Computation of the response functions of spiral waves in active media

Foulkes, A.J. and Biktasheva, I.V. and Barkley, D. and Biktashev, V.N. and Bordyugov, G. V. (2009) Computation of the response functions of spiral waves in active media. Physical Review E, 79 (5). 056702. ISSN 1550-2376

Full text not available from this repository. (Request a copy)


Rotating spiral waves are a form of self-organization observed in spatially extended systems of physical, chemical, and biological natures. A small perturbation causes gradual change in spatial location of spiral’s rotation center and frequency, i.e., drift. The response functions (RFs) of a spiral wave are the eigenfunctions of the adjoint linearized operator corresponding to the critical eigenvalues λ=0,±iω. The RFs describe the spiral’s sensitivity to small perturbations in the way that a spiral is insensitive to small perturbations where its RFs are close to zero. The velocity of a spiral’s drift is proportional to the convolution of RFs with the perturbation. Here we develop a regular and generic method of computing the RFs of stationary rotating spirals in reaction-diffusion equations. We demonstrate the method on the FitzHugh-Nagumo system and also show convergence of the method with respect to the computational parameters, i.e., discretization steps and size of the medium. The obtained RFs are localized at the spiral’s core.

Item Type: Article
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Faculty / Department: Faculty of Science > Mathematics and Computer Science
Depositing User: Users 3 not found.
Date Deposited: 05 Mar 2014 15:36
Last Modified: 19 Mar 2014 08:52

Actions (login required)

View Item View Item