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Abstract

In this paper a Minkowski analogue of the Euclidean medial axis of a closed
and smooth plane curve is introduced. We study its generic local configurations
and determine the types of shocks that can occur on these.

1 Introduction

The concept of the medial axis of Euclidean plane curves was first introduced by Blum
in [1]. For a closed and smooth curve γ the medial axis is defined to be the locus of the
centres of maximal circles that are tangent to γ in two or more points. Here a circle is
said to be maximal if its radius equals the absolute minimum distance from its centre
to γ: such a circle is either contained in the interior or the exterior of γ and cannot be
expanded about its centre without crossing γ. Many applications of medial axes are
given in Blum’s original paper [1] and other applications relating to computer vision
can be found in [10].

The symmetry set of the curve γ is the same as that of the medial axis except that
the constraint that the circles must be maximal is dropped (see [4, 5]). For this reason
the medial axis forms a subset of the symmetry set.

In [6] the generic shocks that can occur on the Euclidean medial axis are classified.
Motivated by applications in fluid mechanics, Bogaevsky uses a different approach in
[3] to obtain similar results to those in [6].
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In this paper we introduce a Minkowski analogue of the Euclidean medial axis for
a closed and smooth plane curve, called the Minkowski medial axis (MMA). An ana-
logue of the symmetry set for curves in the Minkowski plane, called the Minkowski Sym-
metry Set (MSS), is introduced and studied in [11]. For a curve γ in the Minkowski
plane, the MSS is defined as the locus of the centres of pseudo-circles that are tangent
to the curve γ in two or more points.

Similarly to the Euclidean version, a point on the MSS is said to belong to the
Minkowski medial axis if the radius r of the bi-tangent pseudo-circle equals the absolute
maximum (if r is positive) or the absolute minimum (if r is negative) distance from
its centre to γ. We show in Theorem 4.7 that this definition implies that the bi-
tangent points lie on just one branch of the pseudo-circle. This fact leads on to a new
generalised type of MMA, called the 1-branchMMA. This is defined to be the centres
of pseudo-circles that have a bitangency with just one branch of the pseudo-circles.
It follows that the MMA forms a subset of the 1-branch MMA. The Minkowski
symmetry set together with a radius function, like its Euclidean counterpart ([10]),
can be used to reconstruct the original curve γ. However, unlike with the Euclidean
medial axis, neither the MMA nor the 1-branch MMA can be used to reconstruct
non-convex curves. However, the 1-branch MMA together with a radius function can
be used to reconstruct convex curves.

The shock set of γ is obtained by adding an arrow to the MMA indicating the
direction of increasing radii of the relevant bi-tangent pseudo-circles. In this paper,
we obtain the generic local configuration of the MMA and shocks of curves in the
Minkowski plane.

2 Preliminaries

The Minkowski plane (R2
1, 〈, 〉) is the vector space R2 endowed with the pseudo-scalar

product 〈u,v〉 = −u0v0 + u1v1, for any u = (u0, u1) and v = (v0, v1). A vector
u ∈ R2

1 \ {0} is called
spacelike if 〈u,u〉 > 0,
timelike if 〈u,u〉 < 0 or
lightlike if 〈u,u〉 = 0.
The norm of a vector is defined by ||u|| =

√
|〈u,u〉|.

The pseudo-circles in R2
1 with centre c ∈ R2

1 and radius r are defined as follows:

H1(c, r) = {p ∈ R2
1 | 〈p− c, p− c〉 = −r2} if r < 0,

S1
1(c, r) = {p ∈ R2

1 | 〈p− c, p− c〉 = r2} if r > 0,

LC∗(c) = {p ∈ R2
1 \ 0 | 〈p− c, p− c〉 = 0} if r = 0.

Observe that LC∗(c) is the union of the two lines through c with tangent di-
rections (1, 1) and (1,−1), with the point c removed. The pseudo-circle H1(c,−r)
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Figure 1: The three types of vectors (left) and pseudo-circles (right) in R2
1.

has two branches which can be parametrised by c + (±r cosh(t), r sinh(t)), t ∈ R.
The pseudo-circle S1(c, r) also has two branches which can be parametrised by c +
(r sinh(t),±r cosh(t)), t ∈ R. See Figure 1.

Let γ : J → R2
1 be a smooth curve, where J is an open interval of R or the unit the

circle S1 if the curve is closed. The curve γ is spacelike if γ′(t) is a spacelike vector for
all t ∈ J and is timelike if γ′(t) is a timelike vector for all t ∈ J . A point γ(t) is called
a lightlike point if γ′(t) is a lightlike vector.

If γ is spacelike or timelike, then it can be reparametrised by arc-length and its
curvature is well defined at each point (see, for example, [11]). One can also have
the notion of vertices (points where the derivative of the curvature vanishes). The
curvature of γ is not defined at lightlike points (so we have no notion of vertices at
such points). An inflection can be defined in terms of the contact of the curve with
lines, so the curve can have an inflection at a lightlike points. For a generic curve, the
lightlike points are not inflection points.

It is shown in ([11], Proposition 2.1) that the set of lightlike points of a closed curve
γ is the union of at least four disjoint non-empty and closed subsets of γ (Figure 2).
The complement of these sets are disjoint connected spacelike or timelike pieces of the
curve γ.

Figure 2: Lightlike points in thick on a smooth closed curve in R2
1.

The Minkowski set is defined in [11] as follows.
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Definition 2.1 The Minkowski Symmetry Set (MSS) of a curve γ in the Minkowski
plane is the closure of the locus of centres of bi-tangent pseudo-circles to the curve.

In R2
1, we have to consider the fact that vectors can have negative length. For

this reason, we say that a pseudo-circle is maximal if its radius equals the absolute
minimum modulus distance from its centre to γ. The radius of such a circle cannot be
increased if it is of type S1(p, r) or decreased if it is type H1(p, r) without it crossing
γ.

Definition 2.2 The Minkowski medial axis (MMA) of a curve γ in R2
1 is the subset

of the Minkowski symmetry set formed by the centres of bi-tangent pseudo-circles which
are maximal.

Figure 3: A circle and its MSS (the two transverse line segments). The MMA is the
subset of the MSS represented by a thick line.

Remark 2.3 In the Euclidean plane, for a closed curve γ, maximality implies that
the bi-tangent circles are either entirely inside or entirely outside the curve ([7]). In the
Minkowski plane however, since pseudo-circles are not compact, maximality ensures
that the centres are entirely outside the curve, see Theorem 4.3.

The family of distance-squared functions f : J × R2
1 → R on γ is given by

f(t, c) = 〈γ(t)− c, γ(t)− c〉.

and the extended family of distance-squared functions f̃ : J ×R2
1 ×R→ R is given by

f̃(t, c, r) = 〈γ(t)− c, γ(t)− c〉 − r2.
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Denote by fc : J → R the function given by fc(t) = f(t, c). We say that fc has

an Ak-singularity at t0 if f ′c(t0) = f ′′c (t0) = . . . = f
(k)
c (t0) = 0 and f

(k+1)
c (t0) 6= 0.

This is equivalent to the existence of a local re-parametrisation h of γ at t0 such that
(f ◦ h)(t) = ±(t− t0)k+1.

If fc has a singularity at t1 of type Ak and at t2 of type Al, we say that f has a
multi-local singularity of type AkAl.

Geometrically, fc has an Ak-singularity if and only if the curve γ has contact of
order k + 1 at γ(t0) with the pseudo-circle C(c, r) of centre c and radius r, with
|r| = ||γ(t0)− c||. The distance squared function fc has AkAl-singularity if the pseudo
circle C(c, r) is tangent to γ at two distinct points and has order of contact k + 1 at
one of them and l + 1 at the other.

It follows from Thom’s transversality theorem (see for example [2, 8]) that for
an open and dense set of immersions γ : S1 → R2

1 the function fc has only local
singularities of type A1, A2, A3 and multi-local singularities of type A2

1, A1A2, A
3
1.

The MSS is the multi-local component of the bifurcation set of the family f , that
is,

MSS = {c ∈ R2
1 | ∃t1, t2 such that t1 6= t2, fc(t1) = fc(t2), f

′
c(t1) = f ′c(t2) = 0}.

It follows from Theorem 3.2 in [9] that the family f is always a versal unfolding of
its generic singularities, so the MSS is locally diffeomorphic to the bifurcation set of
the models of such singularities (Corollary 3.3 in [9]). Thus the configuration of the
MSS at the generic multi-local singularities of fc are as in in Figure 4.

A2 A3 A1A2 A1
3A1

2

Figure 4: Generic local models of the MSS in continuous line (the dashed curve is the
caustic of the curve). Only the A2

1, A
3
1 and A3 singularities occur generically on the

the MMA.

For a point on the MSS to also belong to the MMA the relevant bi-tangent
pseudo-circle must be maximal. This means that the MMA forms a subset of the
MSS and in particular this condition ensures that only A2

1, A3 and A3
1 can belong to

MMA. This is because for the other generic singularity types, namely A2 and A1A2,
the pseudo-circle locally crosses the curve and therefore it cannot be maximal.

In [11] it was shown that the MSS is a regular curve at c0 if and only if the bi-
tangent pseudo-circle to γ at γ(t1) and γ(t2) is not osculating at γ(t1) or at γ(t2). If
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this is the case, the tangent line to the MSS at p is the perpendicular bisector to the
chord joining γ(t1) and γ(t2). (This is also true in the Euclidean case, see [5].)

3 Local reconstruction of the curve from the MSS

Suppose we are given the MSS (or MMA) of a spacelike or timelike smooth curve
γ. Then the MSS is either a spacelike or a timelike curve [11]. If the MSS is not
singular, we parametrise it by arc length c(s) = (x(s), y(s)) and denote by r(s) the
radius of the bi-tangent circle to γ centred at c(s). Then it is possible to reconstruct
local parametrisations γ1 and γ2 of the two corresponding arcs of γ as an envelope of
the bi-tangent circles C(c(s), r(s)).

Proposition 3.1 If the curve c(s) is timelike and the bi-tangent pseudo-circle is of
type S1(p, r) or if the curve c(s) is spacelike and the bi-tangent pseudo-circle is of type
H1(p, r), then the points of tangency are given by

γi = c+

(
∂r

∂s

)
rT + (−1)i

r
√(

∂r

∂s

)2

+ 1

N, i = 1, 2, (1)

where T and N are the unit tangent and unit Minkowski normal to the MSS and r is
the radius of the bi-tangent pseudo-circle, all evaluated at s.

If the curve c(s) is spacelike and the bi-tangent pseudo-circle is of type S1(p, r) or
if the curve c(s) is timelike and the bi-tangent pseudo-circle is of type H1(p, r), then
the points of tangency are given by

γi = c− r
(
∂r

∂s

)
T + (−1)i

r
√(

∂r

∂s

)2

− 1

N, i = 1, 2. (2)

Proof Suppose that c is spacelike and the pseudo-circles are of type H1(p, r). Then
the equation of the pseudo-circle of radius r(s) centred at c(s), is the set of points
w ∈ R2

1 such that

F (s, w) = 〈c(s)− w, c(s)− w〉+ r(s)2 = 0.

The envelope of this family of these pseudo-circles is given by

D(F ) = {w ∈ R2 : ∃s ∈ R such that F (s, w) =
∂F

∂s
(s, w) = 0}.

Differentiating F with respect to s and dropping the arguments yields

∂F

∂s
= 2〈(c− w, T 〉+ 2r

∂r

∂s
.
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Since γ is spacelike, 〈T, T 〉 = 1 and 〈N,N〉 = −1. Writing c−w = λT + µN , with
λ, µ ∈ R, and substituting into ∂F

∂s
we obtain λ + r ∂r

∂s
= 0 so that λ = −r(∂r/∂s).

Substituting into F yields λ2 − µ2 + r2 = 0 so that µ = ±r
√

(∂r/∂s)2 + 1. It follows
that the locii of the envelope points are as given (1). The same method can be applied
to find the formula for the envelope in the remaining cases. 2

Remark 3.2 In the Euclidean case the rate of change of the radius function is re-
stricted to be less than or equal to 1 in order for the envelope to be real, see [7]. In
the Minkowski setting this restriction only applies when the pseudo-circles and the
curve c are of opposite type (spacelike/timelike), otherwise any function r gives a real
envelope.

Remark 3.3 Theorem 4.1 of [9] states that for any point p of a closed smooth curve
γ there exists another point q ∈ γ and a pseudo-circle that is tangent to γ at both p
and q. From this, and the fact that it is possibly to reconstruct the curve locally, it
follows that it is possible to reconstruct any smooth closed curve from its Minkowski
symmetry set.

4 The Minkowski medial axis

We now introduce the concept of the Minkowski hull.

Definition 4.1 The Minkowski hull MH(γ) of a closed curve γ in the Minkowski
plane is the region of the plane such that for any point p ∈MH(γ) there exists a point
q ∈ γ such that the Minkowski distance between p and q is zero.

Proposition 4.2 The complement of the Minkowski hull for a closed smooth curve γ
in the Minkowski plane consists of 4 disjoint open regions.

Proof We consider a smooth closed curve γ : S1 → R2
1 and use coordinates such

that the axes are parallel to the lightlike directions. We write γ(t) = (x(t), y(t)).
Since the functions x(t) and y(t) are bounded, they must both attain an absolute
maximum and an absolute minimum. Since the curve is smooth, this gives exactly
four extrema points (two of x(t) and two of y(t)) on the curve. The curve γ is now
contained the compact region determined by the tangent lines to these four extremal.
The tangent lines divide the plane into the Minkowski hull and four disjoint regions
of its complement, see Figure 5 (right). 2

Lemma 4.3 The points on the MMA of a closed plane curve which are the cen-
tres of bi-tangent circles of type H1(p, r) or S1(p, r) are all inside the closure of the
complement of the Minkowski hull of the curve.
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Figure 5: Left: the Minkowski hull of a closed curve in the Minkowski plane and its
complement (shown in grey). Right: a circle, its Minkowski caustic (continuous curve
with four cusps), Minkowski hull (shaded in gray), MSS and MMA (in thick).

Proof From the definition, a point p belonging to the Minkowski hull has Minkowski
distance zero to some point on the curve. It follows that pseudo-circles of typesH1(p, r)
and S1(p, r) cannot be maximal because the light cone LC∗(p) intersects the curve.
Therefore, pseudo-circles of types H1(p, r) and S1(p, r) corresponding to the MMA
lie in the complement of the Minkowski hull. 2

Proposition 4.4 TheMMA of a closed smooth convex plane curve lies strictly inside
the closure of the complement of the Minkowski hull.

Proof Closed smooth convex plane curves have exactly four closed lightlike regions
(see [11]). Since the four centres of the pseudo-circles that are bi-tangent to these four
regions form the boundary to the Minkowski hull, the centres also lie on the boundary.
This, together with Lemma 4.3, prove that the centres all three types of maximal
bitangent pseudo-circles lie either inside the complement of the Minkowski hull or on
its boundary. Therefore, the MMA of a closed smooth convex plane curve lies strictly
inside the closure of the complement of the Minkowski hull. See Figure 5 (right). 2

Corollary 4.5 of 4.3. The MMA of a closed smooth (not necessarily convex) plane
curve lies strictly inside the closure of the complement of the Minkowski hull of the
curve except for components formed by the centres of bi-tangent pseudo-circles of type
LC(p) (note that these components are subsets of lightlike lines).

Definition 4.6 A pseudo-circle of type H1(p, r) or S1(p, r) is said to be 1-branch bi-
tangent to a curve γ if one of its branches is tangent to γ in at least two distinct
points.
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Since the MMA lies inside the closure of the complement of the Minkowski hull
we have the following result.

Theorem 4.7 The pseudo-circles of types H1(p, r) and S1(p, r) corresponding to the
MMA of a closed plane curve are all 1-branch bitangent.

Proof Lemma 4.3 states that the centres of the bitangent pseudo-circles of type
H1(p, r) and S1(p, r) occur in the closure of the complement of the Minkowski hull
of the curve. Since the bitangent pseudo-circle necessarily has one of its branches
completely contained in the complement of the Minkowski hull it follows that the
tangencies must occur on only one of the pseudo-circle’s two branches. See Figure 5.
2

Remark 4.8 Note that the converse of Theorem 4.7 is true for convex curves but is
not true for non-convex curves. That is, not all 1-branch bitangent pseudo-circles are
maximal for non-convex curves. See for example Figure 7 (right).

One of the useful properties of the Euclidean medial axis is that it can be used to
reconstruct the original curve. It is shown in Proposition 4.5 of [9] that for the piece
of curve α(t) = (t, t3), −1

2
< t < 1

2
, there are no 1-branch bitangent pseudo-circles.

The curve α(t) can be extended smoothly to obtain a closed curve γ. It is possible to
construct γ so that there do not exist pseudo-circles which are 1-branch tangent to a
point of α(t) and are also tangent to some other point of γ(t). Consider for example
the limaçon whose radius r is given by r = 3

2
+cos(θ) where −π < θ < π. Splitting the

limaçon into timelike and spacelike components, only pairs of points from the regions
arctan(

√
35
17

) − π < θ < − arctan(
√
35
17

) + π have corresponding Minkowski medial axis
points, see Figure 6.

Therefore, the MMA together with a radius function (MMA transform), unlike
its Euclidean counterpart is not a complete shape describer.

The fact that the MMA consists of centres of only 1-branch bi-tangent pseudo-
circles motivates the following new type of medial axis construction, called the 1-branch
Minkowski medial axis.

Definition 4.9 The 1-branch Minkowski medial axis is the locus of the centres of
pseudo-circles that are tangent to the curve γ in two or more points such that the
tangencies occur on just one of the branches of the pseudo-circle.

Since the MMA is made up of only 1-branch bitangent pseudo-circle centres, it is
a subset of the 1-branch medial axis.

The two sets are not equal because not all 1-branch bitangent pseudo-circles are
maximal, see for example Figure 7 (left). The 1-branch Minkowski medial axis does
not lie inside the complement of the Minkowski hull for non-convex curves (see for
example Figure 7 (right).
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Figure 6: The limaçon given by r = 3
2

+ cos(θ) where −π < θ < π, its Minkowski

caustic and Minkowski medial axis. Only pairs of points in the region arctan(
√
35
17
−π <

θ < − arctan(
√
35
17

) + π) have corresponding Minkowski medial axis points.

Figure 7: Left: an illustration of a 1-branch bi-tangent pseudo circle which is not
maximal (A1A2-singularity). Right: a 1-branch bi-tangent pseudo-circle whose centre
lies inside a non-convex curve.

Remark 4.10 Theorem 4.5 of [9] states that for any point p on a spacelike or timelike
curve γ without inflections there exists another point q on γ and a pseudo-circle that
is tangent to γ at both p and q with both points being on a single branch of the
pseudo-circle. From this it follows that any closed convex curve can be reconstructed
from its 1-branch medial axis. The 4 lightlike components are either isolated points
or lightlike line segments (in the generic case only isolated points are possible). To
complete γ, these components can be added by taking the closure of the curve if they
are just isolated points, or by joining up the remaining components with lightlike lines.
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5 Shocks on the Minkowski medial axis

At each point on the medial axis of a curve γ in the Euclidean plane there is an
associated radius function r corresponding to the radius of the bi-tangent circle. The
direction of the increasing radius function on the medial axis, that is the direction for
which ∂r

∂s
(s) > 0, can be indicated by an arrow and this gives the shock set (see for

example [1, 6]).
The shock set is a dynamic view of the medial axis. If there is a propagation of

waves (grass fire) from the curve γ, then this leads to the formation of singularities
(the medial axis). The shock set gives the direction along which this formation of
singularities propagates.

In [6] the local generic forms of shocks that can occur on the medial axis in the
Euclidean plane are classified. It is shown that some types of shocks cannot occur
generically on the Euclidean medial axis. For example, it is proven that the only form
of shock that can occur at an A3-singularity of a given distance squared function on γ
is that with outward velocity, see Figure 8.

We define the analogue of shocks in the Minkowski plane. This is the Minkowski
medial axis together with an arrow in the direction of increasing radius of the corre-
sponding bitangent pseudo-circle.

In this section we show that for the MMA both types of shock can occur (outwards
and inwards) at an A3-singularity of a given distance squared function on γ, depending
on whether the MMA is spacelike or timelike. We also show that the generic shocks
that can occur at an A3

1-singularity of a given distance squared function on γ are
different to those on the Euclidean medial axis.

In what follows, the singularities refer to those of a given distance squared function.

5.1 Shocks at an A3-singularity

The A3-singularity occurs at a vertex of the curve. These occur where the two A1-
contact points for nearby A2

1-bi-tangent pseudo-circles come into coincidence. The
A1-points must therefore lie on the same branch of the pseudo-circle. This means that
given a MMA near an A3 point and its associated radius function, formula (2) can be
used to find the corresponding points on γ.

Theorem 5.1 If the curve γ is timelike (resp. spacelike) at a vertex, then the shock
on the MMA is of outwards (resp. inwards) type.

Proof Consider a neighbourhood of an A3 point on a spacelike MMA (which neces-
sarily corresponds to a timelike piece of γ, see Theorem 5.2 in [9]). Orient the MMA
so that its tangent line points towards the branch of the bi-tangent pseudo-circle that
contains the tangent points. Since the envelope points of the bi-tangent pseudo-circles
are in the direction of the tangent line it follows from formula (2) that −r ∂r

∂s
> 0. As
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Figure 8: Comparing A3 shocks that can occur on the Euclidean and Minkowski medial
axes. In the Minkowski plane, both cases can occur and are distinguished by the type
of the bi-tangent pseudo-circle.

r > 0, ∂r
∂s
< 0 so the radius function r must decrease in the direction of the A3 point.

Therefore, for a timelike γ near a vertex, the shocks are of outwards type; see Figure
8.

If the MMA is timelike (the curve γ must be spacelike, Theorem 5.2 in [9]).
Following the same arguments as above and using formula (2) at and A3-point, we get
−r ∂r

∂s
> 0. Here r < 0 so it follows ∂r

∂s
> 0. This implies that the shocks are of inwards

type; see Figure 8. 2

Remark 5.2 Theorem 5.1 also holds when the MMA is replaced by the 1-branch
MMA.

5.2 Shocks at an A3
1-singularity

As with the shocks at A3-singularity, the shocks at A3
1-singularity turn out to be

different from those of the Euclidean medial axis. The type of shocks that can occur
depends on whether the bi-tangent pseudo-circle is of type H1(p, r) or S1(p, r).

For closed curves, the MMA only consists of the centres of pseudo-circles whose
tangencies occur on only one of its branches (Theorem 4.7). Theorems 5.4 and 5.5 give
a classification of shocks that can occur for closed curves. For two disjoint pieces of
curves, it is possible that the pseudo-circle centred on the medial axis can be tangent
to each piece of curve (so the centre is not on the 1-branch MMA). For completeness,
Theorem 5.7 gives the classification of shocks at an A3

1-singularity when the relevant
pseudo-circle has at least one tangency on each of its branches.
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Figure 9: A3
1 shocks that can occur on the Euclidean and Minkowski medial axes for

closed curves. Case (2) occurs when the pseudo-circle is of type S1 (here the tri-
tangency occurs on the branch above the figure). Case (3) occurs when the pseudo-
circle is of type H1 (here the tri-tangency occurs on the branch to the left of the
figure)

Suppose that γ is a closed plane curve and the three tri-tangent points, say q1, q2
and q3 on γ to a pseudo-circle all lie on one branch of the pseudo-circle. Each branch
of the MMA corresponds to the centres of bi-tangent pseudo-circles whose points of
tangency are near two of the points qi, i = 1, 2, 3. For each branch, the two corre-
sponding tangency points are called the characteristic points and are denoted X− and
X+. If these points are near qi and qj, we denote by P the point qk, with k 6= i, j.

Lemma 5.3 If the arc that contains X− and X+ does not contain (resp. contains)
the point P , then the medial axis goes in the direction of entering (resp. goes away
from) the arc.

Proof We consider the case of a tri-tangent pseudo-circle of type S1(p, r), the proof
is similar for a tri-tangent pseudo-circle of type H1(p, r) and is omitted.

Consider the function f(s) = 〈c(s)−P, c(s)−P 〉−(r(s))2, where s is the arc-length
parameter of the MSS branch c(s) and r(s) is the radius of the bi-tangent pseudo-
circle. Let s0 correspond to the A3

1 point. Note that f(s0) = 0. We have tangency of
type A1, so f ′(s0) 6= 0. If f ′(s0) < 0, then f(s) < f(s0) for small s > s0. For such s,
c(s) cannot be on the MMA since the point P will have come ‘inside’ the pseudo-circle
centre c(s) radius r(s). Here, ‘inside’ means that its absolute distance from the centre
is less than |r|.
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Now f ′(s) = 2〈c(s) − P, T (s)〉 − 2r(s)r′(s), so that f ′(s0) < 0 is equivalent to
〈c(s0) − P, T (s0)〉 < r(s0)r

′(s0). We have r(s0)r
′(s0) = 〈c(s0) − X±, T (s0)〉. This in

turn implies 〈X± − P, T 〉 < 0.
We parametrise the tritangent pseudo-circle by g(t) = (r0 sinh(t), r0 cosh(t)). Sup-

pose that X+ = g(θ), X− = g(ϕ) and P = g(ρ) for some θ, ϕ and ρ.
The tangent to the branch of the MSS corresponding to the characteristic points

X+ and X− has direction T = (sinh( θ+ϕ
2

), cosh( θ+ϕ
2

)) and the vector (X+− p) has di-

rection (cosh( θ+ρ
2

), sinh( θ+ρ
2

)) if θ > ρ and (− cosh( θ+ρ
2

),− sinh( θ+ρ
2

)) if θ < ρ. Assume
that θ > ρ. The Minkowski product 〈X± − P, T 〉, up to a positive factor, is given by

− sinh

(
θ + ϕ

2

)
cosh

(
θ + ρ

2

)
+ sinh

(
θ + ρ

2

)
cosh

(
θ + ϕ

2

)
= 2(eρ − eϕ)e−(θ+ϕ+ρ)

which is negative if and only if ρ < ϕ.
Similarly, assuming θ < ρ gives that 〈X± − P, T 〉 is negative if and only ϕ < ρ.
Thus the condition 〈X± − P, T 〉 < 0 is equivalent to either ρ < ϕ, θ or ρ > ϕ, θ

which is equivalent to the statement in Lemma 5.3. 2

Proposition 5.4 For a closed curve, the Minkowski medial axis at an A3
1-singularity

has shock type (2) in Figure 9 if the tri-tangent pseudo-circle is of type S1(p, r).

Proof For three points on the same branch of the pseudo-circle and for ρ, ϕ and θ as
in the proof of Lemma 5.3, the conditions ρ < ϕ, θ or ρ > ϕ, θ must be true for two of
the three medial axis branches. The arrows, indicating directions of increasing radius,
can now be added to the medial axes. Formula (2) implies that the radius must be
increasing in the direction of the branch of the pseudo-circle that contains the three
tritangent points. 2

Similarly the following proposition holds:

Proposition 5.5 For a closed curve, the Minkowski medial axis at an A3
1 point has

shock type (3) in Figure 9 if the tri-tangent pseudo-circle is of type H1.

Remark 5.6 Propositions 5.4 and 5.5 also hold when the MMA is replaced by the
1-branch MMA. In this case the condition that the curve be closed can also be
dropped.

Proposition 5.4 and Proposition 5.5 give a complete classification of shocks for
closed curves at an A3

1-singularity.
Observe that the condition to be on the MSS is dependent on two or more points

on the boundary, in contrast the condition for a point to be on the MMA is global
in that it depends on all of the points on the boundary. Also note that both the
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MSS and the MMA are well defined for both closed curves and open curves (ignoring
end-points).

Due to the fact that pseudo-circles consist of two components, the classification
of shocks on the MMA is slightly different from that of Euclidean medial axis [6].
For n disjoint tangent lines that share a common bitangent circle it is always possible
to construct a closed curve that shares these tangent lines such that the circle is
maximal (contained inside the curve). If they share a common pseudo-circle however,
it is always possible to construct a closed curve that shares these tangent lines such
that the pseudo-circle is maximal if and only if they are tangent to just one of the
branches. However, if they are tangent to both branches it is possible to construct a
curve consisting of two branches that shares these tangent lines such that the pseudo
circle is maximal.

So using the local type construction as used in Lemma 5.3 to determine the shocks
in the Euclidean case there is only one case which is valid for open and closed curves,
see for example [6]. In the Minkowski case however, the closed and two branched curve
cases need to be considered separately.

Blum viewed the (Euclidean) medial axis as a quench point for grass-fire flow
initiated from the boundary of the shape [1]. He considered the medial axes of curve
segments as well as closed curves. In this spirit, and for the purpose of applications,
we now consider the MMA and classify its shocks for when the tri-tangency occurs
on both branches of the pseudo-circle.

Theorem 5.7 The shocks that can occur at an A3
1-singularity when the tangent points

occur on both branches of a pseudo-circle of type S1(p, r) are as shown in Figure 10.

Remark 5.8 For pseudo-circles of type H1(p, r) the proof works the same and the
shocks are the same as in Figure 10 with the directions of the arrows reversed.

Proof of Theorem 5.7. We take the centre of the pseudo-circle to be the origin and
parametrise its branches by g1(t) = (r0 sinh(t), r0 cosh(t)) and g2(t) = (r0 sinh(t),−r0 cosh(t))
and assume that the branch containing two tangent points to be the branch in the
lower half of the plane. Denote by Xθ the tangent point on the upper branch at the
point g1(θ) for some value θ, and Xϕ and Xρ the two tangent points on the lower
branch at points g2(ϕ) and g2(ρ), respectively.

Denote by Tθ,ϕ the tangent line to the MMA branch that corresponds to the
characteristic points θ and ϕ and similarly for Tθ,ρ and Tρ,ϕ. Consider first the
branch of the MMA with tangent line Tρ,ϕ. This tangent line has direction Tρ,ϕ =
(sinh(ρ+ϕ

2
), cosh(ρ+ϕ

2
)) and the vector joining the point Xρ to Xθ, is given by (Xϕ −

Xθ) = r0(sinh(ϕ)− sinh(θ), cosh(ϕ)+cosh(θ)). Taking their Minkowski product yields

〈(Xϕ −Xθ), Tρ,ϕ〉 = 〈(Xρ −Xθ), Tρ,ϕ〉 = r0 cosh

(
ϕ− ρ

2

)
+ r0 cosh

(
ϕ+ ρ

2
+ θ

)
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which is always positive. Therefore, the corresponding branch of the MMA starts
at the A3

1 point and goes in the direction of the branch containing the characteristic
points. Formula (2) implies that the shock travels along this MMA branch in the
direction towards the centre.

Consider now the two branches with tangents Tθ,ρ and Tθ,ϕ. For each branch of the
MMA there are four possibilities: The MMA can be to the left or to the right of the
centre (since the branches are both timelike), and in both cases the direction of the
shock can be either towards or away from the centre.

The tangent line Tθ,ϕ to the medial axis at the A3
1, up to a nonzero factor, can

be written Tθ,ϕ =
(

sinh(θ)+sinh(ϕ)
2

, cosh(θ)−cosh(ϕ)
2

)
and the vector joining the point Xρ

to Xθ, is given by (Xθ −Xρ) = r0(sinh(θ)− sinh(ρ), cosh(θ) + cosh(ρ)). Taking their
Minkowski product yields:

〈(Xθ −Xρ), Tθ,ϕ〉 =
r0
2

(1− cosh (ρ− θ) + cosh (ρ+ ϕ)− cosh(θ + ϕ)) (3)

which is positive when −ϕ < θ < ρ or ρ < θ < −ϕ and negative otherwise. Recall
that when this product is positive small positive s > s0 belongs to the MMA and
when negative, and when negative it is small s < s0 that belong to the MMA. Now,
the direction of increasing radius can be added to the MMS. It follows directly from
formula (1) that if θ + ϕ > 0 the radius function on the branch corresponding to Tθ,ϕ
increases from left to right, whereas if θ+ϕ < 0 the radius increases from right to left,
and similarly for Tθ,ρ.

Considering the two branches together now, it must be determined which branch
goes ‘over’ the other. Comparing the gradients of the two tangent lines it can be seen
that Tθ,ϕ is steeper than Tθ,ρ if and only if

θ < ρ < ϕ, ρ < ϕ < θ or ϕ < θ < ρ.

Otherwise, Tθ,ρ is the steeper of the two.
Considering these conditions, along with the above conditions for which side the

branches lie on, gives the complete list of possible shocks that can occur (see table 1
and Figure 10). Note that for spacelike A3

1 singularities, the shocks can be obtained
from rotating those in Figure 10 by π

2
and reversing the directions of the arrows.

2
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