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Abstract:  

One of the key points to maintain and boost research and development in the area of Smart Wearable Systems (SWS) is the 

development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness 

management. This paper presents such a generic architecture for multi-parametric, intelligent and ubiquitous wireless sensing 

platforms. It is a transparent, smartphone-based sensing framework with customisable wireless interfaces and plug’n’play 

capability to easily interconnect third party sensor devices. It caters for Wireless Body (BAN), Personal (PAN) and Near-me 

(NAN) Area Networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the 

mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual 

development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package 

enables Artificial Intelligence specialists, alongside with medical experts, to build data processing models by assembling 

different components and instantly deploying them (remotely) on patient mobile devices. In this paper the new logic-centred 

software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to 

shift focus from software and hardware development, to medical and health process-centred design of new SWS applications. 

 
Index Terms — Body sensor networks, Ubiquitous computing, Remote monitoring, Telemedicine, Artificial Intelligence 

 

I. INTRODUCTION 

CCORDING to a recent report published by the World 

Health Organization [1], well-developed countries are 

expected to face major challenges in the way current health 

care services are deployed and delivered. This is due mainly 

to 1) an aging population, 2) increased life expectancy, and 

3) population growth. The United Nations report [2] states 

that this trend is global and over 60 years old are expected 

to account for 32% of the population in year 2050. These 

factors will have a significant impact on the high-rising 

costs of healthcare liabilities which will eventually 

outpaced the growth of the overall economy. In response to 

this we need a more accurate, pre-hospital and prevention-

oriented health care system, which will take care of a 

person’s physical health status at its earliest stage, through 

physical activity management, status monitoring and 

assessment, as well as early notification in case of an 

emergency. 

One of the possible contributing solutions to these 

problems could be the implementation of an accurate and 

ubiquitous health monitoring of individuals by means of 

smart wearable systems (SWS). SWS are defined as end-to-

end, sensor-based integrated systems, capable of sensing, 

processing, and communicating medical data to interested 

parties, such as the medical professionals and emergency 

services, or store it for further reference. It contends to be 

the next generation e-health systems, delivering patient-

oriented services with the vision of empowered health care 

on the move [3]. 

In this paper, a new logic-centered software architecture 

for such ubiquitous health monitoring applications is 

described. It consists of a transparent, smartphone based 

sensing framework with customisable wireless interfaces 

and plug’n’play capability to easily interconnect third party 

sensor devices in BAN, PAN and NAN Area Networks. A 

pivotal part of the platform is the integrated inference 

engine/runtime environment that allows the mobile device 

to serve as a user-adaptable personal health assistant. The 

novelty of this system lays on a rapid visual development 

and remote deployment model. The complementary visual 

Inference Engine Editor enables machine learning experts 

along with medical experts to build data processing models 

by interlacing together different components and 

controlling the application logic with scripts. The editor 

allows the instant deployment of such models remotely on 

patient mobile devices. This approach shifts focus from 

complex software and hardware development, to simple 

medical and health process design, what helps to speed up 

development and deployment of new medical and health 

applications.  

In the following two sections the challenges in SWS 

adoption as well as state of the art in the field are discussed. 

Section 4 is dedicated to the formulation of use cases and 

system requirements, while Section 5 describes the system 

architecture. In Section 6 the proposed software design is 

presented. The inference engine, the complementary editor 

as well as the development and deployment model that they 

promote are presented in Section 7. Section 8 provides 

conclusions and future work. 
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II. CHALLENGES IN SWS ADOPTION 

Wireless medical telemetry is not a new concept, yet its 

adoption is minimal in nearly every country. Chan et al. [4] 

summarised issues preventing the wider acceptance of 

current Smart Wearable Systems as, amongst others: 

 lack of systems’ efficiency, reliability, and 

unobtrusiveness [5-6], 

 complexity of system development and validation [7],  

 lack of unified multi-platform telemedicine solution for 

the mobile and desktop operating systems [8],  

 not clear requirements from health care professionals 

and end-users [4],  

 cost [9],  

 services availability and interoperability issues [10]. 

As a means to maintain and boost SWS research and 

development, many researchers [7, 11-12] identified a 

development of integrated architectures for intelligent home 

services with wearable systems and devices for home 

comfort, health and wellness. They concluded that there 

was currently no smart wearable system on the market 

integrating several biosensors, intelligent processing and 

alerts to support medical applications. Such a state of affairs 

is due to the lack of end-to-end interoperability standards 

within the sensor networks and also between SWS and 

disparate healthcare systems. This prevents seamless 

medical data collection, increases the cost of the systems 

and their upgrade capabilities, and also limits the shift to 

systems that are semantically interoperable, process-related, 

decision-supportive, context-sensitive, user oriented, and 

trustworthy [13]. 

III. RELATED WORKS 

A variety of wireless personal vital signs monitors, both 

for medical and fitness purposes, are either already on the 

market, or under development at prototype stage. A full list 

of wearable systems developed in recent years along with a 

brief description of their applications can be found in [4]. A 

vast number of those projects focused at on-body sensing 

technologies through integration of micro-nano 

technologies and flexible systems in textile material. They 

aimed at the implementation of the “e-textile” paradigm, 

where sensing, actuating, communicating, processing and 

power sourcing are seamlessly integrated on a textile. 

Whereas sensors and actuators are essential to promote 

SWS adoption amongst the population, they are only means 

of data collection. The true benefits of health monitoring 

systems come with data processing and integration. These 

early systems, were often the side effect of sensor 

development, generally designed to ‘cut the cord’ between 

the patient and the medical professionals, providing mainly 

only instantaneous single-parameter assessment and 

transmission. Hence, in order to fully explore the benefits 

offered by SWS, current research efforts in this area focus 

on integration and interoperability aspects as well as new 

classification algorithms [26] which will further boost 

SWS’s adoption and release their commercial value. 

In an attempt to design a general-purpose, flexible 

wireless remote monitoring framework, the noteworthy 

example of a fully integrated system architecture that took 

all relevant parties and services on-board, was outlined by 

Otto et al [14]. Their proposed model spanned a three tier 

network made of a) tier 1 - Wireless Body Area Network 

(WBAN), b) tier 2 - individual health monitoring mobile 

phone system and c) tier 3 - Wide Area Network (WAN) 

connection to medical servers. The first, fully 

commercialised product implementing a similar model is 

MobiHealth [15]. This system provides an integrated 

mobile remote monitoring and feedback system that 

integrates with compact third-party sensor systems. Despite 

having intelligent capabilities to analyse acquired data 

locally, the main aim of this system was to ensure that 

patients stayed securely connected to their remote care 

professional. Moreover, the system introduced for the first 

time the concept of the M-health service layer, which 

integrated the intra-BAN and extra-BAN communication, 

making applications independent from specific 

characteristics of the underlying communication protocols. 

This concept of sensor virtualisation and  reusable mobile-

centric, wireless sensing platform was further developed by 

the  Nokia Remote Sensing (NORS) project [16]. The 

NORS platform aimed at exploiting the artificial 

intelligence in several ubiquitous devices that connect 

locally to sensors and remotely with servers. Depending on 

the network availability and/or scenario of use, the system 

allowed users to select where the data processing would 

take place – locally on the sensor/phone or remotely on the 

server. 

These, as well as other cross platform developments and 

integration efforts opened new paths in deploying 

intelligence on distributed devices which informed our 

model design.  

IV. SYSTEM REQUIREMENTS 

Reviewing previous implementations and their outcomes, 

several basic functional requirements common to almost 

every reported SWS system have been identified. These 

include: a) sensing and filtering, b) data aggregation, c) 

wireless communication, d) power management, e) data 

presentation and f) storage. In most cases all these elements 

are necessary just to get simple sensor readings. To 

assemble a complete wireless sensors network (WSN) 

monitoring system traditionally one requires skills in 

electronics, software engineering, signal processing, control 

theory, wireless networking and artificial intelligence (AI), 

to name a few. This, in turn, involves extensive and often 

platform targeted implementations when, in fact, all what 

differentiates one application from the other are the sensors 

used and the data processing algorithms implemented. 

This observation suggests that a higher level application 

developement paradigm could potenatially be applied to 

SWS systems development which could result in a shift 

from application development to customisation. This is 

possible with the use of framework applications, 

middlewares, runtime environments, scripts and XML. 

Such platform should offer predefined methods and 
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paradigms, where design efforts  focuses on logic and 

processes rather than on data aqusition or aggregation. In 

doing so, it must futher enable:  

 Integration of vendor specific sensor nodes under one 

framework. 

 Integration of different wireless communication 

technologies under one framework. 

 Integration of a real-time inference engine, such as 

artificial neural networks (ANN). 

 Customizable context-aware data sampling and 

efficient data sources utilisation. 

 Remote control over sensor nodes through 

customisable WSN commands. 

 Customisable data aggregation from sensor nodes. 

 Service oriented design enabling integration with third 

party web services over WAN connection, where it can 

be either a service subscriber or a publisher. 

Finally, the user should be able to choose whether the 

system will work as a standalone personal health assistant 

or as part of a broader telemedicine application. 

V.  SYSTEM ARCHITECTURE 

The proposed high-level system architecture (Figure 1) is 

based on a well established three-tier architecture of the 

WSN network as proposed in [14], spanning over a network 

of medical sensors and remote web services. The WSN tier 

comprises a number of sensor nodes, each capable of 

sampling, filtering, processing, and communicating 

physiological signals. The WAN network tier encompasses 

external web services that can either publish their services 

or subscribe to the available sensor data sources. The 

middleware, called personal server, links these tiers 

together and it is deployed on a smartphone device that 

interfaces WSN nodes locally and WAN services 

externally. Moreover it provides integrated sensor nodes 

management, data aggregation, real-time data processing 

and transmission, as well as inference capabilities. 

The main architectural difference of our proposed model, 

compared to a typical health monitoring system, lays in the 

workload distribution, which in terms of data processing, 

network management, and inference algorithms, is a 

responsibility of a personal server and sensor nodes, rather 

than of a remote centralised server. The proposed model 

allows to eliminate the central medical server from this 

architecture and instead, dynamic allocate resources and 

external services [17]. An important advantage of such a 

two tier model is the improved response time, which is 

achieved by locating the processing power close to the user, 

improving therefore user’s mobility. Another important 

advantage achieved is the adaptability aspect, enabling such 

system to become a user tailored device which can be 

sensitive to individual’s special conditions or behaviours. It 

also allows to develop algorithms, which will determine the 

user’s state and well-being status ubiquitously, taking into 

account contextual and patient specific information.  

The pivotal element of this system, the AI runtime 

environment, allows the loading and running of new custom 

classification and decision algorithms developed in the 

corresponding Inference Engine Editor. The algorithm can 

be either downloaded by the user from medical and health 

process repositories, or can be directly uploaded on the 

personal server and executed there by health professionals 

with access rights to it. Such repositories are designed 

based on the concept of digital distribution platforms for 

mobile devices, commonly known as application stores. 

Reduction of service maintenance costs is one of the 

most important benefits that come out of ubiquities logic-

centered approach to development and more autonomous 

wellness monitoring systems, such as intelligent Personal 

Health Assistants (PHA), that require no or only little 

human intervention. Distributed processing, opposed to 

only centralised server processing, not only decrease the 

data transmission cost but can also improve the accuracy of 

monitoring through patient adaptation, response time and 

availability of the service to the user. With logic centred 

development methodology we can “shorten the time-to-

market” for new solutions/applications, improve code 

reusability, reuse existing infrastructure of third party 

measurement devices but foremost focus on medical and 

health data processing models what is the future of SWS. 
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Fig. 1. High level system architecture. 
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VI. FRAMEWORK MIDDLEWARES 

A. Personal server middleware 

The personal server middleware consists of a number of 

specialised software packages which are grouped into two 

functional layers: data aggregation and data processing 

accompanied by data presentation layer as illustrated in 

Figure 2a. 

1) Data aggregation layer 

The data aggregation layer consist of: 

 a node and network interface package, 

 the sensor networks abstraction model, 

 a WAN/external services package, 

 a data acquisition control package 

The data aggregation layer is mainly responsible for 

sensor’s data fusion as well as WSN and WAN connections 

configuration and management. It provides an abstraction 

and virtualisation of nodes, sensors and connections, 

through the network manager, sensor manager and WAN 

services coordinator modules. The abstraction use node 

specific protocol drivers what makes applications 

independent from specific characteristics of the underlying 

communication protocols. It enables customisable wireless 

interfaces and plug’n’play capability to easily interconnect 

multiple third party sensor devices and services in BAN, 

PAN, NAN and WAN networks landscape.  

The primary function of this layer is to keep a register of 

every single data source and manage them accordingly, 

including discovery, registration, configuration and 

initialisation. Once the network connections are set up, the 

data acquisition control package manages the network 

utilisation, taking care of channel sharing, time 

synchronisation, data transmission and data encryption. As 

a result, the data aggregation layer provides the complete 

collection of real-time, pre-processed and cleaned sensor’s 

data streams ready for processing. 

2) Data processing layer 

The data processing layer builds upon the data 

aggregation layer. It focuses on real-time classification and 

implementation of decision algorithms, applied to the data 

supplied by the sensor nodes. It consists of: 

 data representation package, 

 data sources control package, 

 data analyses package, 

 data storage and distribution packages. 

The data processing is based on an inference engine 

deployed as the data analyses package. It uses the data 

representation package in order to obtain the higher level 

semantic data or indexes used for analyses. The inference 

engine is built based on the Java Object Oriented Neural 

Engine (JOONE) [18]. This model features a modular 

architecture made of linkable components that can be used 

to build not only neural network architectures, but also 

other types of machine learning algorithms such as Self 

Organising Maps (SOM), or Support Vector Machine 

(SVM), amongst others. Each machine learning model is 

composed of a number of connected components. 

Depending on how these components are connected, a 

variety of architectures can be created.  

Data processing is capable of taking control over data 

acquisition through the data sources control package (a 

decision making tool for data sources management). It 

introduces the dynamic sensors model which utilises only 

those sensor channels necessary for accurate system 

operation. A decision is made based on the decision matrix 

and decision trees encoding the expert knowledge for 

outcomes from the data analyses module. Decisions take 

the form of actions such as: a) to add/remove a new sensor 

channel for more accurate monitoring, b) to use external 

data services, or c) to reconfigure the current data sources. 

Other predefined blocks include the data distribution 

mechanism, which posts alarms and notification remotely to 

third parties, and a file system to storage monitoring logs. 

B. Sensor Node Middleware 

The Sensor node middleware consists of components that 

sample, filter and process physiological signals. Such data 

is then stored locally or transmitted to the personal server 

middleware for integration, analysis and decision making. 

The prototype software runs on the TinyOS platform. 

The applications are implemented as a set of component 

modules written in nesC. A prototype sensor node 

middleware has been developed paying special attention to 

the reusability, flexibility and customization of its 

components (Figure 2b) following design patterns presented 

in [19]. With this in mind, our proposed application 

architecture consists of the following components: 

 Sensor component (SensorC and interface Sense), 

responsible for data sampling on analog-to-digital 

converter’s inputs, implemented using the Facade 

pattern which defines a coherent abstraction boundary 

by exporting the interfaces of several sub components. 

 Filter component (Filter#C and Filter interface), 

responsible for signal filtering, implemented using 

Service Instance pattern which provide multiple 

instances of a particular service sharing the same code; 

 Processor component (Processor#C and Data 

interface), responsible for data pre-processing, 

implemented using the Decorator pattern enhances the 

capabilities and functionality of the SensorsC and 

Filter#C components without modifying their 

implementation. 

 Storage component (StorageC and interface Store), 

responsible for local data storage on flash memory, 

implemented using the Facade pattern which allows for 

a single configuration that simplifies dependency 

resolution. 

 Node Protocol component (NodeProtocolC that 

provides Protocol interface as well as its subsequent 

Operation#C components and interface Operation), 

responsible for performing an externally customizable 

set of operations in response to the input from the 

network interface or call from App module, 

implemented using the Dispatcher pattern. 

 Communication Stack component (BTCommStackC 

and interface CommStack), which implements the 

network interface responsible for data transmission, in 

this case using Bluetooth radio. This functionality is 

a) 
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encapsulated in the Adapter pattern which converts the 

protocol specific interface into a single interface type 

CommStack, what simplifies access to the network 

resources. 

VII. AI RUNTIME AND INFERENCE ENGINE EDITOR 

The biggest advantage of the proposed logic centered 

architecture lays on the embedded inference engine, which 

serves as an artificial runtime environment for the 

algorithms and constitutes the central component of the 

system. It offers capabilities to allow the development of 

new machine learning algorithms, and instantly deploys 

them remotely on the user mobile device without needing to 

modify or re-implement the whole application again. 

 A complementary visual Inference Engine Editor, 

offered with the package, enables AI experts and health 

professionals to build new inference models for their 

applications in a very short time. This is done by linking 

together components and, in cases where out-of-the–box 

implementations are needed, the application logic can be 

controlled with scripts. Depending on the nature of the 

problem any type of algorithm(s) can be used to solve it.  

Each model can be composed of one or many components 

of different types. All components are pluggable, reusable, 

parameterisable and serialisable code modules. These 

features guarantee the scalability, reliability and 

expansibility of the model, enabling the feature selection, 

training, validation and verification, data dimensionality 

reduction and testing of complex hybrid models in one 

editor. The resulting algorithm converts to a self contained 

object by serialising the network as a byte stream to the file 

system or database. Such file can then be sent to the remote 

mobile device using a WAN connection and resurrected 

there. Deployment of the algorithm on mobile devices can 

be accomplished by embedding the algorithm into a custom 

framework mobile application. 

A framework application, such as our personal server, 

has to then supply data to the algorithm inputs, interrogate 

these, and read the results on its output. There are two ways 

to accomplish this, depending on how the embedding 

application interrogates the algorithm it can choose between 

synchronous or asynchronous mode. In synchronous mode, 

the algorithm is interrogated by the application by setting 

its input patterns and calling a run method. After processing 

the results are stored in memory and it waits to be collected 

by the application for further processing or presentation. In 

asynchronous mode, the algorithm runs as a background 

process, and an external asynchronous source of data 

interrogates the algorithm with an input pattern as it arrives. 

Such source of data can be a sensor device or an external 

data acquisition service. The example of such development 

and deployment process for the simple neural network 

algorithm illustrates Figure 3.  

VIII. EVALUATION 

Based on the system architecture presented above, we 

have rapidly developed a prototype vital signs monitoring 

system to continuously monitor and analyse five vital signs 

and their trends using two sensor nodes. The first sensor 

node is a chest strap, capable to measure ECG, temperature, 

and respiratory rate, which use off-the-shelf SHIMMER 

wireless sensor platform [20] with number of sensors such 

as SHIMMER ECG daughter card, NTC type thermistor 

and piezoelectric sensor. It has been programmed using our 

TinyOS sensor node middleware. The second sensor node 

used in our case study is a commercially available wireless 

pulse oximeter, which was rapidly integrated with the aid of 

the personal server framework. The prototype of the 

personal server has been implemented for CLDC 1.1 and 

MIDP 2.0 profiles in Java programming language. The 

prototype system was tested on phoneME Java Virtual 

Machine [40] that can run on Windows, IOS and Android. 

Our objective was to assess qualitatively the 

effectiveness of the proposed architecture in enabling a 

flexible design of algorithms and clean application 

implementation.  This was measured in terms of code 

     
Fig. 2. a) Block diagram of personal server middleware, b) TinyOS sensor node middleware. 

b) a) 



 

 

complexity, scalability, heterogeneity and code reuse, while 

preserving such performance measures as memory 

requirements, power saving and network throughput.  

The design process, as well as performance of 

applications using Sensor Node middleware, were 

compared with their direct implementation on top of 

TinyOS. For such purposes (1) AccelECG application, 

available from TinyOS contributed code repository and its 

two extensions (2) AccelECG_TEMP and (3) AccelECG 

_TEMP_RESP, were re-implemented using the proposed 

sensor node middleware. Main qualitative issues that 

manifest the proposed sensor node middleware to be 

superior over the direct implementation are: 

 Direct TinyOS implementation is much more complex 

where developers must manually wire all subsequent 

components, implement their interfaces, control 

message transmission, parsing, buffering data etc. 

while using the middleware the focus is on the 

application specific processing related to the actual 

data of interest with all configuration being done a 

prior by the model. 

 The middleware enables the network heterogeneity of 

the application in terms of communication protocol and 

its sensitivity to network conditions what in case of 

direct implementation is equivalent to app redesign. 

 The middleware improves the scalability of the 

application in case when new sensors must be deployed 

on the node, enabling to reuse existing code by adding 

new Sensor component with its specific processing. 

 Data flow in the TinyOS application is not evident due 

to split phase operation, what greatly complicate the 

maintenance and debugging. The proposed middleware 

alleviates this problem with the Processor component. 

Quantitative measures used to compare the complexity of 

those applications are presented in Figure 4 below. The 

comparison includes the number of lines of code, which for 

this examples decreased by almost 50% with use of the 

middleware. Also using the middleware the number of 

explicit application events that the developer must control 

to simply get sensor readings decreased to 4 events which 

are independent from the number of sensors. These events 

include: connection made, command received, sensing 

done, connection closed. Such simplification comes at the 

price of a slight increase in the size of the binary code 

deployed on the mode (ROM) as well as heap size (RAM). 

This, however, remains well within the limits of program 

flash memory size of the commercially available sensor 

platforms (e.g. 48KB ROM + 10KB RAM for SHIMMER). 

Qualitative evaluation of the Personal Server and 

Inference Engine conducted during the application design 

process reveled model inherent properties such as: 

 Heterogeneity of the middleware that manifest in its 

ability to easily integrate multiple third party sensor 

devices and communication protocols was obtained 

through the sensor abstraction model, which simplifies 

data acquisition and network coordination by hiding 

the whole network specific functionality, what enables 

to perceived sensors as a data publishing service within 

any type of network. 

 Scalability achieved with modified Flooding Time 

Synchronization Protocol (FTSP) with dynamic slot 

allocation for efficient use of the available bandwidth 

what increased the node sleep time and helped to 

reduce the transmission and energy cost. 

 Usability, enabled by the high-level abstraction of 

application design process using embedded inference 

engine and its rapid deployment model facilitated by 

the visual data flow composition using visual editor. 

 
Fig. 3. AI algorithms development and deployment lifecycle. 

 

App. 
Lines of code Explicit events ROM [KB] RAM [B] 

Dir. Mid. Dir. Mid. Dir. Mid. Dir. Mid. 

(1) 334 201 8 4 8.96 10.87 576 1074 

(2) 357 212 10 4 9.26 10.91 634 1086 

(3) 402 231 12 4 9.87 10.96 690 1094 

Fig. 4. Comparison of middleware against direct TinyOS implementation. 
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With a corresponding visual editor and training 

environment, a subject specific user such as medical 

professional is able to build, train, test and validate the 

algorithm, and subsequently, in a very short period of 

time, conduct initial field tests. 

To verify that the advantages we identified above do not 

negatively affect the system performance, we extended our 

evaluation beyond the development model to look at how 

the network overheads and inference engine model  affect 

the sample execution time. As expected, Figure 5 shows 

significant correlation between execution time and the 

complexity of the inference algorithm (measured by the 

Self Organizing Map dimension).  However, it also shows 

that the network overheads associated with the increase of 

number of sensor data streams does not affect the execution 

time what proves the quality of the presented model. 

IX. CONCLUSIONS AND FUTURE WORK 

The main innovations presented in this paper are: 1) the 

newly proposed concept of logic-centred design 

methodology for ubiquitous health monitoring enabled by 

the presented integrative SWS architecture; and 2) the 

embedded inference engine model that can be hosted 

locally on the personal server. Both contributes to shift 

focus from software and hardware development to medical 

and health process-centered design when developing new 

smart wearable systems. Thanks to presented capabilities, a 

normally extensive implementation project can be achieved 

in a limited time frame and reduced to components 

assembly and configuration. 

Future work will focus on porting and extending further 

the platform to support any native smartphone operating 

system, what will translate on an improvement on the 

adoption rate of systems build using this framework. It is 

envisaged that this can be achieved with a central meta code 

repository, which at the time of deployment, will port the 

application to the right platform following methods 

presented by Miroslav et al. [8] Other areas of future work 

are development of further test beds with applications 

offering solutions to various health monitoring problems. 

By enabling the acquisition of different body parameters 

from commercially available third party devices as well as 

integration with wider telemedicine systems and external 

services, we aim to boost the adoption and integration of 

SWS in everyday life. 
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