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14 ABSTRACT: We evaluate the effect of epoxy surface
15 structuring on the evaporation of water droplets containing
16 Staphylococcus epidermidis. During evaporation, droplets with
17 S. epidermidis cells yield to complex wetting patterns such as
18 the zipping-wetting1−3 and coffee-stain effects. Depending on
19 the height of the microstructure, the wetting fronts propagate
20 circularly or in a stepwise manner, leading to the formation of
21 octagonal or square-shaped deposition patterns.4,5 We
22 observed that the shape of the dried droplets has considerable
23 influence on the local spatial distribution of S. epidermidis
24 deposited between micropillars. These changes are attributed to an unexplored interplay between the zipping-wetting1 and the
25 coffee-stain6 effects in polygonally shaped droplets containing S. epidermidis. Induced capillary flows during evaporation of
26 S. epidermidis are modeled with polystyrene particles. Bacterial viability measurements for S. epidermidis show high viability of
27 planktonic cells, but low biomass deposition on the microstructured surfaces. Our findings provide insights into design criteria for
28 the development of microstructured surfaces on which bacterial propagation could be controlled, limiting the use of biocides.

1. INTRODUCTION

29 The production of biological and chemical materials7,8 that
30 control the growth and survival rate of microorganisms9 at
31 surfaces is of great interest for future antimicrobial strategies.10

32 An important factor affecting the development of bacterial
33 colonies is the initial adhesion to the surface, which initiates
34 proliferation and biofilm formation and has major impact in
35 contamination of medical devices.11−14 For example, Staph-
36 ylococcus epidermidis infections can commence with the
37 introduction of bacteria transferred from the skin during
38 medical device insertion, and account for at least 22% of
39 bloodstream infections in intensive care unit patients.15 It has
40 recently been found that a surface with micro(nano)-top-
41 ography in contact with microorganisms can influence
42 microbial growth, attachment, and distribution.16,17 In addition,
43 modifying surface topography can also create water repellent
44 substrates, which may prevent infections by reducing bacterial
45 growth and propagation after the evaporation of the
46 liquid.10,18−22 However, droplets in such superhydrophobic or
47 hydrophobic states are energetically unstable and eventually the
48 droplet gets impaled by the microscopic structure, losing the

49hydrophobic character23−26 and causing the liquid to infiltrate
50the structure. Such a transition can however be avoided with
51suitable engineered micropatterned substrates27−29 with sharp-
52edged pillars30−32 or with relatively high microstructures.33−35

53In addition, the spreading of the liquid front is also affected by
54the pillar geometry, leading to a droplet footprint with a
55polygonal shape. This phenomenon has been termed zipping-
56wetting and it has been observed for submillimetric
57structures.4,5 As well as forming elaborately patterned footprints
58on surfaces,36−40 the dried pattern can have profound effect on
59the distribution and survival rate of bacteria on a substrate.
60However, little is known about how the presence of bacteria in
61droplets affects the drying on microstructured surfaces and how
62the bacterial interaction at the wetting front affects the resulting
63bacterial deposition over the substrate. This problem can be
64compared to the behavior of particle suspension droplets,
65which, upon evaporation, have been shown to leave distinct
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66 ring-shaped marks on the surface. This phenomenon is known
67 as coffee-stain effect whereby the colloidal particles are
68 deposited around the perimeter of a droplet.6,41

69 In this paper, we assess the effect of epoxy surface structuring
70 on the evaporation of bacteria-containing droplets and the
71 resulting bacterial distribution on the microstructured surfaces.
72 First, S. epidermidis wetting patterns are studied. Our
73 experiments show an interesting combination of the zipping-
74 wetting and the coffee-stain effect that has not been previously
75 explored for bacterial-containing droplets. The combination of
76 these two phenomena leads to a breakdown of the droplets
77 axial symmetry which directs the distribution of bacteria along
78 and outside the droplet perimeter. Second, the local
79 distribution of S. epidermidis cells deposited between individual
80 micropillars is studied. Our results reveal that the proportion of
81 the resulting local bacterial patterns can be modified by varying
82 the pillar height of the fabricated microstructures. Third,
83 S. epidermidis viability is studied and shows that, in spite of high
84 viability of planktonic cells regrown over the substrates, biofilm
85 formation over these surfaces is relatively impaired. These
86 effects could be attributed to the local bacterial distribution
87 over microstructured substrates. Finally, to quantify the
88 dynamics of the S. epidermidis deposition, polystyrene (PS)
89 particles are used. PS particles resembled the capillary driven
90 flows during the zipping-wetting and the coffee-stain effects.

2. METHODS
91 2.1. Deep Reactive-Ion Etching of Silicon. Photolithographi-
92 cally defined silicon micropillar arrays were produced with deep
93 reactive ion beam etching (DRIE) as described in detail elsewhere.27,31

94 In a DRIE system (Adixen AMS100-SE), with a RF generator at 13.56
95 MHz, CCP 80 W LF, and 1500 W ICP plasma source, the micropillar
96 arrays were etched by keeping the total chamber pressure at 75 mTorr.
97 The temperature of the electrode with the silicon substrate was kept at
98 10 °C, using liquid nitrogen as a coolant. The etching time was varied
99 from 1.5 to 5 min to obtain pillar heights of approximately 5 (H5), 10
100 (H10) and 15 (H15) μm. SF6 and C4F8 flows were kept constant
101 during the etching process at 250 sccm (standard cubic centimeter per
102 minute) and 200 sccm, respectively. After the silicon etching,
103 photoresist and fluorocarbons were stripped in O2 plasma at 500 W
104 for 30 min, a subsequent 1% HF treatment was used to remove formed
105 SiO2.
106 2.2. Fabrication of Polydimethylsiloxane (PDMS) Molds.
107 Prior to the fabrication of PDMS molds, vapor deposition of trichloro
108 (1H,1H,2H,2H-perfluorooctyl) silane (FOTS from Fluorochem) was
109 carried out in a vacuum system for 3 min. A negative replica of the
110 pillar substrate was produced by casting PDMS (Dow Sylgard 184
111 Silicon elastomer) onto the silicon etched substrate described in
112 subsection 2.1. To cure the PDMS, a 1:10 ratio of the curing agent and
113 the prepolymer was mixed, degassed, and incubated at 85 °C for 3 h.
114 The PDMS mold was removed from the silicon substrate and cut prior
115 to use. The PDMS mold was then cleaned extensively with ethanol

116and isopropanol, dried, and treated in air plasma for 1 min in a Femto
117Diener plasma cleaner (Zepto model).
1182.3. Fabrication of Epoxy Micropillars. Epoxy micropillars were
119produced by casting EPO-TEK (OG142−13 from Epoxy Technology)
120onto the negative PDMS replica described in subsection 2.2. After
121Epoxy was cast, a glass slide was placed over the PDMS substrate with
122Epoxy material. The epoxy was cured using ultraviolet light. A UVL-56
123hand-held UV lamp was used (6 W and wavelength of 365 nm) for 30
124min followed by incubation at 30 °C for 30 s.
1252.4. Configuration of Micropillars on Epoxy Substrates.
126Epoxy micropillars were fabricated by casting and curing epoxy glue on
127a negative PDMS micropillar-replica as described in subsection 2.3.
128 f1These microstructures, labeled from (a) to (c), are shown in Figure 1.
129The diameter (d) and interspacing (i) were restricted in the range
130 t1presented in Table 1, but the heights (h) were varied from 5 to 15 μm.

131The configuration of the microstructures is in a square lattice with a
132periodicity p = i + d with a packing fraction Φ, calculated as (π/4)(d/
133p)2 of about 0.19 and aspect ratios (h/d) of approximately 1, 2, and 3
134for (a), (b), and (c), respectively. The outside walls of the micropillars
135are smooth at the micrometer scale for all of the substrates.
1362.5. Determination of S. epidermidis Cell Viability after
137Evaporation of Bacterial Suspension over Structured Surfaces.
138S. epidermidis (ATTC-12228) cultures were grown overnight (200
139rpm, at 37 °C) in nutrient broth (NB) medium (Oxoid, Ltd.-Thermo
140Fisher). The bacterial cells were adjusted to 6.3 × 106, 8.0 × 107, and
1415.0 × 109 colony forming units per milliliter (CFU/mL) in sterile
142deionized water.
143S. epidermidis viability was carried out with flat and structured epoxy
144micropillar substrates sterilized under UV light for 20 min. Here 10 μL
145droplets of fresh bacterial cell suspension (9 × 107 CFU/mL in water)
146were deposited onto H5, H10, H15, and flat surfaces until complete
147evaporation for 30 min. After complete evaporation, each substrate
148was rehydrated in 1 mL of NB and the cells were cultured for 24 h at
14937 °C. Counting of viable cells was performed after washing the
150surface with 200 μL of sterile phosphate-buffered saline (PBS) and
151serial dilutions. The experiments were performed in triplicate.
1522.6. S. epidermidis Biofilm Formation Assay. Microtiter plate
153biofilm formation assay was modified from the method described by
154O’Toole.42 Briefly, S. epidermidis cultures were grown overnight (200
155rpm, at 37 °C) in NB medium (Oxoid, Ltd.-Thermo Fisher) and
156diluted to 107 CFU/mL in NB. Polystyrene flat (PSflat), flat epoxy,
157and epoxy micropillar substrates (H5, H10, and H15) of 1 cm × 1 cm
158were sterilized under UV light for 20 min. The substrates were placed
159in wells of the 24 well microtiter plate, covered with 600 μL of
160S. epidermidis 107 cell suspension and incubated for 24h at 37 °C. After
161incubation, bacterial cell suspension was removed, materials were
162gently washed 5 times with PBS, moved to the new plate and dried.

Figure 1. SEM images of substrates with micropillars: (a) 5 μm height (H5), (b) 10 μm height (H10), and (c) 15 μm height (H15).

Table 1. Height (h), Pillar-to-Pillar Interspace (i), and
Diameter (d) of the Microstructures on Substrates (a)−(c)

microstructure h (μm) i (μm) d (μm)

(a) H5 4.8 4.7 5.0
(b) H10 9.5 4.5 5.0
(c) H15 15.7 5.0 5.2
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163 The biofilms formed were stained with 600 μL of a 0.1% crystal violet
164 for 15 min at room temperature (RT). Crystal violet was removed;
165 materials were washed 5 times with sterile water and dried. For
166 quantification of biofilms formed on the flat and structured substrates,
167 500 μL of absolute ethanol was added (for 15 min at RT) to solubilize
168 the stain and transferred to a new plate. The optical density (O.D.)
169 595 nm was measured in a UV/vis plate reader (FilterMax F5Multi
170 Mode Microplate Reader, Molecular Devices). Three independent
171 experiments were performed.
172 2.7. Contact Angle Measurements on Epoxy Micropillar
173 Arrays. Contact angle measurements were performed by placing a
174 water droplet of 2−4 μL on the Epoxy substrates with the setup
175 presented in Figure SI-1. Evaporation occurred at room temperature
176 (21° ± 3 °C) in an atmosphere with a relative humidity of 35 ± 5%.
177 The water was purified in a Millipore Milli-Q system which involves
178 reverse osmosis, ion-exchange, and filtration steps (18.6 MΩ cm).
179 Side-view videos were captured via a CMOS camera equipped with x5-
180 x40 magnifying lenses and with a recording time of 1−2 fps.
181 Contact angle measurements of water and S. epidermidis droplets on
182 epoxy surfaces were carried out by placing a water droplet with
183 bacteria suspension of 6.3 × 106, 8.0 × 107, and 5.0 × 109 CFU/mL on
184 the epoxy substrates. After deposition, the droplets evaporated at room
185 temperature. Top-view droplet evaporation images were recorded at
186 frame rates of 10 fps with a camera (Photron Fastcam SA7) with a
187 50D-20x-VI lens mounted in a Nikon light-microscope. Under such
188 conditions, 2−4 μL droplets evaporate completely in approximately
189 1200 s ± 250 s. Contact angle (CA) measurements as a function of
190 time are shown in Figure SI-2.
191 2.8. Deposition of Polystyrene Particles on Epoxy Sub-
192 strates. A 107 particles/mL solution of FluoRed-polystyrene (PS)
193 particles purchased from Microparticles GmbH with mean diameter of
194 1.2 μm ± 0.04 μm was prepared with deionized water (Milli-Q).
195 Droplets of 2−4 μL were deposited on the epoxy substrates. Substrate
196 inspection was performed with an inverted microscope illuminated
197 with a continuous solid-state laser diode pumped at 100 mW (or a
198 halogen light) to avoid overheating. The images were collected with a
199 CCD camera PCO Sensicam at 1 frames per second (fps). The
200 droplets were evaporated at 23 °C and 40% relative humidity. Under
201 such conditions, a 2−4 μL droplet completely evaporated in
202 approximately 1200 ± 250 s. It is important to note that static
203 contact angle of the droplets containing PS particles over substrates
204 were very similar, all being slightly below 100°.
205 2.9. SEM and AFM Characterization. Fracturing the epoxy/glass
206 substrates with a diamond cutter, a cross-sectional scanning electron
207 microscopy (SEM) image of the fabricated epoxy micropillars was
208 collected with accelerating voltages of 3 kV and ×1300 magnification
209 using a JSM-6610 JEOL scanning electron microscope. To increase the
210 electrical conductivity of the micropillars, prior to SEM analysis a 20
211 nm chromium layer was deposited by sputtering.
212 Atomic force microscopy (AFM) studies were conducted using a
213 Keysights (formally Agilent) 5500 atomic force microscope. A droplet
214 of bacteria suspension (8 × 107 CFU/mL) as described in subsection
215 2.7 was applied onto the micropillar substrate and dried at room
216 temperature. Measurements were carried out in air using intermittent
217 contact mode (tapping mode) utilizing uncoated silicon NCHV
218 cantilevers (Bruker, Santa Clara, CA). These cantilevers have typical
219 resonance frequencies of 320 kHz and a typical spring constant of 42
220 N/m (with a tolerance of 20−80 N/m). Due to the pillar size, the scan
221 rate was set to 0.1 Hz and 5 V amplitude was used for imaging. Height
222 phase-shift images were recorded and line-fitted using PicoView
223 software supplied by Keysights.

3. RESULTS AND DISCUSSION

224 3.1. Substrates Decorated with Micropillar Arrays. We
225 first investigated the wetting and evaporation behavior of water
226 droplets on substrates (Figure SI-1) decorated with a pillar
227 height of 5 μm (H5), 10 μm (H10) and 15 μm (H15). After
228 deposition, the wetting transition from Cassie−Baxter state to
229 the Wenzel state24−27 was clearly visible for substrates H5, H10,

230and H15 at t ∼ 80 ± 40 s. On all our samples, the static CA for
231water was found to be ∼100° (±7°). We measured the CA of
232the water droplet as a function of time. The dynamics of CA
233values of water on these fabricated pillars are displayed in
234Figure SI-2. Initial CA was 98° ± 6°, 105° ± 5°, and 100° ± 7°
235for H5, H10, and H15, respectively. Hysteresis was 20° ± 5,
23635° ± 8, and 60° ± 15 for H5, H10, and H15, respectively.43−45

237High hysteresis is expected for wetted surfaces H5, H10 and
238H15. This caused by a loss on hydrophobicity followed by
239droplet impalement in the micropillars. High hysteresis values
240have also been observed for polymeric susbtrates.34 It has been
241reported that capillary forces applied by sessile droplets can
242deform elastic surfaces.46 This explains the strong hysteresis we
243observe for H15 surfaces in Figure SI-4c and f.
244During evaporation, the CA of the droplets decreases (Figure
245SI-2), zipping-wetting propagation is observed (shown in
246Figure SI-5 between t = 800 and 930 s), which has also been
247observed for comparable configurations.1−3 In the previous
248studies, the zipping-wetting effect was observed with the
249propagation of the fluid entering and filling the microstructures
250as seen in Figure SI-5. The zipping-wetting process of these
251droplets is energetically favored at low CA (e.g., t = 650 s, see
252Figures SI-2 and SI-5), and it becomes more favorable for the
253higher pillars.
2543.2. Evaporation of S. epidermidis Suspension over
255Substrates with Micropillars. In order to investigate the
256behavior of droplets containing bacteria, three different
257concentrations of S. epidermidis suspensions (6.3 × 106, 8.0 ×
258107, and 5.0 × 109 CFU/mL) were prepared as described in
259subsection 2.5. The pattern of bacterial distribution after drying
260is affected by both the concentration of S. epidermidis in the
261water droplets, and the height of the pillars as presented in
262 f2Figure 2. A homogeneous bacterial distribution is observed for
263(a) H5, (b) H10, and (c) H15 at the high concentration of

Figure 2. Images of the resulting patterns formed after the evaporation
of S. epidermidis droplets containing 5.0 × 109 CFU/mL (first row),
8.0 × 107 CFU/mL (second row), and 6.3 × 106 CFU/mL (third row)
over (a) H5, (b) H10, and (c) H15 substrates. For all substrates, the
scale bars in the light microscope images represent 250 μm. In
addition, S. epidermidis stain outside of the original square pattern and
is highlighted in red in (b).
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264 bacteria (5.0 × 109 CFU/mL). We hypothesize that this cell
265 distribution is governed by a high amount of S. epidermidis
266 agglomerates at the last moment of evaporation. A microbial

267adherence test to n-hexadecane was performed47 to estimate
268S. epidermidis hydrophobicity. This technique has been used to
269qualitatively estimate surface hydrophobicity of cells.48,49

Figure 3. Top-view images of a droplet containing ∼8 × 107 CFU/mL S. epidermidis deposited and evaporated over H15 surface. Direction of
zipping-wetting effect is highlighted with a red arrow. The scale bar at the bottom right represents 250 μm.

Figure 4. (a) Sketch of drying patterns of evaporated droplets with S. epidermidis between micropillar troughs. From left to right: completely filled
structure, square lattice with empty central space, bacteria in “C” shape, bacteria in “L” shape, and “I” single line of bacteria. (b) Representative bright
field modular microscope image of an evaporated droplet area over H5 containing S. epidermidis patterns. Highlights represent a bacterial
environment for each category identified by color in (a,b). (c) Chart of the percentage of S. epidermidis patterns deposited in H5, H10, and H15. (d)
Count number of viable S. epidermidis cells recovered after 24 h after rehydration on flat surface and on substrates decorated with micropillars H5,
H10, and H15. Experiments in (c) were performed in triplicates by drying 10−20 independent droplets over substrates. The number of pattern in
(c) was estimated from five entire evaporated droplets per dried substrate. Microbiological test in (d) were carried out independently in triplicates.
Values in (c) and (d) are expressed ± SD.
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270 Cellular interactions are assumed to be subjected to forces
271 similar to those governing colloidal aggregations between
272 surfaces or particles in liquid. The hydrophobic interaction
273 forces are strongly attractive and are determined by the amount
274 of hydrophobic/hydrophilic molecular components on S. epi-
275 dermidis (e.g., polysaccharides or hydrophobins). From our
276 experiments, cultured S. epidermidis cells reveal hydrophobicity
277 of 58% ± 5%. This suggest that attractive forces for
278 hydrophobic cells interact stronger via van der Waals forces
279 which could prompt agglomeration leading to aggregates
280 during evaporation.
281 As the concentration is reduced to 6.3 × 106 CFU/mL, the
282 classical ring-shaped stain is not visible using only white light
283 due to the reduced amount of bacteria. Only few bacterial
284 clusters at the border of the stain are observed in Figure 2a−c.
285 Moreover, for the intermediated concentration (8.0 × 107

286 CFU/mL) an accumulation of bacteria in the center of the
287 octagonal shape was observed alongside bacterial distribution at
288 the borders (Figure 2b). This implies that the final evaporation
289 patterns depend on a sensitive balance between bacteria and
290 capillary interactions during the final stages of evaporation. It is
291 important to note that in the current conditions Marangoni
292 flow is much smaller than the dominant evaporation-driven
293 flow.50,51

294 The zipping-wetting effect was also observed for S. epidermidis
f3 295 containing droplets. Figure 3 shows a top-view image of a

296 droplet containing S. epidermidis deposited over H15. An
297 irregular octagon was observed until t ∼ 700 s, after which the
298 droplet changes into a square shape, as the fluid fills the cavities
299 between the micropillars. It is observed that at t = 960 s, the
300 liquid spread out from the corners of the droplet with the
301 formation of a cross structure stretching outside the square
302 pattern at t = 1120 s. Similar effects were also observed for
303 evaporating droplets with higher bacterial concentration (e.g.,
304 5.0 × 109 CFU/mL); see the Supporting Information videos
305 with H15.
306 To evaluate both, the zipping-wetting and the coffee stain
307 effects during evaporation of droplets containing S. epidermidis,
308 we studied the distribution of the localized bacterial patterns as
309 well as bacterial cells viability. An intermediate bacterial
310 concentration of ∼8.0 × 107 CFU/mL was chosen for the
311 work in the following sections as this gave a clear visualization
312 of the dried bacterial patterns (Figure 2).
313 3.3. Localized S. epidermidis Deposition Environments
314 between Micropillars. We investigated the localized environ-
315 ment of the bacteria within the troughs of the micropillars after
316 evaporation using the entire droplet area (i.e., droplet perimeter

f4 317 and center of the droplet). Figure 4a shows a top-view
318 illustration of a square lattice composed by four micropillars
319 (gray dots) with bacteria (red dots) in the troughs. Different
320 local bacterial environments between pillars are depicted as
321 follows: a completely filled structure (red box); a square lattice
322 with four filled edges and an empty central space, “O” shape
323 (green box); a three sided deposition with bacteria in “C” shape
324 (purple box); a two sided “L” shape bacterial distribution (blue
325 box); and, finally, a single line (“I”) of bacteria (pink box). A
326 top-view bright field modular microscope image of a micro-
327 patterned substrate with deposited S. epidermidis is shown in
328 Figure 4b highlighting the different kinds of local environments
329 that are experimentally observed for the bacteria. It can be seen
330 that all five environments are observed, highlighted with an
331 arrow of the same color as used in Figure 4a. In contrast to the
332 structured surfaces, flat epoxy surfaces do not contain similar

333well-defined localized bacterial configurations. For comparison,
334a representative image of dried bacteria patterns on a flat epoxy
335surface is presented in Figure SI-7.
336To establish the detailed distribution of bacteria suggested
337from the light microscope data, AFM images were collected.
338Due to limitation of the depth that can be probed by the AFM,
339imaging was only used to identify the deposition of the bacteria
340 f5on substrate H5 (Figure 1a). The AFM data in Figure 5 shows

341that a high proportion of S. epidermidis cells were found at the
342bottom of the troughs in the space between pillars and a
343significantly smaller population of bacteria was found on top of
344the pillars. AFM images were processed to enhance the contrast
345between the floor (purple color), deposited bacteria (light blue
346colors), and top of pillars (red color).
347The AFM image in Figure 5 clearly shows that the deposition
348shapes observed by light microscopy in Figure 4b. This can be
349directly attributed to the local environment and deposition
350pattern of the bacteria (Figure 2a). We have therefore mapped
351the statistical distribution of the different local environments of
352the deposited bacteria as the pillar height of the substrate is
353changed (shown in Figure 4c). It can be seen that the H5 and
354H10 distribution is comparable, with a similar distribution for
355the “O”, “C”, and “L” environments (each approximately 15%
356of the total number of patterns). In contrast, the H15 has a
357much higher concentration of completely filled troughs and
358much fewer low-concentration local environments. H5 and
359H15 show opposite behavior, with the taller substrate forming
360high concentrations of local environments and vice versa, while
361H10 can be considered an intermediate case. Therefore, the
362discussion is focused on substrates H5 and H15. Note that

Figure 5. 3D-AFM image of a H5 surface with S. epidermidis patterns
deposited at the bottom of the troughs and atop of pillars. Patterns
formed by S. epidermidis are highlighted with colored arrows as shown
in Figure 4a and b. Note that, from the 3D-AFM image, the lower
plane between the micropillars troughs is purple and bacteria on the
floor of the surface are in blue colors.
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363 proportion of localized S. epidermidis environments shown in
364 Figure 4c are collected from three independent experiments
365 using the entire area of five dried droplets.
366 For H5 in Figure 4c, the highest proportion of the bacterial
367 environments were found for clusters in “I” shaped environ-
368 ments (ca. 33% of deposition environments), whereas for H15,
369 a 7-fold decrease in the proportion of “I” shaped environments
370 is observed. Moreover, there is an increase in the proportion of
371 totally filled and “O” shaped local environments seen for the
372 H15 substrate when compared to H5 substrates (37% of the
373 total number of environments for H15 compared to 14% for
374 H5). These results confirm that the induced bacterial
375 deposition environments can be tuned by changing the pillar
376 heights. We suggest that the observed distribution of
377 S. epidermidis in Figure 4c can be associated with capillary
378 flow of the evaporated droplets. Thokchom et al. have reported
379 that motile and nonmotile cells can be directed with the
380 formation of ring deposits on uncoated substrates.52 Moreover,
381 S. epidermidis preferential cell attachment to the lower areas
382 between pillar troughs has also been reported22 and we confirm
383 here this observation. This implies that our localized bacterial
384 environments are actively driven by the flow during evaporation
385 and not by the nonmotile microorganism. It is important to
386 mention that S. epidermidis configurations may also vary in their
387 size and shape adapting to the configuration of the decorated
388 surface.
389 To assess how the local environment affects bacterial growth,
390 bacterial viability of planktonic cells after rehydration was
391 measured and is shown in Figure 4d. H5 shows slight bacterial
392 growth inhibition compared to flat, H10, and H15 substrates.
393 We hypothesize that H5 sample contains a larger proportion of
394 smaller local environments which could be more vulnerable to
395 dehydration and cell death when compared to the larger local
396 environments which are more prevalent on the H15 sample.
397 Biofilm formation assays were performed for S. epidermidis
398 deposited over surfaces.42 This method provides additional
399 insights on the antibacterial performance of structured materials
400 by estimating the bacterial biomass formed on surfaces. Here,
401 polystyrene flat surface (PSflat), flat epoxy surface (Flat), and

f6 402 H5, H10, and H15 epoxy substrates were used. In Figure 6a, we
403 present optical density (OD) values. Representative images of a
404 well plate for each surface are also presented. Images were
405 recorded after crystal violet staining for PSflat, flat, H5, H10,

406and H15. High levels of S. epidermidis biofilm mass are found
407for the PSflat substrate with an OD ∼ 0.45. A substantial
408reduction of biofilm mass is obtained for flat, H5, H10, and
409H15 epoxy substrates. The lowest OD values are ∼0.12 for flat
410and H5, while those for H10 and H15 are 0.17 and 0.25,
411respectively. From our biofilm mass optical density assay,
412measured as intensity reduction of a light beam transmitted
413through the biofilm, we have correlate the formed biofilm mass,
414measured as total carbon and as cell mass. Biofilm formation
415assay shows clearly the importance of both chemical
416composition of the material and surface topography. It has
417been demonstrated that staphylococci show great versatility to
418adhere to polymers, like polystyrene materials.53,54 Thus, when
419compared to PSflat substrate (i.e., highest biofilm mass), epoxy
420surfaces reveal promising material properties which could
421reduce biofilm mass deposition. Interestingly, in spite of high
422S. epidermidis viability in planktonic state (Figure 4d), biofilm
423formation over epoxy surfaces is relatively impaired. It is clear
424that S. epidermis viability can only be affected by the surface
425topography since no additional surface functionalization was
426performed. High levels of viable cells have also been observed
427for functionalized and nonfunctionalized surfaces, whereas the
428topographic surface remains with fewer bacterial cells.55

429To assess the effect of surface topography and its ability to
430reduce S. epidermidis attachment, biofilm mass values from
431Figure 6a were normalized to the engineered roughness index
432(ERI) in Figure 6b.56,57 ERI (i.e., ERI = (r × df)/f D) is a
433dimensionless value used to characterize surfaces with
434engineered topographies58 which solely considers the micro-
435pillar geometry, the spatial arrangement of the microstructured
436substrate, and the size of the topological features. ERI equation
437comprises of three parameters, the Wenzel’s roughness factor
438(r) which is defined as the ratio of the actual surface area to the
439projected planar surface area,59,60 the depressed surface fraction
440( f D) as the ratio of the recessed surface area between the
441protruded features and the projected planar surface area,58 and
442the degree of freedom of movement of the microorganism of
443the recessed areas (df).56−58

444From ERI equation, values for structured substrates were 2.9,
4454.8, and 6.7 for H5, H10, and H15, respectively, and the ERI
446value for flat surfaces (i.e., PSflat and flat) was 2. Figure 6b
447shows that PSflat substrate has the highest normalized biofilm
448mass. Compared to flat surface, PSflat has ∼75% more formed

Figure 6. (a) Biofilm formation assay with S. epidermidis cultured for 24 h over surfaces: polystyrene flat (PSflat), flat epoxy (flat), H5, H10, and
H15. (b) Normalized biofilm mass to ERI for PSflat, flat, H5, H10, and H15. Three independent experiments were performed. All values are
expressed ± SD.
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449 biofilm mass. Moreover, H5, H10, and H15 substrates show an
450 ∼50% reduction in normalized biofilm mass compare to flat
451 epoxy substrate. From the results in Figure 6b, no significant
452 differences are observed between H5, H10, and H15. However,
453 S. epidermidis attachment to H5, H10 and H15, is observed to
454 be reduced when is normalized to the geometrical features of
455 the fabricated substrates. Similar trends have been also achieved
456 when O.D. is normalized to total surface area for H5, H10, and
457 H15. From ERI analysis, beyond a quantitative assessment, we
458 have obtained understanding of cell-feature interaction which
459 highlights the importance of the topography on cell attachment.
460 Two approaches have been used to estimate the antibacterial
461 properties of surfaces. For evaporated droplets, a small decrease
462 in H5 bacterial viability is observed after rehydration and
463 planktonic cell colony counting (Figure 4d). Compared to
464 PSflat, low level of biofilm formed on epoxy substrates is
465 observed in Figure 6a. These results show that, regardless
466 surface geometry, epoxy surfaces like flat and H5 have
467 promising antibacterial performance. For future geometrical
468 designs, H5 substrate has shown the most desirable
469 antibacterial properties capable of reducing bacterial regrowth
470 (Figure 4d) and bacterial biomass formation (Figure 6a).
471 3.4. Drying of Droplets with PS Particles. The bacterial
472 patterns described in previous sections correspond to the last
473 stage of the deposition process. In order to understand better
474 such deposition patterns, we perform experiments with PS
475 particles with a mean diameter of 1.2 μm ± 0.04 μm which is
476 comparable to S. epidermidis cell diameter (0.5 to 1.5 μm). The
477 fluorescent labeling of the PS particles allows us to observe how
478 the deposition occurs during the evaporation process.
479 Experiments are performed on substrates H5, H10, and H15.
480 PS particles concentration was 107 particles/mL, which is
481 comparable to the intermediate concentrations used for
482 S. epidermidis in subsection 3.3. First instants of the droplet
483 lifetime are dominated by the zipping-wetting effect, i.e., the
484 contact line spreads in a stepwise manner through the pillars
485 (e.g., Figure SI-5). As a consequence of this phenomenon, the
486 droplet perimeter adopts a polygonal shape. As the pillar height
487 increases from H5 to H15, the corners of the droplet footprint
488 become more squared.
489 In the last step of the evaporation process, PS particles
490 motion is clearly visible (see Supporting Information videos).
491 PS particles flow is directed toward the droplet corners. The
492 flow rates increase as the corners of the droplet contact line
493 become sharper. Surface H5 shows the lowest amount of PS

f7 494 particles deposits at corners of the droplet perimeter (Figure
f7 495 7a), whereas a higher concentration of PS particles was seen for

496 the H15 substrate (Figure 7c).
497 Figure 7a−c is taken from the PS particles in the Supporting
498 Information videos at the last moment of evaporation for H5,
499 H10, and H15 substrate, respectively. The PS particles tend to
500 accumulate in rounded corners close to the contact line as in
501 H5 (Figure 7a) with a fewer PS particles accumulating in the
502 sharper corners for H10 and H15 (Figure 7b and c). Note that
503 the flow is so strong that in the case of Figure 7b and c the
504 contact line is stretched beyond its pinning position. Due to the
505 enhanced flow toward the corners, those particles that do not
506 reach the contact line are distributed along the surface forming
507 an “X-shape”. This illustrated in Figure 7d.
508 To quantify the surprising correlation found between the
509 particle accumulation at the corners and the micropillar height,
510 we measure the fluorescent light intensity emitted by the PS
511 particles at different locations of the droplet at different time

512point during evaporation. The aim is to quantify the particle
513enrichment at the droplet corners and the depletion at its sides
514through the fluorescence light intensity, which is directly
515proportional to the amount of particles. Note that the
516measurements start at 80% of the total evaporation time. At
517this time the coffee-stain effect has been already able to drag a
518large amount of particles to the contact line. Therefore, all
519intensity profiles show a sharp increase as r/R approaches 1
520(with r the distance to the contact line and R the droplet
521radius), i.e., as we reach the droplet’s contact line. If we focus
522 f8our attention first on the droplet side perimeter, in Figure 8a
523and c, we see that, in both cases (droplets in H5 and H15,
524respectively), there is a clear decrease of the light intensity as
525the time reaches the final evaporation time (a 50% decrease in
526H5 and about 75% decrease in H15). This means that particles
527are being “removed” from the side of the droplet as the solvent
528evaporates. Now we focus on the fluorescent intensity change
529at the corners of the droplets in Figure 8b and c for droplets on
530H5 and H15, respectively. Here, we clearly observe an opposite
531effect: the fluorescence intensity increases in almost 100% from
532the first time point measured. This intensity increase at the
533corners is due to the particle enrichment in the formed
534polygonal droplets. Note that despite the sharper corners in
535H15 (Figure 8d), the increase in intensity is comparable to the
536H5 case (Figure 8b). This is attributed to a large amount of
537particles in the H15 traveling beyond the pinning line and go
538beyond the measurement area (shown in Figure 7c).
5393.5. Interpretation of the Experimental Results and
540Physical Explanation. In previous sections, we have shown a
541clear correlation between the accumulation of particles and
542bacteria at the corners of polygonal droplets. Additionally,

Figure 7. Drying patterns from evaporated droplets containing PS
particles on (a) H5, (b) H10, and (c) H15 substrates. (d) Preferential
direction drawing of the capillary-driven flow is highlighted with blue
arrows. In addition, fluorescent particles stretching outside of the
original square patterns (see (b), (c)) are highlighted with an open
dashed circle. Preferential direction of the capillary driven flow
contributing to the distribution of the particles is also highlighted with
an arrow.
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543 surfaces with taller pillars show a larger deposits accumulating
544 at the corners.
545 In the first time point measured after droplet deposition on
546 the substrate, the droplet experiences a wetting transition from
547 a Cassie−Baxter state to a lower-energy Wenzel state by filling
548 the interspace between the micropillars. Under special
549 geometric conditions and solvents, the liquid front advances
550 through the pillar array in a stepwise manner known as zipping-
551 wetting, that gives the polygonal shape to the droplet’s
552 perimeter. It is well-known that surfaces with taller micropillars
553 present sharper corners.1−3 The reason is connected with the
554 smaller curvature that the liquid menisci are able to adopt when
555 the pillars are higher. The contact line remains pinned for
556 practically entire process.
557 In sessile droplets, the evaporation occurs preferentially at
558 the contact line6 and consequently a capillary flow develops and
559 transports liquid and particles to the droplet’s perimeter. Such
560 flow drags the particles or bacteria toward the perimeter,
561 explaining the high fraction found at the borders of the droplet.
562 This phenomenon, known as the “coffee-stain effect” explains
563 the ring-shaped stains formed by the evaporation of a
564 suspension droplet on flat substrates.

565The evaporative flux (J) at the droplet’s surface depends on
566the distance from the contact line r. For the case of very thin
567droplets, the flux takes the form J(r) ∼ DCs/R(r/R)

−0.5, where
568D is the vapor diffusivity, Cs is the vapor concentration
569difference, R is the droplet radius, and r is a radial distance from
570the contact line.
571The evaporation process changes dramatically when the
572contact line curves develop “angular regions” as described by
573Popov and Witten.61 They analyzed an idealized case of a
574 s1perfectly sharp corner (curvature radius Rc = 0 in Scheme 1).
575They demonstrated analytically that the evaporative flux near
576an angular region is strongly enhanced with respect to a straight
577contact line. This is expressed as J ∼ DCs/R(r/R)

−0.7 for an
578angular wedge of angle α = 90°. Here, we estimate the outer
579length scale to be the size of the drop. Therefore, a particle in
580an evaporating square-shaped droplet feels a preferential flow
581toward the corners (see Figure 8). The angular region at the
582corner of the droplet is smoothened on a scale r ∼ Rc, i.e., the
583curvature is not apparent when one sits very close to the corner.
584At such a scale, we should recover the square root behavior J ∼
585DCs/Rc(r/Rc)

−0.5, but now with Rc as the relevant scale.
586Assuming that the flow velocity is directly proportional to the
587evaporative flux6 J, we compare the flow toward the corners

Figure 8. Fluorescent light intensity emitted by PS particles. The intensity is proportional to the particle density. Measurements in (a, c) and (b, d)
were performed during drying of a droplet over substrate H5 and H15, respectively. (a, c) Intensity change from the center to the side perimeter of
the droplet; (b, d) intensity change from the center of the droplet to the corner. Intensity measurements are presented during last intervals before
complete evaporation, e.g., 80% (black line), 90% (red line), and 98% (blue line).
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588 against the flow toward the straight contact line regions. Then,
589 we can conclude that there is a flow enhancement toward the
590 corners by a factor (R/Rc)

1/2, that in our case is of the order of
591 10 for the sharpest droplets. Consequently, the smaller the
592 contact line curvature radius Rc is, the larger its influence in the
593 generated flow toward the corners. Note that the smallest Rc
594 that can be achieved is limited by the diameter of the smallest
595 microstructure holding the contact line. In this particular case,
596 the pillars have typical diameters of 5 μm (therefore Rc = 5
597 μm), while the droplets have typical radius, R, of 1 mm.

4. CONCLUSIONS
598 The evaporation of induced bacterial patterns over micro-
599 pillared substrates was studied. Variations in the shape of the
600 deposition patterns are achieved by changing the pillar height of
601 the fabricated micropatterns. We show that the nonaxisym-
602 metric evaporation process is found to be responsible for the
603 inhomogeneous deposition of particles along the droplets
604 perimeter. This is a result of the combined action of the coffee-
605 stain effect and the zipping-wetting effect which results in the
606 breakdown of symmetry of the perimeter of the droplet.
607 Variations in bacterial distribution are explained by the
608 enhanced evaporation-induced flow toward the corners of the
609 polygonal droplets on the substrates. We observed a sharp
610 difference in the type of local environment, as the pillar height
611 is increased. The H15 substrates induce the deposition of
612 bacteria into environments with high local concentration of
613 cells. On the other hand, on the smaller pillar heights, a lower
614 local concentration environment is favored. Our results indicate
615 that low height microstructured surfaces can lower bacterial
616 regrowth and biomass attachment. These findings could be
617 utilized for the design of novel topographical antimicrobial
618 surfaces.
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(9) 680Lemeé, F.; Clarot, I.; Ronin, L.; Aranda, L.; Mourer, M.; Regnouf-
681de-Vains, J.-B. A bacteriophilic resin, synthesis and E. coli sequestration
682study. New J. Chem. 2015, 39, 2123−2129.

(10) 683Scheuerman, T. R.; Camper, A. K.; Hamilton, M. A. Effects of
684substratum topography on bacteria adhesion. J. Colloid Interface Sci.
6851998, 208, 23−33.

Scheme 1a

a(a) Side view of a deposited droplet on a substrate with a sharpness
curvature and contact angle (CA) in r−z planes. (b) Top-view of a
droplet with geometrical curvature in r−Φ; Rc is the corner’s radius of
curvature and α is the wedge angle. (c) Detail of the droplet corner: r
is defined as the distance to the contact line, and J is the evaporative
flux.

Langmuir Article

DOI: 10.1021/acs.langmuir.6b01658
Langmuir XXXX, XXX, XXX−XXX

I

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01658
http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01658
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b01658/suppl_file/la6b01658_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b01658/suppl_file/la6b01658_si_002.mov
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b01658/suppl_file/la6b01658_si_003.mov
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b01658/suppl_file/la6b01658_si_004.mov
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b01658/suppl_file/la6b01658_si_005.avi
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.6b01658/suppl_file/la6b01658_si_006.avi
mailto:R.Raval@liverpool.ac.uk
mailto:A.Susarrey-Arce@liverpool.ac.uk
mailto:A.Susarrey-Arce@liverpool.ac.uk
http://dx.doi.org/10.1021/acs.langmuir.6b01658


(11)686 Merian, T.; Goddard, J. M. Advances in nonfouling materials:
687 perspectives for the food industry. J. Agric. Food Chem. 2012, 60,
688 2943−2957.

(12)689 Crawford, R. J.; Webb, H. K.; Truong, V. K.; Hasan, J.; Ivanova,
690 E. P. Surface topographical factors influencing bacterial attachment.
691 Adv. Colloid Interface Sci. 2012, 179−182, 142−149.

(13)692 Duncan, T. V. Applications of nanotechnology in food
693 packaging and food safety: Barrier materials, antimicrobials and
694 sensors. J. Colloid Interface Sci. 2011, 363, 1−24.

(14)695 Desrousseaux, C.; Sautou, V.; Descamps, S.; Traore, O.
696 Modification of the surfaces of medical devices to prevent microbial
697 adhesion and biofilm formation. Journal of Hospital Infection 2013, 85,
698 87−93.

(15)699 National Nosocomial Infections Surveillance System. National
700 Nosocomial Infections Surveillance (NNIS) System Report, data
701 summary from January 1992 through June 2004, issued October 2004.
702 Am. J. Infect Control. 2004, 32, 470−485.

(16)703 Renner, L. D.; Weibel, D. B. Physicochemical regulation of
704 biofilm formation. MRS Bull. 2011, 36, 347−355.

(17)705 Hochbaum, A. I.; Aizenberg, J. Bacteria pattern spontaneously
706 on periodic nanostructure arrays. Nano Lett. 2010, 10, 3717−3721.

(18)707 Allion, A.; Baron, J.-P.; Boulange-Petermann, L. Impact of
708 surface energy and roughness on cell distribution and viability.
709 Biofouling 2006, 22, 269−278.

(19)710 Medilanski, E.; Kaufmann, K.; Wick, L. Y.; Wanner, O.; Harms,
711 H. Influence of the cell surface topography of stainless steel on
712 bacterial adhesion. Biofouling 2002, 18, 193−203.

(20)713 Bruzaud, J.; Tarrade, J.; Coudreuse, A.; Canette, A.; Herry, J.-
714 M.; Taffin de Givenchy, E.; Darmanin, T.; Guittard, F.; Guilbaud, M.;
715 Bellon-Fontaine, M.-N. Flagella but not type IV pili are involved in the
716 initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or
717 superhydrophobic surfaces. Colloids Surf., B 2015, 131, 59−66.

(21)718 Xu, L.-C.; Siedlecki, C. A. Staphylococcus epidermidis adhesion on
719 hydrophobic and hydrophilic textured biomaterials. Biomed. Mater.
720 2014, 9, 035003.

(22)721 Perera-Costa, D.; Bruque, J. M.; Gonzaĺez-Martín, M. L.;
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