MOSOA technique on the DTLZ test
functions.

5.6 Sensitivity analysis

5.6.1 Effect of archive on the MOSOA algorithm. Table 5 portrays repeated
iterations of the archive assessment. The ZDT1, DTLZ6, and ZDT3 are used as
test functions for demonstrating the archive’s effect on the proposed algorithm. The
ZDT1, DITLZ6, and ZDT3 test functions have concave, convex, and consecutively
disconnected properties. The archive size is deemed as 10. Fig. 13 reflects the MOSOA’s
comprehensive converging behavior. It is observed that optimal values for the various test
functions are obtained using the MOSOA.

5.6.2 Effect of selection mechanism on the MOSOA algorithm. The
output of the proposed MOSOA algorithm is evaluated using the approaches to pick the
roulette wheel and the tournament. The test functions of ZDT1, ZDT3, and ZDT6 are
used to obtain prediction over the output of the proposed MOSOA. In Fig. 14, roulette
wheel and tournament selection strategies converging behavior, are demonstrated. From this
figure it can be concluded that the performance of the approach to roulette wheel selection
is better than the approach to tournament selection as regards convergence towards the
optimal solution.



Table 4
The obtained optimal results using proposed and competitor approaches on DTLZ benchmark
test functions.

F i)fjf;’l:“’“‘e MOSOA MOPSO NSGA-TT  MOEA/D  PESA-TI MOSHEPO MOACO
Hypervolume  3.61E-02 2.47E-01 5.36E-01 2.55E401  4.58E-01 6.55E-01 3.10E-01
7.32E-03 4.55E-02 2.24E-01 4.93E-03 2.72E-02 1.96E-02 1.01E-02
DTLZ1 Ap 2.44E-05 1.52E-03 2.77TE-03 3.23E-04 4.01E-03 3.45E-04 4.78E-04
1.10E-04 1.48E-04 2.80B-04 141E-05 1.01E-04 6.20E-06  3.10E-04
Spread 1.32E-02  4.94E-01 LOIE+00  1.84B-01 271E+00  6.48E-01 3.96E-01
2.16E-00 2.91E-00 2.01E-01 3.23E-01 2.88E-01 2.5TE-00 2.77E-01
2.61E-02 2.95E-02 1.46E-03 3.34E-02 1.03E-03 4.25E-03 1.06E-02
3.71E-01 2.92E-02 4.22E-01 1.61E-02 1.66E-01 1.48E-02 1.01E-02
Hypervolume 1.08E+401 1.93E-01 1.62E-02 2.03E-01 4.26E-02 3.03E-01 2.96E-01
1.06E-04 1.62E-03 2.95E-03 4.20E-02 1.11E-02 1.86E-03 1.14E-03
DTLZ2 Ap 2.53E-05 2.47TE-03 2.66E-04 5.91E-04 2.18E-02 3.72E-04 3.94E-04
2.10E-06  7.05E-04 3.00B-05 5.41E-05 1.38E-03 3.10E-05 3.026-05
Spread 2.31E-02  5.45E-01 3.826-01 6.41E-01 6.55E-01 4.45B-01 3.826-01
4.77TE-04 1.72E-01 6.53E-03 1.40E-02 4.72E-01 2.04E-02 5.27TE-02
2.68E-03 5.61E-02 1.36E-01 3.03E-02 2.72E-01 7.40E-02 5.04E-02
5.15E-01 7.21E-03 5.36-02 2.56E-01 3.72E-01 1.12E-02 3.73E-02
Hypervolume 1.08E-01 3.71E-01 5.23E-02 3.62E-01 4.22E-01 1.00E+4-00 3.02E-01
T7.36E-02 1.62E-02 4.24E-04 1.73E-02 1.34E-03 0.00E+00 4.56E-03
DTLZ3 Ap 2.46E-05 4.21E-03 4.04E-04 1.48E-03 1.21E-01 1.01E-01 2.03E-02
111E-05  213E-03 2.326-04 5.40E-04 2.91E-02 3.58E-02 1.40E-02
Spread 1.38E-04  3.61E-02 L31E+00  3.62E-02 1.42E-03 121E400  1.91B-02
3.43E-01 2.72E-01 6.25E-02 1.62E-02 4.21E-01 1.08E-01 1.62E-01
ilon 2.17E-03 2.73E-01 4.72E-01 2.83E-02 2.21E-01 5.36EE+00 2.21E-01
1.43E-03 2.26E-02 4.76E-02 5.62E-02 7.73E-02 1.71E400 3.82E-02
Hypervolume 1.61E-01 1.73E-01 2.32E-02 1.73E-01 2.41E+401 2.11E-01 3.95E-02
1.30E-01 2.72E-03 5.88E-02 2.62E-02 4.22E-03 8.65E-03 4.26E-03
DTLZ4 Ap 1.32E-03 3.60E-02 2.68E-02 1.13E-04 3.78E-02 3.34E-03 2.15E-02
3.10E-06  1.01E-04 1.308-03 1.08E-04 5.48E-03 3.42E-03 3.916-03
Spread 1.77E-01 2.07E-01 172502 5.63E-01 4.13E-03  2.56E-01 1.045-02
4.10E-01 2.52E-02 5.62E-01 2.20E-02 4.54E-02 1.28E-01 3.81E-02
8.04E-03 3.01E-02 5.72E-03 2.62E-02 1.41E-01 2.22E-01 3.61E-02
7.91E-03 4.51E-02 8.13E-03 7.62E-02 7.32E-03 2.74E-01 2.93E-02
Hypervolume 1.48E401 1.62E-03 2.12E-02 4.23E-01 4.92E-02 1.95E-01 2.32E-02
1.31E-05 1.82E-04 4.05E-02 2.82E-02 4.22E-02 1.46E-02 1.98E-02
DTLZ5 Ap 1.34E-04 1.34E-01 2.20E-01 3.52E-03 2.61E-02 2.76E-01 1.91E-02
2.71E-05  6.35E-02 2.616-02 5.87E-04 2.25E-02 1.30E-02 1.03E-03
Spread 2.80E-01 1.62E-01 1.35E400  4.25B-01 1.03E400  1.42E-02  6.21E-01
4.01E-03 4.61E-02 6.95E-03 4.21E-02 3.13E-04 4.46E-02 3.28E-02
ilon 2.13E-03 2.72E+00 3.10E-01 5.93E-01 3.62E-01 6.74E-01 3.05E-01
2.45E-00 3.16E-01 1.68E-01 3.89E-01 1.01E-01 2.21E-01 1.94E-01
Hypervolume 1.62E400 2.01E-03 1.91E-01 3.12E-02 1.17E-01 1.04E-01 1.52E-02
1.10E-04 1.55E-02 6.82E-02 1.24E-03 3.42E-02 4.51E-02 1.01E-02
DTLZ6 Ap 2.01E-03 1.32E-02 2.51E-02 4.20E-03 3.26E-02 2.10E-02 1.11E-02
1.66E-04  2.65F-03 111B-03 2.61E-03 5.35E-03 211603 2.84-03
Spread 2.44E-00 4.17E-01 241400  3.11E-01 1.25E-01  L11E+00  1L41E-01
5.76E-01 1.20E-02 2.82E-01 4.06E-01 1.62E-01 6.17TE-02 3.74E-02
psilon 1.46E-04 5.94E-01 3.62E-03 2.64E-02 2.42E-01 6.71E-01 3.33E-02
6.15E-02 1.81E-03 1.51E-01 1.36E-04 5.35E-01 1.72E-01 5.81E-03
Hypervolume 1.08E-03 2.52E-01 4.17E-03 3.10E-01 2.48E+4-00 1.50E-01 3.11E-02
1.31E-01 2.62E-02 2.08E-04 2.82E-03 4.81E-01 6.25E-02 6.71E-03
DTLZ7T Ap 3.11E-02 4.51E-03 5.97E-03 2.37E-03 3.90E-02 2.6TE-02 5.41E-03
2.76E-03 1.12E-03 2.47E-04  2.26E-03 5.93E-03 1.80E-03 2.916-03
Spread 3.66E-01 1.41E-01 182E+00  2.23B-01 2.72E-03  1.02E-01 1.276-02
5.24E-03 T7.03E-02 1.52E-03 2.36E-01 1.14E-04 2.90E-02 4.41E-03
ilon 6.77TE-01 7.62E-01 1.16 E-02 2.62E-02 2.07E-01 3.03E-01 1.27E-01
4.17TE-03 1.06E-01 1.62E-04 2.34E-02 2.32E-02 1.92E-01 3.31E-02
Hypervolume  6.61E-02 3.51E+01  1.836-01 3.87TE-03 1.02E-02 1.97B-01 1.38E-01
1.46E-03 1.68E-04 2.93E-02 1.00E-02 3.22E-02 5.92E-02 1.75E-03
DTLZ8 Ap 5.45E-02 2.17E-04 4.02E-03 3.T4E-02 3.68E-03 2.10E-03 3.52E-03
8.80E-03 1.O1E-03 1.67E-03 1.31E-03 5.67E-04  1.46E-03 7.94-04
Spread 2.86E-01 2.26B-01 1.36E-03  2.38E-01 4.06E-02 1.01E-02 1.36E-02
6.76E-01 2.21E-02 7.526-03 2.91E-01 213602 1.98E-02 3.04E-03
Epsilon 1.00E-01 2.68E-01 5.24E-03 2.00E-01 2.23E-02 5.08E-01 1.22E-02
5.18E-01 2.50E-02 1.23E-03 3.22E-01 1.21E-02 1.81E-01 5.96E-03
Hypervolume 1.61E402 5.88E-02 2.34E-03 2.75E-02 4.42E-02 2.82E-01 1.97E-01
1.35E-03 4.71E-02 5.16E-02 3.46E-01 2.50E-02 1.93E-02 7.75E-02
DTLZ9 Ap 1.46E-04 4.46E-03 5.76 E-02 2.23E-03 5.88E-03 4.46E-03 6.03E-03
2.61E-05  2.57E-03 3.326-03 1.86E-03 3.31E-04 2.90E-04 8.426-04
Spread 8.86E-01 3.20E-01 3.51E-03  5.75E-01 2.54E-02 3.15E-01 1.085-02
2.77E-01 7.87E-02 2.826-01 5.30-02 7.44E-03  3.93E-01 8.80B-03
Epsilon 8.57E-01 3.20E-01 6.72E-03  5.05E-01 6.66E-02 2.40E-02 3.37E-02

3.98E-01 7.41E-01 5.92E-03 6.76E-02 5.95E-01 1.43E-02 2.78E-02




1

_— 1
t "‘o %
08)@® 0.8 .Q. ®
® . 0.5
] .
06| @ 0.6 .Q‘ e .
5 o 4
0.4 .... 0.4 ] @
' *
® s .
0.2 0.2 % t
0 0 g
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08
(a) (b) (c)

Fig. 13. Archive measurement of convergence on different Pareto fronts, i.e., (a) ZDTI,

(b) ZDT6, and (c) ZDTS3.
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Fig. 14. The convergence of selection approaches on (a) ZDT1, (b) ZDT3, and (c) ZDT6.

5.7 Wilcoxon signed-rank test

In the literature (Roy, Islam, Murase, & Yao, 2015), it can be seen that the
output indicators do not provide any guarantee for better convergence and diversity, since
sometimes the solutions obtained are not similar to the optimal front of Pareto. The
Wilcoxzon signed-rank test (Richardson, 2010) is performed on the average value of the
output measures Hypervolume, A,, Spread, and Epsilon. For each question the difference
between each pair of average results is determined. These differences are sorted in an
ascending order and assigned a rank ranging from the smallest to the largest number. If the
proposed algorithm is better than the competitor algorithms with respect to a particular
performance criterion, the positive rank is given. Otherwise, it is assigned negative rank. A
value amount is set to 0.10 for contrast, and summarizes both the positive and negative rank
(Richardson, 2010). The findings of the Wilcozxon test are shown in Table 6, where +, -, and
= indicate that MOSOA’s output is superior, inferior, and equal to competitor algorithms.
From Table 6 it is observed that MOSOA surpasses all the competitor algorithms except




Table 5
The archive values obtained by MOSOA algorithm.

. ZDT3
ZDT1 (Concave) DTLZ6 (Convez) (Disconnected)
Tterations Archive Objective value Archive Objective value Archive Objective value

x y hi f2 x y fi fa x y fi f2

1 0.981 0.013 0.658 0.729 0.055 3.409 0.441 0.179 0.788 -0.189 0.248 -0.161
0.782 -0.051 -0.199 5.779 0.776 -0.035
0.744 0.087 -0.197 5.778 0.742 0.087
0.711 0.218 -0.178 5.128 0.695 0.217
0.621 0.338 -0.176 5.128 0.633 0.329
0.547 0.460 -0.198 5.782 0.546 0.446
0.437 0.555 -0.114 3.906 0.436 0.547
0.326 0.638 -0.175 5.132 0.231 0.638
0.200 0.710 0.044 3.408 0.200 0.696
0.057 0.760 -0.158 5.131 0.069 0.754

50 0.637 -0.189 0.560 0.548 -0.075 1.822 0.384 0.031 0.616 -0.19 0.100 -0.161
0.657 -0.063 -0.179 3.031 0.552 0.054
0.602 -0.087 -0.175 3.820 0.676 0.040
0.640 0.141 -0.169 4.029 0.548 0.172
0.53 0.211 -0.173 2.804 0.531 0.137
0.426 0.315 -0.12 4.257 0.484 0.323
0.347 0.230 -0.079 2.888 0.551 0.216
0.238 0.542 -0.178 2.822 0.133 0.571
0.202 0.626 0.011 2.017 0.193 0.636
0.067 0.558 -0.162 4.212 0.017 0.540

100 -0.174 0.701 0.569 0.356 0.72 -0.053 0.344 0.761 -0.181 0.724 0.059 0.71
-0.089 0.464 0.773 -0.055 -0.161 0.588
0.028 0.336 0.748 0.091 -0.17 0.500
0.129 0.224 0.711 0.211 -0.123 0.460
0.248 0.147 0.630 0.340 0.000 0.267
0.273 0.081 0.528 0.458 0.036 0.073
0.404 0.012 0.383 0.587 0.231 -0.027
0.486 -0.034 0.323 0.641 0.217 -0.292
0.604 -0.095 0.262 0.714 0.417 -0.457
0.699 -0.135 0.050 0.767 0.614 -0.711

NSGA-II which finds superior on measure Hypervolume.

6 Engineering design problems

To evaluate the efficacy of the proposed MOSOA algorithm, its efficiency is evaluated
on six specific engineering design problems. These multi-objective constrained engineering
problems employed the death penalty (Coello, 2002). Though, the role of death penalty is
used to discard the infeasible solutions and does not use the knowledge of those solutions
that are useful in solving the controlled inviolable regions. MOSOA algorithm is fitted with
death penalty feature to handle the multiple constraints due to low computational cost and
its simplicity.

6.1 Welded beam design problem

This issue has centered primarily on reducing the cost of production and at the
same time decreases the vertical deflection (Ragsdell & Phillips, 1976) (see Fig. 15). The



Table 6
Wilcozon signed-rank test.

Algorithms Hypervolume A, Spread Epsilon
MOSOA = + + +
MOPSO + + = +
NSGA-II - + + =
MOEA/D + + + +
PESA-IT + + = +
MOSHEPO + + + +
MOACO + + + +

problem of welded beam design requires four variables for optimization, as shown in Fig.
15. Appendix D of Supplementary Material sets out the scientific notation of this problem.
Table 7 illustrates the comprehensive study of various approaches in order to obtain the
best outcome for the problem. The optimal solution for finding the near-optimal solution is
accomplished using MOSOA. Proposed solution outperforms indicative of longevity of the
algorithm for solving restricted engineering problems.

Fig. 15. Welded beam design problem.

Fig. 16 demonstrates that MOSOA is having the optimal solution. From this figure
it is observed that in case of solving the problem of welded beam design, the proposed
MOSOA algorithm has a high durability.



Welded Beam Problem
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Fig. 16. The obtained Pareto solutions by MOSOA and competitive techniques on welded
beam problem.

6.2 Multiple-disk clutch brake design problem

This problem focuses on lowering the stop time (f1) and lowering the brake sys-
tem mass (f2) (Rao & Waghmare, 2017) (see Fig. 17 and Appendix D of Supplementary
Material). The question consists of five criteria for judgment. Table 8 demonstrates the
statistical importance of the strategy suggested against other methods. MOSOA is used to
obtain the best output of decision variables. If evaluated in terms of A, Spread, Epsilon, and
Hypervolume it outperforms other algorithms. MOSOA, MOPSO, and NSGA-II managed
to achieve optimum Pareto fronts. It can be observed by Fig. 18 that MOSOA, MOPSO,
and NSGA-II results are comparable.

Table 7
The comparison between different approaches for welded beam problem.

ll\jfrtfo,rmame MOSOA ~ MOPSO  NSGA-II ~ MOEA/D PESA-II  MOSHEPO MOACO
etlrics

Hypervolume 4.17TE+401 7.08E-01 6.16E-01 6.93E-01 7.81E-01 6.41E-01 7.58E-01
2.34E-02 5.92E-01 3.21E-01 5.96E-01 7.95E-01 3.86E-01 4.71E-01
Ap 2.70E-03 2.35E-01 1.68E-01 2.35E-02 5.83E-01 6.91E-02 3.33E-02
4.04E-05 5.50E-02 1.82E-02 1.31E-02 5.86E-02 4.52E-02 2.49E-02
Spread 1.36E-02 1.47E-01 8.91E-01 1.77E+00 2.71E-01 4.47E-01 2.65E-01
4.95E-07 7.28E-02 1.77E-01 2.11E+00 5.21E-02 1.17E-01 1.96E-01
Epsilon 8.63E-04 1.03E-01 8.63E-02 3.21E-02 2.23E-01 2.62E-02 3.67E-02

1.11E-06 7.52E-02 1.35E-02 8.74E-03 8.62E-02 4.64E-03 2.01E-03




Table 8
The comparison between different approaches for multiple-disk clutch brake problem.

f/fftf({rmance MOSOA  MOPSO NSGA-II ~ MOEA/D  PESA-II  MOSHEPO MOACO
etrics

Hypervolume 3.52E4-00 6.85E-01 5.04E-01 7.52E-01 8.01E-01 8.62E-01 5.41E-01
1.42E-02 4.31E-01 3.51E-01 6.62E-01 7.13E-01 6.95E-01 2.10E-01
Ap 1.01E-03 4.14E-02 1.12E-01 6.42E-02 1.20E-01 8.71E-02 4.12E-02
1.43E-07 4.95E-03 1.51E-02 5.02E-02 7.81E-02 3.12E-02 3.50E-02
Spread 1.11E-02 1.35E-01 7.62E-01 2.41E4-00 7.42E-01 7.31E-01 2.30E-01
1.15E-02 1.91E-01 3.12E-01 1.34E+00 4.20E-01 3.41E-01 1.37E-01
Epsilon 1.64E-03 1.13E-01 5.02E-02 1.38E-01 1.11E-01 1.92E-02 2.97E-02
4.16E-04 8.83E-02 1.43E-02 7.31E-02 6.31E-02 1.30E-02 1.57TE-02

.

T
Fig. 17. Multiple-disk clutch brake design problem.
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Fig. 18. The obtained Pareto solutions by MOSOA and competitive techniques on multiple-
disk clutch brake problem.

6.3 Pressure vessel design problem

This problem was proposed by Kannan and Kramer (Kannan & Kramer, 1994) to
minimize total cost (fi)and optimize storage space (f2),as shown in Fig. 19.
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Fig. 19. Pressure vessel design problem.

This problem is composed of four variables of nature. Mathematical notes comprising
this particular problem are summarized in Appendix D of Supplementary Material. Table
9 displays the MOSOA’s comparative analysis with other recorded algorithms. Using the
MOSOA minimum cost and optimum capacity goals are achieved. The MOSOA, MOPSO,
and NSGA-II generate optimal Pareto fronts which are shown in Fig. 20. The MOSOA,
when evaluated against the NSGA-II and MOPSO, is also able to provide comparable
results.



Table 9
The comparison between different approaches for pressure vessel problem.

Pl\’AefthTmance MOSOA MOPSO NSGA-II ~ MOEA/D  PESA-II MOSHEPO MOACO
etrics

Hypervolume 2.02E4-00 6.20E-01 5.24E-01 7.94E-01 6.24E-01 6.50E-01 2.10E-01
1.01E-02 2.10E-01 2.41E-01 5.01E-01 6.00E-01 6.83E-01 1.67E-01
Ay 1.16E-06 5.15E-02 3.30E-02 1.58E-02 2.10E-03 2.66E-02 1.27E-03
2.12E-04 1.18E-02 3.44E-03 4.97E-02 2.21E-02 8.91E-02 1.62E-02
Spread 1.65E-02 6.00E-01 3.31E-01 2.32E+400 7.44E-01 8.62E-01 3.17E-01
1.10E-02 1.55E-01 2.61E-01 1.03E+00 5.37E-01 5.34E-01 1.88E-01
Epsilon 1.18E-03 2.48E-01 8.51E-02 2.46E-01 1.41E-01 4.29E-02 1.57E-02
3.20E-04 7.42E-02 6.83E-02 1.34E-01 2.12E-01 2.81E-02 2.17E-02
x 10" Pressure Vessel Problem
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Fig. 20. The obtained Pareto solutions by MOSOA and competitive techniques on pressure
vessel problem.

6.4 Speed reducer design problem

This selected problem comprises of two parameters that need optimization, such as:
stress (f2) and weight (f1). There are eleven constraints (Rao, Savsani, & Vakharia, 2011)
to this problem (see Fig. 21). It includes seven variables for optimization of this problem
(r1 — z7). Appendix D of Supplementary Material summarizes mathematical notations



that comprise this problem.

Table 10 displays the comparative study of optimal results obtained using six
optimization algorithms, and the MOSOA. In comparison with other equivalents, output
gain can be easily seen from Table 10 using the MOSOA. Small weight and tension are the
two targets which the MOSOA has achieved. Fig. 22 presents the best results obtained
from algorithms MOSOA, MOPSO, and NSGA-II. However, for this particular problem the
MOSOA produces the best optimal Pareto solution. Pareto solutions collection verifies the
MOSOA’s outstanding results.
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Fig. 21. Speed reducer design problem.

Table 10
The comparison between different approaches for speed reducer problem.

ffrtfo,rmance MOSOA ~ MOPSO  NSGA-II ~ MOEA/D PESA-II  MOSHEPO MOACO
etlrics

Hypervolume 2.21E-+00 4.85E-01 5.01E-01 6.51E-01 8.94E-01 7.63E-01 4.10E-01
1.21E-02 3.34E-01 4.61E-01 5.68E-01 7.02E-01 5.13E-01 3.01E-01
Ap 3.12E-04 4.06E-02 1.25E-02 5.43E-02 4.01E-01 5.41E-03 4.98E-02
1.56E-04 3.82E-03 2.02E-02 2.62E-02 7.92E-02 3.65E-03 3.48E-03
Spread 1.72E-02 2.35E-01 5.41E-01 1.96E+00 3.51E-01 5.94E-01 2.10E-01
1.14E-02 2.36E-01 3.31E-01 1.44E4-00 5.31E-01 3.43E-01 1.51E-01
Epsilon 1.17E-03 1.08E-01 2.27E-01 1.95E-01 5.52E-01 1.33E-01 1.74E-01

4.08E-04 2.58E-01 6.52E-02 6.62E-02 4.17E-02 1.95E-01 3.53E-02
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Fig. 22. The obtained Pareto solutions by MOSOA and competitive techniques on speed
reducer problem.

6.5 Gear train design problem

In this problem, there are requirements to determine the number of teeth and size
for every four gears by which the error (Prayoonrat & Walton, 1988) between obtained
and required gear ratio, as shown in Fig. 23. This problem consists of four parameters for
an integer judgment. Appendix D of Supplementary Material summarizes mathematical
notations that comprise this problem.
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Fig. 23. Gear train design problem.

Table 11 compares the MOSOA’s proposed performance evaluation with other
competing algorithms. Using MOSOA the best possible results are obtained. Fig. 24
shows the best MOSOA, MOPSO, and NSGA-II outcomes in terms of the optimal Pareto

fronts.



Table 11
The comparison between different approaches for gear train problem.

Pl\’AefthTmance MOSOA MOPSO NSGA-II ~ MOEA/D  PESA-II MOSHEPO MOACO
etrics

Hypervolume 2.63E4-02 8.52E-01 5.10E-01 5.38E-01 7.61E-01 8.85E-01 5.47E-01
1.85E-03 5.95E-01 4.61E-01 6.96E-01 6.13E-01 7.90E-01 3.33E-01
Ap 1.61E-03 4.41E-01 3.57E-02 5.78E-01 3.44E-01 6.01E-02 3.51E-02
1.40E-02 1.88E-02 4.64E-04 1.32E-02 3.07E-02 3.65E-02 2.31E-02
Spread 1.25E-02 1.83E-01 4.38E-01 1.24E+4-00 6.92E-01 8.63E-01 4.21E-01
6.62E-03 1.02E-01 2.11E-01 1.01E+00 4.01E-01 4.31E-01 2.46E-01
Epsilon 2.44E-04 1.10E-01 1.31E-01 1.21E-01 8.45E-02 1.26E-01 3.61E-02
1.50E-04 6.61E-02 1.03E-01 8.64E-02 2.47E-02 1.24E-01 1.91E-02
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Fig. 24. The obtained Pareto solutions by MOSOA and competitive techniques on gear
train problem.

6.6 25-bar truss design problem

To test the output of the proposed algorithm this problem (Dhiman & Kaur, 2018,
In pressa, 2018, In pressb) is selected. This architecture consists of ten static nodes, and
twenty-five bar cross-sectional members (see Fig. 26).

The 25-bar truss dominant position is shown in Table 12. Compared to other
algorithms, as is shown in Table 12, the MOSOA obtains the best optimal consequence.
The statistical findings obtained in terms of average and standard deviation also indicate
that the MOSOA is outperforming the rival algorithms. From Fig. 25, it is also clear that
the MOSOA converges very quickly in order to achieve the optimum solution.
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Fig. 25. The obtained Pareto solutions by MOSOA and competitive techniques on 25-bar
truss problem.

7 Conclusions and Future Works

This article introduced a new MOO algorithm, named Multi-objective Seagull
Optimization Algorithm (MOSOA). This algorithm mimics the searching and attacking
behaviors of seagulls in nature. Three new components are integrated into this study to
solve MOO problems. The first part includes an archive, the key function of which is
to identify and compile the best non-dominated solutions. The second part provides the
grid mechanism to omit the most crowded part of the non-dominated solutions. And, the
third aspect provides a criterion for leader selection to choose optimal solutions from the
archive. This algorithm is checked on twenty-four well-known benchmark test functions.
Finally, six real-life MOO problems have validated it. Various experimental findings in this

Table 12
The comparison between different approaches for 25-bar truss problem.

ll\jfrtfo,rmance MOSOA ~ MOPSO  NSGA-II ~ MOEA/D PESA-II  MOSHEPO MOACO
etlrics

Hypervolume 1.13E-00 7.58E-01 3.34E-01 6.45E-01 3.04E-01 5.75E-01 2.03E-01
1.15E-02 4.78E-01 1.41E-01 4.01E-01 1.70E-01 4.84E-01 1.30E-01
Ap 2.21E-03 1.55E-01 2.78E-02 1.01E-01 1.67E-01 2.26E-02 4.37E-02
1.41E-03 1.71E-01 1.46E-02 1.33E-01 3.01E-02 1.85E-02 2.58E-02
Spread 1.16E-02 2.58E-01 3.31E-01 1.48E-01 4.06E-01 4.37E-01 2.33E-01
3.32E-03 2.42E-01 2.26E-01 1.17E-01 3.03E-01 1.85E-01 1.01E-01
Epsilon 1.87E-03 1.90E-01 1.81E-01 1.58E-01 2.86E-02 1.41E-01 2.65E-01

1.71E-03 2.01E-02 1.43E-01 1.80E-02 1.75E-02 1.01E-01 1.57E-01




Fig. 26. 25-bar truss design problem.

regard represent that the MOSOA provides the best results in terms of computational costs
compared with existing competing algorithms. The binary version of MOSOA algorithm will
be designed for future research to solve various difficult real-life complex problems. Also,
the many-objective version of the proposed algorithm can be seen as the future contribution.
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