Integration of dendrochronological and palaeoecological disturbance reconstructions in temperate mountain forests

Kuosmanen, Niina and Čada, Vojtech and Halsall, Karen and Chiverrell, Richard and Schafstall, Nick B. and Kunes, Petr and Boyle, John . and Knížek, Milos and Appleby, Peter G. and Svobodaa, Miroslav and Clear, Jennifer L. (2020) Integration of dendrochronological and palaeoecological disturbance reconstructions in temperate mountain forests. Forest Ecology and Management. ISSN 0378-1127 (Accepted for Publication)

[img] Text
Kuosmanen_etal_2020_submitted.pdf - Accepted Version
Restricted to Repository staff only until 31 October 2022.

Download (1MB)

Abstract

Disentangling the long-term changes in forest disturbance dynamics provides a basis for predicting the forest responses to changing environmental conditions. The combination of multidisciplinary records can offer more robust reconstructions of past forest disturbance dynamics. Here we link disturbance histories of the central European mountain spruce forest obtained from dendrochronological and palaeoecological records (fossil pollen, sedimentary charcoal, bark beetle remains and geochemistry) using a small glacial lake and the surrounding forest in the Šumava National Park (Czech Republic). Dendrochronological reconstructions of disturbance were created for 300-year-long records from 6 study plots with a minimum of 35 trees analyzed for the abrupt growth increases (releases) and rapid early growth rates, both indicative of disturbance events. High43 resolution analysis of lake sediments were used to reconstruct 800-year long changes in forest composition and landscape openness (fossil pollen), past fire events (micro- and macroscopic charcoal), bark beetle occurrence(fossil bark beetle remains), and erosion episodes (geochemical signals in the sediment) potentially resulting from disturbance events.
Tree-ring data indicate that disturbances occurred regularly through the last three centuries and
identify a most intensive period of disturbances between 1780 and 1830 CE. Geochemical erosion markers (e.g. K, Zr, % inorganic) show greater flux of catchment sediment and soils in the periods 1250–1400 and 1450–1500 CE, before a substantial shift to a more erosive regime 1600–1850 and 1900 CE onwards. Pollen records demonstrate relatively small changes in forest composition during
last 800 years until the beginning of the 20th century, when there was decrease in Picea. Fossil bark beetle remains indicate continuous presence of bark beetles from 1620s to 1800s, and charcoal records suggest that more frequent fires occurred during the 18th 55 century. Each of the dendrochronological, palaeoecological and sedimentological records provide a unique perspective on forest disturbance dynamics, and combined offer a more robust and complete record of disturbance history. We demonstrate that sedimentary proxies originating from the lake catchment mirror the forest disturbance dynamics recorded in the tree-rings. However, the multidisciplinary records likely record forest disturbances at different spatial and temporal scales revealing different disturbances characteristics. Integrating these multidisciplinary datasets demonstrates a promising way to obtain more complete understanding of long-term disturbance dynamics. However, integrating datasets with variable spatial and temporal influence remains challenging. Our results indicated that multiple disturbance factors, such as windstorms, bark beetle outbeaks and fires, may occur simultaneously creating a complex disturbance regime in mountain forests, which should be considered in forest management and conservation strategies.

Item Type: Article
Additional Information and Comments: This is the authors' version of an article that has been accepted for publication in Forest Ecology and Management. The final publication will be available from: https://www.sciencedirect.com/journal/forest-ecology-and-management
Faculty / Department: Faculty of Science > Geography and Environmental Science
Depositing User: Matthew Adams
Date Deposited: 21 Jul 2020 09:00
Last Modified: 21 Jul 2020 09:00
URI: https://hira.hope.ac.uk/id/eprint/3108

Actions (login required)

View Item View Item