
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract:

One of the key points to maintain and boost research and development in the area of Smart Wearable Systems (SWS) is the

development of integrated architectures for intelligent services, as well as wearable systems and devices for health and wellness

management. This paper presents such a generic architecture for multi-parametric, intelligent and ubiquitous wireless sensing

platforms. It is a transparent, smartphone-based sensing framework with customisable wireless interfaces and plug’n’play

capability to easily interconnect third party sensor devices. It caters for Wireless Body (BAN), Personal (PAN) and Near-me

(NAN) Area Networks. A pivotal part of the platform is the integrated inference engine/runtime environment that allows the

mobile device to serve as a user-adaptable personal health assistant. The novelty of this system lays in a rapid visual

development and remote deployment model. The complementary visual Inference Engine Editor that comes with the package

enables Artificial Intelligence specialists, alongside with medical experts, to build data processing models by assembling

different components and instantly deploying them (remotely) on patient mobile devices. In this paper the new logic-centred

software architecture for ubiquitous health monitoring applications is described, followed by a discussion as to how it helps to

shift focus from software and hardware development, to medical and health process-centred design of new SWS applications.

Index Terms — Body sensor networks, Ubiquitous computing, Remote monitoring, Telemedicine, Artificial Intelligence

I. INTRODUCTION

CCORDING to a recent report published by the World

Health Organization [1], well-developed countries are

expected to face major challenges in the way current health

care services are deployed and delivered. This is due mainly

to 1) an aging population, 2) increased life expectancy, and

3) population growth. The United Nations report [2] states

that this trend is global and over 60 years old are expected

to account for 32% of the population in year 2050. These

factors will have a significant impact on the high-rising

costs of healthcare liabilities which will eventually

outpaced the growth of the overall economy. In response to

this we need a more accurate, pre-hospital and prevention-

oriented health care system, which will take care of a

person’s physical health status at its earliest stage, through

physical activity management, status monitoring and

assessment, as well as early notification in case of an

emergency.

One of the possible contributing solutions to these

problems could be the implementation of an accurate and

ubiquitous health monitoring of individuals by means of

smart wearable systems (SWS). SWS are defined as end-to-

end, sensor-based integrated systems, capable of sensing,

processing, and communicating medical data to interested

parties, such as the medical professionals and emergency

services, or store it for further reference. It contends to be

the next generation e-health systems, delivering patient-

oriented services with the vision of empowered health care

on the move [3].

In this paper, a new logic-centered software architecture

for such ubiquitous health monitoring applications is

described. It consists of a transparent, smartphone based

sensing framework with customisable wireless interfaces

and plug’n’play capability to easily interconnect third party

sensor devices in BAN, PAN and NAN Area Networks. A

pivotal part of the platform is the integrated inference

engine/runtime environment that allows the mobile device

to serve as a user-adaptable personal health assistant. The

novelty of this system lays on a rapid visual development

and remote deployment model. The complementary visual

Inference Engine Editor enables machine learning experts

along with medical experts to build data processing models

by interlacing together different components and

controlling the application logic with scripts. The editor

allows the instant deployment of such models remotely on

patient mobile devices. This approach shifts focus from

complex software and hardware development, to simple

medical and health process design, what helps to speed up

development and deployment of new medical and health

applications.

In the following two sections the challenges in SWS

adoption as well as state of the art in the field are discussed.

Section 4 is dedicated to the formulation of use cases and

system requirements, while Section 5 describes the system

architecture. In Section 6 the proposed software design is

presented. The inference engine, the complementary editor

as well as the development and deployment model that they

promote are presented in Section 7. Section 8 provides

conclusions and future work.

Logic-Centred Architecture for Ubiquitous

Health Monitoring

Jacek Lewandowski, Hisbel E. Arochena, Raouf N. G. Naguib, Kuo-Ming Chao, Alexeis Garcia-Perez

A

II. CHALLENGES IN SWS ADOPTION

Wireless medical telemetry is not a new concept, yet its

adoption is minimal in nearly every country. Chan et al. [4]

summarised issues preventing the wider acceptance of

current Smart Wearable Systems as, amongst others:

 lack of systems’ efficiency, reliability, and

unobtrusiveness [5-6],

 complexity of system development and validation [7],

 lack of unified multi-platform telemedicine solution for

the mobile and desktop operating systems [8],

 not clear requirements from health care professionals

and end-users [4],

 cost [9],

 services availability and interoperability issues [10].

As a means to maintain and boost SWS research and

development, many researchers [7, 11-12] identified a

development of integrated architectures for intelligent home

services with wearable systems and devices for home

comfort, health and wellness. They concluded that there

was currently no smart wearable system on the market

integrating several biosensors, intelligent processing and

alerts to support medical applications. Such a state of affairs

is due to the lack of end-to-end interoperability standards

within the sensor networks and also between SWS and

disparate healthcare systems. This prevents seamless

medical data collection, increases the cost of the systems

and their upgrade capabilities, and also limits the shift to

systems that are semantically interoperable, process-related,

decision-supportive, context-sensitive, user oriented, and

trustworthy [13].

III. RELATED WORKS

A variety of wireless personal vital signs monitors, both

for medical and fitness purposes, are either already on the

market, or under development at prototype stage. A full list

of wearable systems developed in recent years along with a

brief description of their applications can be found in [4]. A

vast number of those projects focused at on-body sensing

technologies through integration of micro-nano

technologies and flexible systems in textile material. They

aimed at the implementation of the “e-textile” paradigm,

where sensing, actuating, communicating, processing and

power sourcing are seamlessly integrated on a textile.

Whereas sensors and actuators are essential to promote

SWS adoption amongst the population, they are only means

of data collection. The true benefits of health monitoring

systems come with data processing and integration. These

early systems, were often the side effect of sensor

development, generally designed to ‘cut the cord’ between

the patient and the medical professionals, providing mainly

only instantaneous single-parameter assessment and

transmission. Hence, in order to fully explore the benefits

offered by SWS, current research efforts in this area focus

on integration and interoperability aspects as well as new

classification algorithms [26] which will further boost

SWS’s adoption and release their commercial value.

In an attempt to design a general-purpose, flexible

wireless remote monitoring framework, the noteworthy

example of a fully integrated system architecture that took

all relevant parties and services on-board, was outlined by

Otto et al [14]. Their proposed model spanned a three tier

network made of a) tier 1 - Wireless Body Area Network

(WBAN), b) tier 2 - individual health monitoring mobile

phone system and c) tier 3 - Wide Area Network (WAN)

connection to medical servers. The first, fully

commercialised product implementing a similar model is

MobiHealth [15]. This system provides an integrated

mobile remote monitoring and feedback system that

integrates with compact third-party sensor systems. Despite

having intelligent capabilities to analyse acquired data

locally, the main aim of this system was to ensure that

patients stayed securely connected to their remote care

professional. Moreover, the system introduced for the first

time the concept of the M-health service layer, which

integrated the intra-BAN and extra-BAN communication,

making applications independent from specific

characteristics of the underlying communication protocols.

This concept of sensor virtualisation and reusable mobile-

centric, wireless sensing platform was further developed by

the Nokia Remote Sensing (NORS) project [16]. The

NORS platform aimed at exploiting the artificial

intelligence in several ubiquitous devices that connect

locally to sensors and remotely with servers. Depending on

the network availability and/or scenario of use, the system

allowed users to select where the data processing would

take place – locally on the sensor/phone or remotely on the

server.

These, as well as other cross platform developments and

integration efforts opened new paths in deploying

intelligence on distributed devices which informed our

model design.

IV. SYSTEM REQUIREMENTS

Reviewing previous implementations and their outcomes,

several basic functional requirements common to almost

every reported SWS system have been identified. These

include: a) sensing and filtering, b) data aggregation, c)

wireless communication, d) power management, e) data

presentation and f) storage. In most cases all these elements

are necessary just to get simple sensor readings. To

assemble a complete wireless sensors network (WSN)

monitoring system traditionally one requires skills in

electronics, software engineering, signal processing, control

theory, wireless networking and artificial intelligence (AI),

to name a few. This, in turn, involves extensive and often

platform targeted implementations when, in fact, all what

differentiates one application from the other are the sensors

used and the data processing algorithms implemented.

This observation suggests that a higher level application

developement paradigm could potenatially be applied to

SWS systems development which could result in a shift

from application development to customisation. This is

possible with the use of framework applications,

middlewares, runtime environments, scripts and XML.

Such platform should offer predefined methods and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

paradigms, where design efforts focuses on logic and

processes rather than on data aqusition or aggregation. In

doing so, it must futher enable:

 Integration of vendor specific sensor nodes under one

framework.

 Integration of different wireless communication

technologies under one framework.

 Integration of a real-time inference engine, such as

artificial neural networks (ANN).

 Customizable context-aware data sampling and

efficient data sources utilisation.

 Remote control over sensor nodes through

customisable WSN commands.

 Customisable data aggregation from sensor nodes.

 Service oriented design enabling integration with third

party web services over WAN connection, where it can

be either a service subscriber or a publisher.

Finally, the user should be able to choose whether the

system will work as a standalone personal health assistant

or as part of a broader telemedicine application.

V. SYSTEM ARCHITECTURE

The proposed high-level system architecture (Figure 1) is

based on a well established three-tier architecture of the

WSN network as proposed in [14], spanning over a network

of medical sensors and remote web services. The WSN tier

comprises a number of sensor nodes, each capable of

sampling, filtering, processing, and communicating

physiological signals. The WAN network tier encompasses

external web services that can either publish their services

or subscribe to the available sensor data sources. The

middleware, called personal server, links these tiers

together and it is deployed on a smartphone device that

interfaces WSN nodes locally and WAN services

externally. Moreover it provides integrated sensor nodes

management, data aggregation, real-time data processing

and transmission, as well as inference capabilities.

The main architectural difference of our proposed model,

compared to a typical health monitoring system, lays in the

workload distribution, which in terms of data processing,

network management, and inference algorithms, is a

responsibility of a personal server and sensor nodes, rather

than of a remote centralised server. The proposed model

allows to eliminate the central medical server from this

architecture and instead, dynamic allocate resources and

external services [17]. An important advantage of such a

two tier model is the improved response time, which is

achieved by locating the processing power close to the user,

improving therefore user’s mobility. Another important

advantage achieved is the adaptability aspect, enabling such

system to become a user tailored device which can be

sensitive to individual’s special conditions or behaviours. It

also allows to develop algorithms, which will determine the

user’s state and well-being status ubiquitously, taking into

account contextual and patient specific information.

The pivotal element of this system, the AI runtime

environment, allows the loading and running of new custom

classification and decision algorithms developed in the

corresponding Inference Engine Editor. The algorithm can

be either downloaded by the user from medical and health

process repositories, or can be directly uploaded on the

personal server and executed there by health professionals

with access rights to it. Such repositories are designed

based on the concept of digital distribution platforms for

mobile devices, commonly known as application stores.

Reduction of service maintenance costs is one of the

most important benefits that come out of ubiquities logic-

centered approach to development and more autonomous

wellness monitoring systems, such as intelligent Personal

Health Assistants (PHA), that require no or only little

human intervention. Distributed processing, opposed to

only centralised server processing, not only decrease the

data transmission cost but can also improve the accuracy of

monitoring through patient adaptation, response time and

availability of the service to the user. With logic centred

development methodology we can “shorten the time-to-

market” for new solutions/applications, improve code

reusability, reuse existing infrastructure of third party

measurement devices but foremost focus on medical and

health data processing models what is the future of SWS.

Data Control

+logic

+presentation

Data

+ simple logic

Fig. 1. High level system architecture.

Inference Engine Editor

External Services

Sensor Nodes Personal Server

Process repository

WAN BAN
PAN

NAN

VI. FRAMEWORK MIDDLEWARES

A. Personal server middleware

The personal server middleware consists of a number of

specialised software packages which are grouped into two

functional layers: data aggregation and data processing

accompanied by data presentation layer as illustrated in

Figure 2a.

1) Data aggregation layer

The data aggregation layer consist of:

 a node and network interface package,

 the sensor networks abstraction model,

 a WAN/external services package,

 a data acquisition control package

The data aggregation layer is mainly responsible for

sensor’s data fusion as well as WSN and WAN connections

configuration and management. It provides an abstraction

and virtualisation of nodes, sensors and connections,

through the network manager, sensor manager and WAN

services coordinator modules. The abstraction use node

specific protocol drivers what makes applications

independent from specific characteristics of the underlying

communication protocols. It enables customisable wireless

interfaces and plug’n’play capability to easily interconnect

multiple third party sensor devices and services in BAN,

PAN, NAN and WAN networks landscape.

The primary function of this layer is to keep a register of

every single data source and manage them accordingly,

including discovery, registration, configuration and

initialisation. Once the network connections are set up, the

data acquisition control package manages the network

utilisation, taking care of channel sharing, time

synchronisation, data transmission and data encryption. As

a result, the data aggregation layer provides the complete

collection of real-time, pre-processed and cleaned sensor’s

data streams ready for processing.

2) Data processing layer

The data processing layer builds upon the data

aggregation layer. It focuses on real-time classification and

implementation of decision algorithms, applied to the data

supplied by the sensor nodes. It consists of:

 data representation package,

 data sources control package,

 data analyses package,

 data storage and distribution packages.

The data processing is based on an inference engine

deployed as the data analyses package. It uses the data

representation package in order to obtain the higher level

semantic data or indexes used for analyses. The inference

engine is built based on the Java Object Oriented Neural

Engine (JOONE) [18]. This model features a modular

architecture made of linkable components that can be used

to build not only neural network architectures, but also

other types of machine learning algorithms such as Self

Organising Maps (SOM), or Support Vector Machine

(SVM), amongst others. Each machine learning model is

composed of a number of connected components.

Depending on how these components are connected, a

variety of architectures can be created.

Data processing is capable of taking control over data

acquisition through the data sources control package (a

decision making tool for data sources management). It

introduces the dynamic sensors model which utilises only

those sensor channels necessary for accurate system

operation. A decision is made based on the decision matrix

and decision trees encoding the expert knowledge for

outcomes from the data analyses module. Decisions take

the form of actions such as: a) to add/remove a new sensor

channel for more accurate monitoring, b) to use external

data services, or c) to reconfigure the current data sources.

Other predefined blocks include the data distribution

mechanism, which posts alarms and notification remotely to

third parties, and a file system to storage monitoring logs.

B. Sensor Node Middleware

The Sensor node middleware consists of components that

sample, filter and process physiological signals. Such data

is then stored locally or transmitted to the personal server

middleware for integration, analysis and decision making.

The prototype software runs on the TinyOS platform.

The applications are implemented as a set of component

modules written in nesC. A prototype sensor node

middleware has been developed paying special attention to

the reusability, flexibility and customization of its

components (Figure 2b) following design patterns presented

in [19]. With this in mind, our proposed application

architecture consists of the following components:

 Sensor component (SensorC and interface Sense),

responsible for data sampling on analog-to-digital

converter’s inputs, implemented using the Facade

pattern which defines a coherent abstraction boundary

by exporting the interfaces of several sub components.

 Filter component (Filter#C and Filter interface),

responsible for signal filtering, implemented using

Service Instance pattern which provide multiple

instances of a particular service sharing the same code;

 Processor component (Processor#C and Data

interface), responsible for data pre-processing,

implemented using the Decorator pattern enhances the

capabilities and functionality of the SensorsC and

Filter#C components without modifying their

implementation.

 Storage component (StorageC and interface Store),

responsible for local data storage on flash memory,

implemented using the Facade pattern which allows for

a single configuration that simplifies dependency

resolution.

 Node Protocol component (NodeProtocolC that

provides Protocol interface as well as its subsequent

Operation#C components and interface Operation),

responsible for performing an externally customizable

set of operations in response to the input from the

network interface or call from App module,

implemented using the Dispatcher pattern.

 Communication Stack component (BTCommStackC

and interface CommStack), which implements the

network interface responsible for data transmission, in

this case using Bluetooth radio. This functionality is

a)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

encapsulated in the Adapter pattern which converts the

protocol specific interface into a single interface type

CommStack, what simplifies access to the network

resources.

VII. AI RUNTIME AND INFERENCE ENGINE EDITOR

The biggest advantage of the proposed logic centered

architecture lays on the embedded inference engine, which

serves as an artificial runtime environment for the

algorithms and constitutes the central component of the

system. It offers capabilities to allow the development of

new machine learning algorithms, and instantly deploys

them remotely on the user mobile device without needing to

modify or re-implement the whole application again.

 A complementary visual Inference Engine Editor,

offered with the package, enables AI experts and health

professionals to build new inference models for their

applications in a very short time. This is done by linking

together components and, in cases where out-of-the–box

implementations are needed, the application logic can be

controlled with scripts. Depending on the nature of the

problem any type of algorithm(s) can be used to solve it.

Each model can be composed of one or many components

of different types. All components are pluggable, reusable,

parameterisable and serialisable code modules. These

features guarantee the scalability, reliability and

expansibility of the model, enabling the feature selection,

training, validation and verification, data dimensionality

reduction and testing of complex hybrid models in one

editor. The resulting algorithm converts to a self contained

object by serialising the network as a byte stream to the file

system or database. Such file can then be sent to the remote

mobile device using a WAN connection and resurrected

there. Deployment of the algorithm on mobile devices can

be accomplished by embedding the algorithm into a custom

framework mobile application.

A framework application, such as our personal server,

has to then supply data to the algorithm inputs, interrogate

these, and read the results on its output. There are two ways

to accomplish this, depending on how the embedding

application interrogates the algorithm it can choose between

synchronous or asynchronous mode. In synchronous mode,

the algorithm is interrogated by the application by setting

its input patterns and calling a run method. After processing

the results are stored in memory and it waits to be collected

by the application for further processing or presentation. In

asynchronous mode, the algorithm runs as a background

process, and an external asynchronous source of data

interrogates the algorithm with an input pattern as it arrives.

Such source of data can be a sensor device or an external

data acquisition service. The example of such development

and deployment process for the simple neural network

algorithm illustrates Figure 3.

VIII. EVALUATION

Based on the system architecture presented above, we

have rapidly developed a prototype vital signs monitoring

system to continuously monitor and analyse five vital signs

and their trends using two sensor nodes. The first sensor

node is a chest strap, capable to measure ECG, temperature,

and respiratory rate, which use off-the-shelf SHIMMER

wireless sensor platform [20] with number of sensors such

as SHIMMER ECG daughter card, NTC type thermistor

and piezoelectric sensor. It has been programmed using our

TinyOS sensor node middleware. The second sensor node

used in our case study is a commercially available wireless

pulse oximeter, which was rapidly integrated with the aid of

the personal server framework. The prototype of the

personal server has been implemented for CLDC 1.1 and

MIDP 2.0 profiles in Java programming language. The

prototype system was tested on phoneME Java Virtual

Machine [40] that can run on Windows, IOS and Android.

Our objective was to assess qualitatively the

effectiveness of the proposed architecture in enabling a

flexible design of algorithms and clean application

implementation. This was measured in terms of code

Fig. 2. a) Block diagram of personal server middleware, b) TinyOS sensor node middleware.

b) a)

complexity, scalability, heterogeneity and code reuse, while

preserving such performance measures as memory

requirements, power saving and network throughput.

The design process, as well as performance of

applications using Sensor Node middleware, were

compared with their direct implementation on top of

TinyOS. For such purposes (1) AccelECG application,

available from TinyOS contributed code repository and its

two extensions (2) AccelECG_TEMP and (3) AccelECG

_TEMP_RESP, were re-implemented using the proposed

sensor node middleware. Main qualitative issues that

manifest the proposed sensor node middleware to be

superior over the direct implementation are:

 Direct TinyOS implementation is much more complex

where developers must manually wire all subsequent

components, implement their interfaces, control

message transmission, parsing, buffering data etc.

while using the middleware the focus is on the

application specific processing related to the actual

data of interest with all configuration being done a

prior by the model.

 The middleware enables the network heterogeneity of

the application in terms of communication protocol and

its sensitivity to network conditions what in case of

direct implementation is equivalent to app redesign.

 The middleware improves the scalability of the

application in case when new sensors must be deployed

on the node, enabling to reuse existing code by adding

new Sensor component with its specific processing.

 Data flow in the TinyOS application is not evident due

to split phase operation, what greatly complicate the

maintenance and debugging. The proposed middleware

alleviates this problem with the Processor component.

Quantitative measures used to compare the complexity of

those applications are presented in Figure 4 below. The

comparison includes the number of lines of code, which for

this examples decreased by almost 50% with use of the

middleware. Also using the middleware the number of

explicit application events that the developer must control

to simply get sensor readings decreased to 4 events which

are independent from the number of sensors. These events

include: connection made, command received, sensing

done, connection closed. Such simplification comes at the

price of a slight increase in the size of the binary code

deployed on the mode (ROM) as well as heap size (RAM).

This, however, remains well within the limits of program

flash memory size of the commercially available sensor

platforms (e.g. 48KB ROM + 10KB RAM for SHIMMER).

Qualitative evaluation of the Personal Server and

Inference Engine conducted during the application design

process reveled model inherent properties such as:

 Heterogeneity of the middleware that manifest in its

ability to easily integrate multiple third party sensor

devices and communication protocols was obtained

through the sensor abstraction model, which simplifies

data acquisition and network coordination by hiding

the whole network specific functionality, what enables

to perceived sensors as a data publishing service within

any type of network.

 Scalability achieved with modified Flooding Time

Synchronization Protocol (FTSP) with dynamic slot

allocation for efficient use of the available bandwidth

what increased the node sleep time and helped to

reduce the transmission and energy cost.

 Usability, enabled by the high-level abstraction of

application design process using embedded inference

engine and its rapid deployment model facilitated by

the visual data flow composition using visual editor.

Fig. 3. AI algorithms development and deployment lifecycle.

App.
Lines of code Explicit events ROM [KB] RAM [B]

Dir. Mid. Dir. Mid. Dir. Mid. Dir. Mid.

(1) 334 201 8 4 8.96 10.87 576 1074

(2) 357 212 10 4 9.26 10.91 634 1086

(3) 402 231 12 4 9.87 10.96 690 1094

Fig. 4. Comparison of middleware against direct TinyOS implementation.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

With a corresponding visual editor and training

environment, a subject specific user such as medical

professional is able to build, train, test and validate the

algorithm, and subsequently, in a very short period of

time, conduct initial field tests.

To verify that the advantages we identified above do not

negatively affect the system performance, we extended our

evaluation beyond the development model to look at how

the network overheads and inference engine model affect

the sample execution time. As expected, Figure 5 shows

significant correlation between execution time and the

complexity of the inference algorithm (measured by the

Self Organizing Map dimension). However, it also shows

that the network overheads associated with the increase of

number of sensor data streams does not affect the execution

time what proves the quality of the presented model.

IX. CONCLUSIONS AND FUTURE WORK

The main innovations presented in this paper are: 1) the

newly proposed concept of logic-centred design

methodology for ubiquitous health monitoring enabled by

the presented integrative SWS architecture; and 2) the

embedded inference engine model that can be hosted

locally on the personal server. Both contributes to shift

focus from software and hardware development to medical

and health process-centered design when developing new

smart wearable systems. Thanks to presented capabilities, a

normally extensive implementation project can be achieved

in a limited time frame and reduced to components

assembly and configuration.

Future work will focus on porting and extending further

the platform to support any native smartphone operating

system, what will translate on an improvement on the

adoption rate of systems build using this framework. It is

envisaged that this can be achieved with a central meta code

repository, which at the time of deployment, will port the

application to the right platform following methods

presented by Miroslav et al. [8] Other areas of future work

are development of further test beds with applications

offering solutions to various health monitoring problems.

By enabling the acquisition of different body parameters

from commercially available third party devices as well as

integration with wider telemedicine systems and external

services, we aim to boost the adoption and integration of

SWS in everyday life.

REFERENCES

[1] World Health Organisation, "The world health report 2010: Health

systems financing: the path to universal coverage," World Health
Organisation, Geneva2010.

[2] United Nations, "Population Ageing and Development 2012 (Wall

Chart)," Population Division, Department of Economic and Social
Affairs, New York, NY, ISBN 978-92-1-151494-0, 2012.

[3] R. S. H. Istepanian, S. Laxminarayan, and C. S. Pattichis, M-Health:

Emerging Mobile Health Systems: Springer US, 2006.
[4] M. Chan, D. Estève, J.-Y. Fourniols, C. Escriba, and E. Campo,

"Smart wearable systems: Current status and future challenges,"

Artificial Intelligence in Medicine, vol. 56, pp. 137-156, 2012.
[5] B. K. Hensel, G. Demiris, and K. L. Courtney, "Defining

Obtrusiveness in Home Telehealth Technologies: A Conceptual

Framework," Journal of the American Medical Informatics
Association, vol. 13, pp. 428-431, July 1, 2006 2006.

[6] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M.

Welsh, "Wireless Sensor Networks for Healthcare," Proceedings of

the IEEE, vol. 98, pp. 1947-1960, 2010.

[7] A. Lymberis and A. Dittmar, "Advanced Wearable Health Systems

and Applications - Research and Development Efforts in the
European Union," Engineering in Medicine and Biology Magazine,

IEEE, vol. 26, pp. 29-33, 2007.

[8] K. Miroslav, L. Fedor, and V. Gabriel, "Multi-platform telemedicine
system for patient health monitoring," in Biomedical and Health

Informatics (BHI), 2012 IEEE-EMBS International Conference on,

2012, pp. 127-130.
[9] T. S. Bergmo, "Economic evaluation in telemedicine – still room for

improvement," Journal of Telemedicine and Telecare, vol. 16, pp.

229-231, July 1, 2010 2010.
[10] R. S. H. Istepanian, E. Jovanov, and Y. T. Zhang, "Guest Editorial

Introduction to the Special Section on M-Health: Beyond Seamless

Mobility and Global Wireless Health-Care Connectivity,"
Information Technology in Biomedicine, IEEE Transactions on, vol.

8, pp. 405-414, 2004.

[11] I. Korhonen, J. Parkka, and M. Van Gils, "Health monitoring in the
home of the future," Engineering in Medicine and Biology Magazine,

IEEE, vol. 22, pp. 66-73, 2003.

[12] . wia tek, P. Stelmach, A. Prusiewicz, and K. Juszczyszyn,
"Service Composition in Knowledge-based SOA Systems," New

Generation Computing, vol. 30, pp. 165-188, 2012/06/01 2012.

[13] B. G. Blobel, "Educational challenge of health information systems'
interoperability," Methods of Information in Medicine, vol. 46, pp.

52-56, 2007.

[14] C. Otto, A. Milenkovic, C. Sanders, and J. E., "System architecture
of a wireless body area sensor network for ubiquitous health

monitoring," Mobile Multimedia Journal, vol. 1, pp. 307-326, 2006.

[15] A. van Halteren, R. Bults, K. Wac, N. Dokovsky, G. Koprinkov, I.
Widya, et al., "Wireless body area networks for healthcare: the

MobiHealth project," Stud Health Technol Inform, vol. 108, pp. 181-

93, 2004.
[16] D. Trossen and D. Pavel, "Building a ubiquitous platform for remote

sensing using smartphones," in Mobile and Ubiquitous Systems:
Networking and Services, 2005. MobiQuitous 2005. The Second

Annual International Conference on, 2005, pp. 485-489.

[17] A. Grzech, . wiątek, and P. Rygielski, "Dynamic Resources
Allocation for Delivery of Personalized Services," in Software

Services for e-World. vol. 341, W. Cellary and E. Estevez, Eds., ed:

Springer Berlin Heidelberg, 2010, pp. 17-28.
[18] P. Marrone. (2007). JOONE: The Complete Guide. Available:

http://www.joone.org
[19] D. Gay, P. Levis, and D. Culler, "Software design patterns for

TinyOS," ACM Trans. Embed. Comput. Syst., vol. 6, p. 22, 2007.

[20] M. J. McGrath and T. J. Dishongh, "A Common Personal Health

Research Platform—SHIMMER and BioMOBIUS," Intel
Technology Journal, vol. 13, pp. 122-147, 2009.

Fig. 5. Impact of number sensors and complexity of inference algorithms on

sample execution time

http://www.joone.org/

	cover4
	J-BHI

