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Abstract: This study explores the development and validation of an airflow model to support
climate prediction for Citrus Under Protective Screens (CUPS) in California. CUPS is a permeable
screen structure designed to protect a field of citrus trees from large insects including the vector that
causes the devastating citrus greening disease. Because screen structures modify the environmental
conditions (e.g., temperature, relative humidity, airflow), farm management and treatment strategies
(e.g., pesticide spraying events) must be modified to account for these differences. Toward this
end, we develop a model for predicting wind speed and direction in a commercial-scale research
CUPS, using a computational fluid dynamics (CFD) model. We describe the model and validate
it in two ways. In the first, we model a small-scale replica CUPS under controlled conditions and
compare modeled and measured airflow in and around the replica structure. In the second, we model
the full-scale CUPS and use historical measurements to “back test” the model’s accuracy. In both
settings, the modeled airflow values fall within statistical confidence intervals generated from the
corresponding measurements of the conditions being modeled. These findings suggest that the
model can aid decision support and smart agriculture solutions for farmers as they adapt their farm
management practices for CUPS structures.

Keywords: controlled environment agriculture; wind modeling; CFD; validation; citrus crop

1. Introduction

Citrus is a crop of substantial economic importance to the US agriculture industry.
In the 2022–2023 season, it was valued by the USDA at $2.59 billion [1]. Florida, Texas,
Arizona, and California are the primary US producers of citrus, with California accounting
for 79% of US production during this period [1]. Once a leader in citrus production in the
US, Florida’s citrus production has declined by 92% since the 2003–2004 season (producing
only 17% of US production in 2022–2023).

A key contributor to the decline in citrus production is citrus greening disease, also
known as Huanglongbing (HLB) [2,3]. HLB is a devastating disease without an approved
remediation that is spread by an insect called the Asian Citrus Psyllid (ACP) and which
leads to premature fruit drop, fruit that never ripens, and eventual tree death. HLB infection
is responsible for the loss of more than $4.5 billion in revenue by the US citrus industry
over the period 2006 to 2010 [4]. In California, where HLB infection has not yet reached
epidemic proportions, it has been found recently in multiple counties primarily in southern
California [5,6]. The concern is that it will migrate to, and become endemic in, California’s
central valley where much of California’s (and US) commercial citrus is produced.

One way to protect citrus trees from ACP and HLB infection is to grow the trees under
field-scale, protective screens to create a physical barrier between the insects and the plants.
Such structures are called Citrus Under Protective Screen (CUPS) [7]. The use of CUPS has
been the subject of much research since the early 2020s [7–9]. Today CUPS is estimated to
cost $0.69 to $1.03 per square foot ($30,000 to $45,000 per acre) and has been shown to be
more effective than other methods for HLB protection in Florida [7,9,10]. Screen and net
houses are also used to exclude pests and to provide protection from the sun and wind for a
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variety of crops in the US and worldwide [11]. Moreover, citrus groves in Florida have been
shown to respond positively to the buffered environmental conditions of CUPS, yielding
improved fruit quantity and quality [10]. However, CUPS has yet to be studied for HLB
protection in California where growing conditions and crop varieties differ substantially
from those in Florida.

Our research investigates the use of CUPS in California using the first, and currently
only, commercial-scale (4-acre) research CUPS located at the Lindcove Research Extension
Center (LREC) [12] in the central valley of California. The LREC CUPS is instrumented with
a large-scale Internet-of-Things (IoT) deployment that consists of wireless communications,
resource-constrained (battery-powered) edge computers, cameras, and multiple weather
stations equipped with wind sensors. Our goal is to use this system to develop modeling,
prediction, and data-driven actuation and control systems that help growers adapt their
agricultural practices for CUPS deployments. Generally, our work focuses on automation
and digital systems to monitor and manage the environmental growing conditions within
a CUPS. Such research is important to the agriculture industry because screen structures
modify the environmental conditions (e.g., shading, temperature, relative humidity, airflow)
in ways that affect plant health and the growing cycle.

In this paper, we focus specifically on airflow within the CUPS for three reasons. The
first is that airflow ((i.e., wind) can have a dramatic effect on other environmental factors
(e.g., water evaporation). Secondly, unlike relative humidity or temperature, airflow is
dynamically changing and its effects are often localized due to turbulence caused by obsta-
cles and topological features in and around the growing area. Thirdly, understanding and
predicting airflow is critical to managing important farming practices such as irrigation, the
application of sprayed inputs, and sprayed treatment strategies (e.g., pesticides, fertilizers,
sprayed water for frost prevention, etc.).

Note that we treat the commercial-scale CUPS facility at LREC as a living laboratory.
That is, our work does not evaluate the efficiency of CUPS from the biological and agri-
cultural perspective. Instead, it assumes that CUPS can, and will, play an increasingly
important role in the future of citrus production and our research shows how IoT can be
used to support this role from a climate control and prediction viewpoint.

Since the CUPS is neither a climate-controlled structure nor fully exposed to the
weather, its porous screen walls, roof, and internal structural elements create complex
airflow patterns that are difficult to measure and predict. Our research explores whether it
is possible to accurately model and predict wind flow patterns inside the structure using
external measurements.

Specifically, we present a model for airflow through and around the CUPS using
computational fluid dynamics (CFD). CFD models provide accurate representations and
predictive capabilities in a variety of engineering and environmental disciplines [13–15]
including mesoscale weather forecasting [16,17]. Our CFD model consists of Navier–Stokes
equations and uses a Darcy–Forchheimer model to simulate conditions inside and outside
the CUPS (we use OpenFOAM [18] to perform the calculations).

In the sections that follow, we describe the model and validate it in two settings: a
scaled-down physical model of the CUPS sited in a controlled, miniaturized IoT environment,
and in the field, using the commercial-scale CUPS facility at LREC. We compare our model
predictions against empirical measurements. To validate our model at a commercial scale,
where there are uncontrolled external weather conditions that could affect model accuracy,
we perform back-testing using historical data from weather station sensors that are deployed
inside and outside of the LREC CUPS. In both settings the modeled airflow values fall
within statistical confidence intervals generated from the corresponding measurements of
the conditions being modeled. That is, in both a controlled experiment and in the field, the
CFD model generates simulated values that are consistent with the measurement uncertainty
associated with the sensors that are used to gather the comparative measurements.

These findings suggest that our model can be used as part of decision-support tools that
aid farmers in adapting their agricultural practices for CUPS deployments. For example,
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current practice is to make crop management decisions using a combination of sensor
measurements covering many square kilometers (e.g. nearby airport meteorological data),
possibly with a single local weather station. The validation presented in this paper shows
model accuracy at the meter scale within the CUPS which should lead to more accurate
decision support and actuation. In this way, our work lays the foundation for new
intelligent actuation and control systems for spraying activities, irrigation scheduling, and
frost prevention under CUPS.

2. Materials and Methods

In this section, we formalize our research task and detail the methods that we used
to accomplish it. Specifically, we describe the requirements that we attempted to satisfy
(Section 2.5) and discuss related efforts that inform our approach (Section 2.3). We also
overview the CUPS IoT infrastructure, the sensor data we collected (Section 2.4), the physics
model (Section 2.5.1), and the software (Section 2.5.2) that was used in this study. Finally,
in Section 2.5.3, we describe our deployment and plans for using this model as part of an
IoT decision support system for growers.

2.1. CUPS Physical Infrastructure and Sensing Equipment

Citrus Under Protective Screen (or CUPS) is a rectangular, field-scale, porous structure
for growing citrus trees. The distinct feature of this structure is a regular screen covering it
on four sides and the roof. The overall view of this structure is depicted in Figure 1 with a
close-up view of the edge of the screen in Figure 2 . The screen excludes the admission of
insects larger than the screen size but admits attenuated sunlight and ventilation. For HLB
prevention, the screen size should be no larger than 40 microns to prevent Asian Citrus
Psyllid infestation [19].

Figure 1. CUPS structure side view.

Figure 2. LREC CUPS edge and screen close-up photo.

The commercial-scale research structure located at LREC is approximately 5.5 m tall,
100 m wide, and 190 m long. The roof of the structure is supported by poles in a grid
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approximately 4.8 m and 8.5 m apart. Trees inside are planted every 2.4 × 4.3 m (for a total
capacity of 32 trees per row and 390 trees per acre). This research began before trees were
introduced as part of an effort by growers to understand the growing conditions within the
structure. As such, our data, model, and validation reflect the pre-tree period of the study.
We plan to validate our model further with young and mature trees as part of future work.

We collected sensor data on the climate conditions inside the CUPS using AcuRite
01075RM 5-in-1 weather stations [20] and Davis Instruments Vantage Pro 2 weather sta-
tions [21], both equipped with cup anemometers. AcuRite is a brand from Chaney Instru-
ment Company which is headquartered in Lake Geneva, WI USA. Davis Instruments is
headquartered in Hayward, CA USA. The weather stations are part of another IoT research
project in the CUPS. Thus, we leveraged the sensors and deployment infrastructure without
introducing changes that may impact other projects (and increase costs). The weather
stations that we used in this study were located in five locations (two outside the structure
and three inside) as shown in Figure 3.

The north out location was located approximately 100 m north, outside of the north end
of the CUPS. The anemometer at this location was mounted at a height of 10 m. The north
in location was located 160 m due south of north out (60 m inside the northern boundary of
the CUPS). The anemometer at this location was mounted at a height of 5 m. The middle in
location was 214 m due south of north out (114 m inside the northern CUPS boundary). The
anemometer at this location was mounted at a height of 1.5 m. The south in location was
276 m south of north out (176 m inside the northern CUPS boundary). The anemometer was
mounted at 1.5 m. Finally, south out was located in 302 m south of north out, immediately
outside the southernmost boundary of the CUPS, at a height of 1.5 m. While the sensors
were oriented along the north–south axis of the CUPS, they were not aligned perfectly due
to structure requirements dictated by the agricultural layout.

Figure 3. CUPS structure and sensor positioning.

2.2. Formalization of the Task

The specific research task we pursue with this effort is to develop and validate a CFD
model for the CUPS that can be parameterized by local atmospheric measurement values (from IoT
sensors) to produce a representation of airflow throughout the structure and to describe the accuracy
associated with this validation.

We focus on model validation, as opposed to specific use cases, because we believe
that an accurate model of airflow is foundational to multiple applications including frost
prevention, spraying activities, irrigation scheduling, and CUPS maintenance. Further, we
wish to understand whether relatively inexpensive meteorological sensors can be used at a
commercial scale or whether more expensive (and more precise) sensors are necessary. We
validate only horizontal wind speed because the weather stations to which we had access
for this study are both inexpensive enough for an agricultural deployment, and designed
for long-lived outdoor use. As a result, they only support cup anemometers.

We employed two separate validation methodologies. In the first, we constructed
a scaled-down physical replica of the CUPS which we instrumented with small-scale
anemometers that were more accurate than the weather station anemometers. We devel-
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oped, tested, and calibrated the CFD model under controlled indoor conditions using fans
to generate simulated wind (Section 2.6). Note that the results presented in Section 3.1
are for the model that generates results within the statistical uncertainty bounds of the
anemometers used in the controlled experiments. We made heavy use of the controlled
setting to explore different models with different hyperparameter settings that were not as
accurate. In the second, we back-tested the model identified in the controlled environment
using historical wind measurements taken from the full-scale CUPS structure (Section 3.2).

2.3. Related Work

The specific task of climate prediction for CUPS structures in California is an open
question because the design and use of CUPS screen technology for citrus is in its infancy.
Indeed, our team has access to the first (and currently only) commercial-scale CUPS research
structure in California at the Lindcove Research and Extension Center (LREC). Existing
research on CUPS is focused on productivity improvements enabled by CUPS, structure
design, and on the return-on-investment enabled by CUPS in Florida [7–9]. Our work is
distinct because it creates a digital model of meteorological conditions (specifically airflow)
within a commercial-scale CUPS located in California’s Central Valley.

Other work has successfully employed various types of modeling to support agri-
cultural practices [22]. Many target optimizing resource use and costs [23,24]. Still, other
related work advances the state of the art in IoT platforms [25], unmanned vehicles [26,27],
sensing techniques [28], and management systems [29]. Most existing agricultural systems
target specific crops, growing environments, and tasks.

More closely related works by Adamides et al. [30] and Park et al. [31] discuss in-depth
options for data collecting for climate prediction for use by growers. These studies focus
on open fields (without structures/enclosures) that are visible from satellite imagery and
relatively cheap to instrument using solar-powered weather stations. These efforts do
not mention the instruments and mechanics to analyze the data and either rely on expert
human labor or omit model details.

More generally, wind speed and climate prediction outside of agricultural sector appli-
cations are popular research tasks and can be categorized by the spatial scale over which the
predictions are made. Global climate and wind speed prediction, like Slingo et al. [16] con-
centrate on city, state, and larger aggregated areas. Smaller scale, outdoor wind monitoring,
and modeling have been the focus of wind farm settings [32–34].

Lawan et al. [17] provides a comprehensive review of different local point wind-speed
prediction models and divides them according to the timing between known data and
required prediction; however, none of the cited works take into account the wind map
of the local area. A recent example of a comparison of different models for this task was
described by Li et al. [35]. They consider AI and machine learning approaches for wind
speed prediction. Works that are more closely related to ours describe air movements in
enclosed areas such as enclosed spaces (rooms). Researchers model these settings using
computational fluid dynamics, e.g., [15]. These approaches grew in popularity during the
COVID-19 pandemic, where they were used for understanding human safety in these settings.
Examples of successful models can be found in the review by Mohmadi et al. [36]. Works
like Bhattacharyya et al. [37] and others [14,38] also inspire our work on wind and airflow
predictions. Most of those works use CFD models as we do. However, they focus on slow air
movement (not wind speed) and work with enclosed (non-porous) areas with limited inputs
and outputs (like vents, windows, and doors). The methods applied in those works influence
our approach but cannot be applied directly given the porosity and scale of the CUPS.

Other related work attempts to model tree and wind interaction. Schindler et al. [39],
for example, discusses the effects of different wind speed ranges on trees. Endalew et al. [40]
validates the wind and tree canopy interaction using similar CFD methods mentioned
above, but in a strictly controlled environment which allows their model to use solvers that
are too slow for commercial-scale agriculture and only capable of small-scale computation.
There are also other works [41,42] that employ CFD-related approaches. These all use
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different solvers, options, and turbulence properties from those we found to be useful
for commercial-scale CUPS. Others use different core calculation parameters that are not
appropriate for the setting we target. Although not directly applicable, these approaches
informed our model exploration.

Lastly, other work, such as Huang et al. [43], model wind speed and air movement
interacting with large solid objects (e.g., buildings). The goal of these works is to improve the
architectural design of buildings and streets by addressing climate, air quality, and noise issues.
Another example of such work is [44] which considers building geometry and Cao et al. [13]
which considers ventilation performance. These approaches are larger scale than other related
work on modeling wind flow patterns using CFD approaches but their models are less accurate
and less detailed compared to our approach for the settings we target. To our knowledge,
ours is the first research that focuses on modeling wind flow patterns inside CUPS.

2.4. Historical Data Description

For back-testing validation, we employ a historical archive of IoT sensor data from
the LREC CUPS. The weather stations of the CUPS are connected to a co-located server
(on-farm) via a wireless network. The server sends the data to campus cloud storage to
which it is connected via the Internet. Each weather station is equipped with sensors
for temperature, humidity, wind speed, wind direction, rain rate, UV level, and other
characteristics. The weather station collects the data from the sensors and reports the
records to the server every 5 min. This passive data collection has been ongoing since
January 2022 and has approximately 151,000 records for each weather station. We filter the
data to identify contiguous periods of measurement and to remove periods when one or
more sensors were malfunctioning. For the purposes of this work, we extract wind speed
and wind direction from the archive.

2.5. The CFD Model Requirements

We require that the CFD model accurately predicts wind motion (velocity and di-
rection) within the CUPS structure given wind sensor values upwind from the structure
(which we used as inputs to the model). Using such a model, it should be possible to
predict internal wind flows based on localized measurements of wind conditions. The
model should also be one that can be optimized (perhaps through the application of high-
performance computing resources) so that it can generate these internal predictions in
real-time or near real-time.

Many popular model choices for agricultural tasks [45] or wind prediction tasks [46]
are AI-based solutions. The advantage of using a physics-based approach as opposed to
one based strictly on machine learning is the ability to make an inference from relatively
parsimonious data. In contrast, the use of AI typically requires very large amounts of
data for training and establishment of initial values [47]. For the commercial scale CUPS,
generating datasets of sufficient size and quality necessary for training appears, at this
time, to be infeasible. We thus employ an approach that is physics-based and capable
of predicting wind speed and direction across a farm-scale screen structure using more
limited data that can be obtained in the commercial CUPS setting.

Our experience with IoT systems for agriculture and digital agriculture applications
have led us to believe that complex use cases such as frost prevention, spray control,
irrigation scheduling, etc. within the CUPS, require an airflow model that is capable of
representing conditions in both low and high-pressure zones (e.g., screen fabric edges)
and the turbulent flows that occur in these zones. Moreover, many of these applications
require real-time or near-real-time inferences and predictions. Our ability to optimize the
CFD model (possibly using large-scale computing resources such as the cloud) has also
influenced our choice of model.
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2.5.1. Choice of Model

To address the challenges imposed by these requirements, we propose to use a physics-
based computational model to model airflow under CUPS. Because our task involves
simulation of the interaction of the wind inside the CUPS structure, we employ a physical
model for fluid and gas interactions with other fluids and rigid bodies. The primary
model used in our equations for fluid flow and heat transfer is the Navier–Stokes model
(momentum equations), defined in Equation (1):

∂ρ

∂t
+

∂

∂xj

[
ρuj

]
= 0 (1)

The main factor contributing to the complexity of our research task is the permeable
nature of the screen. Because the screen has a complicated geometry, it is computationally
infeasible without very large-scale computing resources to treat each screen element as a
rigid body. The screen comprises polymer threads that are interwoven to create rectangular
openings no larger than 40 microns on a side. In a commercial structure measuring 190 m
by 100 m by 5.5 m, there are more than 1.4 × 1013 screen openings. This scale is too large to
make modeling of each screen element computationally practical. To reduce simulation
time, we treat the screen as a porous media [48]—a material containing voids through which
fluid can flow, to reduce the computational cost of the model. This theoretical concept has
been broadly used in industry [49,50] and research [51,52] shows that using such emulation
structures that are penetrative by target liquid or gas but have rigid base are effective (and
significantly more efficient) alternatives to rigid bodies.

We use the Darcy–Forchheimer equations for fluids through porous media [53] to
model screen porosity.

Si = −ν(Dij +
1
2

ρ|ukk|Fij)ui (2)

The unknown factors for Darcy–Forchheimer are the screen description coefficients. We
calculate the Darcy and Forchheimer coefficients using the geometrical calculation method
from a screen sample that we obtained from the CUPS structure. To enable this, we
take a high-resolution photo of the screen stretched over a dark sheet. From this image,
using image processing algorithms, we calculate the relation between the holes and the
material of the screen. We use this relation to estimate the coefficients as parameter
ϕ = Open area o f the per f orated plate

Total area o f the per f orated plate The steps to calculate the Forchheimer coefficient f are
performed using the following equations.

0 <
L
dh

< 0.015 and Re > 105 (3)

k =
[
0.707 · (1 − ϕ)0.375 + 1 − ϕ2

]
· 1

ϕ2 (4)

f =
k
L

(5)

Another way to estimate the coefficients is to run a parameter sweep of possible
coefficient values in a controlled setting and to choose the coefficients that correlate with
the most accurate registration between measurements and model outputs. We discuss this
approach more completely in Section 2.6.

2.5.2. Choice of Software

The software we employ must accomplish three interacting tasks. It must generate a
3D representation of the solid and porous objects that comprise the CUPS. It must solve the
physics equations that describe the airflow propagation through the structure. It must plot
and render the results of the physics modeling for visualization purposes.
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Blender: Modeling the Structure in 3D. We first create a full 3D model of the CUPS
structure that captures the required properties and allows us to apply numerical methods
and simulations to the model. Using Blender [54], we created a model 3D model of the
structure, following the guidelines and measurements that growers provided. The model
consists of a plane that represents ground in the area, a grid of poles in the shape of
cylinders, and 5 planes to represent different screen sections. All parts were imported
separately in STL format to apply specific interaction rules for OpenFOAM [18] use.

OpenFOAM: Meshing and calculation. Next, we discretize the 3D model onto a grid
of cells. The step involves running multiple distinct algorithms to build the environment
around the structure, importing each of the 3D model components (grid of poles and
screen sections), and applying their properties such as materials and their parameters.
Discretization is an essential part of the processing because all of the discussed models
calculate changes cell by cell, which means that the number of calculations required grows
with the number of cells, but also increases the accuracy of predictions. We found the
effective trade-off between speed and precision using the surfaceFeatureExtract [55] tool.
The area around solid objects has 5 layers with a cell size of approximately 5 cm × 10 cm ×
10 cm. The area surrounding the screen has 8–10 layers with a cell size of approximately
2 cm × 5 cm × 2 cm. The empty areas have the largest cell size of approximately 25 cm
× 50 cm × 25 cm. The layers of different size cells are separated by 1–3 layers to make
the transition gradual. This balance in large and small cells and the gradient in between
helps to reduce the calculation time while maintaining the accuracy of the calculation when
transitioning between areas.

To implement the CFD calculation using the cellular representation of the CUPS
structure, we used the open source software OpenFOAM v2312 [18]. This software includes
numerous solvers (algorithms to calculate the spreading of the forces, and input conditions
in the modeled environment) for fluids and rigid body interaction as well as ways to
include the Darcy–Forchheimer model. OpenFOAM is also broadly used to study the fluid
dynamics of wind in industry [14,44] and architecture [13] for safety testing. OpenFOAM
requires that we select a primary solver that will determine the main paths of calculations
and parameters that will be propagated, such as wind speed and pressure. It also takes as
input the rules for these calculations and the addition of other, more specific solvers for
enhanced model features (such as turbulence).

We use porousSimpleFoam [56] as the primary solver. This solver is steady-state
(i.e., the calculations are expected to stabilize over time). The solver propagates the forces
and changes, through the modeled space, until the most probable average conditions are
achieved. The porousSimpleFoam is part of the Simple family of solvers included with Open-
FOAM. However, this model does not include a turbulence calculation. We thus augment
the primary solver with the k-epsilon Reynolds Averaged Simulation (RAS) method [57] to
consider turbulence.

The overall algorithm is iterative. It discretizes time into steps that do not overlap. For
the CFD computations in this study, we set this iteration interval to be 250 ms. This value
was chosen experimentally. Larger values led to solver calculation failure (e.g., failure to
converge) and smaller values significantly increased the overall computation time. For
each iteration interval, the solver computes the new target parameters (e.g., wind speed,
wind velocity, and pressure) for each cell in the spatial representation of the CUPS, based
on the values in the cell and its neighboring cells at the previous iteration interval. The
model iterates until values in each cell do not differ by more than a fixed threshold, after
which time it is said to have “converged” to a steady state. Thus, for a set of input values,
the model converges to a corresponding steady state for each cell in the modeled space.

The convergence threshold for the residual differences at each time step is a hyperpa-
rameter of the CFD model. However, degenerate spatial tessellations of cells can lead to
premature and inaccurate convergence for some input values. For these reasons, we set the
threshold to be very low and monitor the residuals. We terminate the CFD computation
after 240 iterations. In all cases presented herein, the model reached convergence by this
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iteration interval. We also export the model state every 4 intervals to reduce the storage
footprint required to analyze the model output. Once converged, the model output de-
scribes a set of atmospheric conditions (e.g., wind speed, wind velocity, temperature, etc.)
at a centimeter scale ((i.e., in each cell) everywhere within the CUPS structure.

Data Processing. We use the ParaView [58] software package for plotting residuals,
displaying and exporting model results, and performing other data visualizations. This
software is compatible with the output format used by OpenFOAM so model data can be
ingressed and manipulated directly without modification.

2.5.3. Hardware

Our experimental setup consists of a Linux-based computer with Intel(R) Core(TM)
i7-9700K CPU @ 3.60 GHz, 32 Gb RAM. In this initial study, and because we were validating
the model accuracy (i.e., we did not have real-time deadlines), we used one core of the CPU.
As a result, modeling the commercial-scale CUPS required approximately 7 h of wall-clock
time to compute the model’s output. It is possible to improve this computational latency us-
ing shared-memory parallelism and/or a GPU implementation of the OpenFOAM solvers.
Real-time or near-real-time response will likely require cloud-based high-performance
computing resources. We plan to pursue these improvements as part of future work.

2.6. Modeling a Controlled Setting

For model validation, we constructed a scaled-down “physical model” of the CUPS
structure (shown in Figure 4). Figure 5 shows a digital rendering of this scaled test structure.
This scaled version was also useful for the validation of the Darcy–Forchheimer coefficient
estimations.

Figure 4. Scaled-down physical model of the LREC CUPS.

The scaled-down test structure used the same screen material as is installed on the
commercial-scale CUPS. We placed the test structure in an indoor controlled setting (a
storage area with climate control but no forced air) and instrumented it using anemometers
placed at different locations inside and outside of the test structure.
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Figure 5. Depiction of the 3D model test set with a fan inlet (on the left) in Blender.

CFD Model Development, Testing, and Calibration

The region of interest surrounding the test structure measures 244 × 122 × 67 cm,
which is approximately 1/50,000th the scale of the the region we model surrounding the
actual CUPS. We located two fans stacked vertically (used as a wind source) at a distance
of 80 cm from one end of the test structure along its longest dimension perpendicular
to the structure’s longest axis and placed the structure in the center of the test room for
all experiments.

Note that the origin wind velocity (the wind velocity on the the surface of each fan
blade) used to parameterize the CFD model is unknown and a specification that included
maximum windspeed was unavailable for the fan models in this study (we used fans
purchased at a local home-improvement store). Further, measuring the origin wind speed
exactly at the fan blade surface is infeasible. Thus, we calibrated the measurements by
starting the model with different origin wind speeds and comparing the average measured
speed (after stabilization) 70 cm from the fan blades to the modeled average for that location.
We tested the modeled origin wind speeds ranging from 4.5 m/s to 3.0 m/s, incrementing
by 0.1 m/s and found that 3.2 m/s matched the average measured wind speed at 70 cm the
most closely.

While both the test structure and the CUPS itself have angled side walls, we measured
wind flow outside the structure (between the wind source and the windward edge) and
within the maximal interior rectangular volume. This volume measured 170 cm × 63 cm ×
63 cm within the interior of the test structure.

We instrumented the test structure using UNI-T UT363BT Mini LCD Digital Bluetooth
Anemometers [59], equipped with a magnetic inductive wind speed sensor, which we used
to measure wind speed at five locations oriented linearly along the centerline of the long
axis. They were all suspended at a height of 30 cm from the floor.

Figure 6 further details the placement configuration. Location 1 (Loc1) was 70 cm
in front of the wind source and 10 cm in front of the leading edge of the test structure.
Locations 2 through 4 (denoted Loc2, Loc3, and Loc4) were inside the structure at a distance
of 138 cm, 172 cm, and 248 cm from the wind source, respectively.
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Figure 6. Calibration measurement locations relative to the test structure.

3. Results

In this section, we describe our validation results. We first present the results for the
scaled-down CUPS model in a controlled setting. We then present a validation study for
the commercial-scale CUPS using back-testing.

3.1. Controlled Validation Results

We set the fans to a constant speed and took measurements within the scaled-down
CUPS at each location every 5 s. Each experiment lasted 1000 s and we recorded measure-
ments during the last 30 s of the experiment to give the conditions within the structure
ample time to stabilize. This interval was determined empirically. During experimen-
tation, we observed that a change in the fan speed required as much as 20 s before the
measured values recentered to a new average speed. We chose 30 s to be certain of stability
and verified that longer intervals after a change did not alter the standard deviation of
the measurements substantively. We chose 1000 s of experimentation time fearing that
conditions in the room outside the structure would need time to stabilize as well. Over
the course of many validations, we did not observe variation caused by the length of the
experimentation interval. We chose the last 30 s of the experimental period to be maximally
conservative with respect to conditions stabilizing but shorter experimental intervals would
likely produce a similar result. The room temperature during the experiments was 18 ◦C.

We modeled this structure using the OpenFOAM model (and the porousSimpleFoam
solver) as described in Section 2.5.2. porousSimpleFoam is a steady-state solver, which
means it returns average values once it converges. The model output is a gridded 3-
dimensional rectangular volume of wind speed vectors. We used OpenFOAM’s adaptive
mesh refinement feature [60] to generate the model grid that was eventually used to
compute the wind velocities based on the internal geometry of the test structure. For
validation purposes, we considered only the modeled values nearest the sensor locations.

Figure 7 shows the horizontal wind speed (on the y-axis) corresponding to the horizon-
tal distance from the wind sources (along the x-axis) in centimeters. The vertical red lines
indicate the boundaries of the maximal rectangular inner volume of the test structure. Data
were taken from each sensor location over a 1000 second experiment period is summarized
as a “box-and-whiskers” plot. The x-axis is the horizontal distance in centimeters from the
wind source and y-axis is the wind speed in meters per second (m/s).

We depict the sensor measurement data for each location using “box-and-whisker”
plots in which the vertical box boundaries show the upper and lower quartiles and the
whiskers depict the extremum. The blue line in the figure shows the average horizontal
wind speed computed by the OpenFOAM steady-state solver along the centerline of the
test structure (i.e., through the sensor locations).
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Figure 7. Controlled test structure model validation results. The blue line shows model prediction,
the red lines depict the edges of the structure and the pink boxplots show sensor measurements.

Table 1 further details these results. For each sensor location, column 2 shows the
average measurement and standard deviation in meters per second, column 3 gives the
corresponding modeled average value in meters per second and column 4 gives the two-
sided 0.95 confidence interval on the mean from column 2. The modeled values for Loc1,
Loc2, and Loc3 fall within the corresponding confidence intervals and Loc4 (shown in
boldface) does not, but the measurement values recorded during the last 30 s of the
experiment are all 1.29, making the confidence interval computation degenerate. If we
substitute the manufacturer’s error interval of ±0.1 m/s for the sample standard deviation
associated with measurement uncertainty, Loc4 would also be within statistical tolerance.

Table 1. Controlled test structure measurements.

Loc Measurement (m/s) Model Avg (m/s) Conf. Int.

Loc1 avg: 2.58 sd: 0.20 2.65 (2.37, 2.79)

Loc2 avg: 1.78 sd: 0.14 1.87 (1.64, 1.94)

Loc3 avg: 1.50 sd: 0.11 1.68 (1.37, 1.61)

Loc4 avg: 1.29 sd: n/a 1.24 n/a

The lack of a sample standard deviation for Loc4 illustrates an important factor with
respect to the practicality of the approach we validated. In this controlled setting, we chose
small ruggedized anemometers with uncertainty intervals reported by their manufacturer
that were substantially narrower than the error intervals for weather stations available
in the full-scale CUPS. In neither setting (small-scale or full-scale) did the manufacturers
report an uncertainty distribution for their anemometers nor did they indicate whether the
interval (given as a ± value) corresponds to a specific α confidence level. Following best
practices for standard uncertainty [61], we assumed that the measurement averages were
normal with an unknown variance and used a Student’s t-statistic to compute confidence
intervals. We chose α = 0.05 as a standard confidence level [61]. For Loc4, we expected but
did not observe measurements that exhibited sample variation. More precise laboratory-
grade anemometers (to which we did not have access for this study) would allow for a
more precise validation of Loc4. Thus, as it is, the validation is most properly construed as
validating the CFD-modeled results against anemometers that are designed to be relatively
inexpensive and deployed outdoors.
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Note that the controlled-setting results represent the end-point of a considerable
experimental exploration. Formulating the CFD model that ultimately generated the
comparison shown in Figure 7 and Table 1 required a number of design choices typical
of CFD model construction. That is, the process of formulating a CFD model is neither
“turn-key” nor “black-box”. By working with a scaled-down apparatus, we were able to
develop and validate a model through repeated experiments that were not possible in an
uncontrolled setting.

From the data, however, it is clear that the eventual model we developed is within sta-
tistical tolerance for the sensors we deployed in the small-scale, controlled setting. It is this
model that we used with historical data to validate the results for the full-scale structure.

3.2. Back-Testing Results for Commercial-Scale CUPS

For validation in the full-scale CUPS structure, we selected a 25 min period from
the historical dataset which has a stable average wind speed and direction. We define
stable as varying less than 3 m/s between subsequent measurements and within 5 m/s
of the period average. In addition, we only considered candidate periods with less than
20 degrees variance in wind direction, between measurements. We chose these parameters
because they identified a period of time in the historical data archive during which the
environmental conditions in and around the LREC CUPS were most similar to the con-
ditions we were able to maintain in the controlled setting. That is, we identified in the
historical archive of sensor data from the commercial-scale CUPS a period of time during
which the inter-measurement difference was less than 3 m/s and all measurements were
within 5 m/s of the average. During this period, we also needed the wind direction to
be constant (as in the controlled setting) and from the north (to align the wind direction
with the orientation of the CUPS and the sensors within it). Finally, we wished to use at
least 5 measurement values to compute measurement confidence intervals. The smallest
variation in wind direction over a 5 measurement period (25 min) when the wind was
from the north, the inter-measurement differences were less than 3 m/s and the average
was 5 m/s was 20 degrees. In addition, because of the limitations of cup anemometers, all
wind speeds are measured only horizontally.

We built the OpenFOAM model in the same way as we did for the small-scale test
structure. We use the dimensions of the actual CUPS structure and, again, choose the grid
locations (after adaptive mesh refinement) closest to the anemometers in 3 dimensions.

Figure 8 shows the results of an example backtest for the 25 min period between
16:31 and 16:56 on 22 June 2022. We parameterized the initial conditions for the model
using the wind speed measured at north out at the beginning of the time period. In the
figure, the box-and-whiskers plots show the average, 0.95 quantiles, and the extrema for the
measurement values taken from each location. The continuous blue line shows the modeled
prediction converged to an average value for the horizontal path within the simulation
that most nearly intersects the anemometer positions in three dimensions (i.e., the location
within the simulation grid closest to each sensor). The distances along the x-axis are the
horizontal distances from the north out sensor in meters. The red vertical lines identify the
boundaries of the maximal rectangular volume within the CUPS structure.

Table 2 compares the average measurements for the five different anemometer lo-
cations to the corresponding average modeled values that were provided by the CFD
computation. Note that for the historical data from the commercial-scale CUPS, the hori-
zontal wind speed measurements were 1 min averages reported every 5 min. The units
for the average measurements, the standard deviations, and the modeled values are all
meters per second. Column 4 gives the two-sided 0.95 confidence interval on the average
measurement given in column 2.
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Figure 8. CUPS structure model back-test results. The blue line shows model prediction, the red lines
depict the edges of the structure and the boxplots show sensor measurements.

Table 2. Average CUPS modeled values compared to corresponding average measurements.

Location Measurement (m/s) Model Average (m/s) Conf. Int.

north out avg: 10.2 sd: 2.37 9.2 (7.27, 13.1)

north in avg: 4.91 sd: 1.41 2.74 (3.17, 6.65)

middle in avg: 4.73 sd: 1.56 4.16 (2.80, 6.66)

south in avg: 4.91 sd: 0.83 4.95 (3.89, 5.93)

south out avg: 3.66 sd: 0.49 2.47 (3.06, 4.26)

In this case, we compute each average from 5 measurements taken 5 min apart.
The t-statistic for the 0.95 two-sided confidence bounds on these averages is 2.776 with
4 degrees of freedom. Note that only the modeled value for south out (boldfaced) falls
outside its corresponding confidence interval. We believe that this the discrepancy is due to
turbulence effects (which we do not model) caused by a growing block located immediately
outside the CUPS on its south side next to the south out sensor. Like the data taken from
the controlled setting, these data indicate that the interior modeled values are within the
confidence intervals surrounding the corresponding average measurements under standard
assumptions about the measurement uncertainty.

Given the resolution of the measurement data, this comparison is quite good. Taken
with the data shown in Table 1, the evidence is that the OpenFOAM model is accurate
to within the statistical tolerances of the measurement data in both the controlled setting
and the in situ full-scale setting. Further the anemometer accuracy for the AcuRite sensors
in (middle in, south in, and south out) as ±1.87 m/s and for the Davis Instruments sensors
(north out and north in) as ±0.89 m/s according to their respective manufacturers. Thus,
confidence bounds on the average measurements are likely wider than those given by
a t-statistic [62]. At some small level of measurement uncertainty, the model and the
measurements must differ, but determining this difference would require significantly
more sophisticated and expensive anemometers than is practical for this setting.
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4. Discussion

We performed two separate model validations of the same CFD model—one using
a controlled “mock-up” of the commercial structure and the other using the structure
itself. Each is intended to provide a different level of assurance that the CFD model
represents airflow within the CUPS accurately. Our expectation was that the model would
register with measurement more closely in a small-scale, controlled setting than in the
field with the commercial structure. In the controlled setting, we were able to vary a
single parameter of interest (the external wind vector) while holding all other interacting
parameters relatively constant. We also used more accurate (but less durable) anemometers
in the controlled setting to try and minimize the effects of measurement uncertainty on
model validation. These results, summarized in Figure 7, provide confidence that the
model correctly represents airflow through the structure at the meter scale.

We also wanted to understand the degree to which model accuracy was attenuated
(versus the results shown in Figure 7) by the additional factors we could not control for the
commercial-scale CUPS at LREC and by physical scale. Figure 8 shows that the CFD model’s
accuracy is decreased relative to the controlled setting. However, Tables 1 and 2 both
indicate that the modeled values fall within the confidence intervals for the corresponding
measurements in each setting. Thus, in the experiments using the commercial-scale CUPS
and back-testing, it is possible to treat the effects of uncontrolled factors and scale as
statistical measurement uncertainty for the purposes of evaluating model accuracy.

While our validation results are promising, it is important to acknowledge several
limitations of the current study to make space for future work. By addressing the challenges
that remain, we aim to develop a robust and reliable tool that can support decision-making
in agriculture, ultimately leading to more sustainable and productive farming practices.

4.1. Validation vs. Application

In this study, we have focused on validating our proposed model rather than directly
implementing it as part of an agricultural application. We made this decision for two
reasons. First, we were unsure of the extent to which the modeling technique would be
“successful” in terms of its accuracy and we did not want to build an application without
first understanding how well the model would perform. Secondly, our anecdotal experience
in fielding IoT systems for agriculture led us to believe that no application we developed
based on such a model would be considered trustworthy without this validation.

Another important aspect of this work is that we chose a validation approach based
on what we anticipated would be the ultimate requirements for the model, namely that
it was able to predict the final conditions in the structure based on conditions outside the
structure. That is, in all validation experiments, we used the measured airflow outside the
structure (upwind) as the initial inputs in the model, and compared the modeled values to
measurements taken from within the structure.

Our view, in this regard, was that this approach was the most practical validation since
many growing regions are already instrumented with local weather stations. However,
other validations are possible. For example, it is possible to parameterize the model with
inputs from all but one of the sensors (not just the windward outside sensor). If our
results had not indicated that the modeled results were within the bounds of statistical
uncertainty, we would have conducted this validation. The consequence, however, would
be that modeling a CUPS would depend critically on an array of sensors inside and outside
the structure and not just sensors of external conditions.

The number of external sensors that will ultimately be necessary is an open question.
Based on the results of this study, we believe that an upwind external sensor is sufficient.
This result argues for at least 4 such sensors—one located outside each of the four sides
of the structure—in a practical setting with the incident wind computed from two of the
sensors. However, nearby structures and growing blocks might create external turbulence
effects that we have not modeled or validated.
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4.2. Real-Time Processing and Computational Demands

Our model is not yet capable of real-time processing, which is a critical requirement
for future work. Our work does illustrate the baseline case of using a steady-state model
and a single, relatively inexpensive, single CPU as a way of calibrating the degree of opti-
mization that will be necessary to achieve real-time response. There are a few approaches
to improving the wall-clock latency associated with computing the model results. Certainly,
a distributed system with more powerful computing elements, including GPUs, is an
appropriate platform. However, OpenFOAM does not support this deployment scenario as
part of its freely available, open-source distribution. Commercially available CFD solvers
do make these deployment options available. Thus, another open question concerns the
dollar cost, in terms of the hardware and software resources, that will be necessary to
achieve real-time or near real-time computing times.

One way to address this question is to employ currently supported parallel computing
techniques such as the Message Passing Interface (MPI) could allow the model to split tasks
across multiple processors and reduce overall computation time. Typical CFD speedups,
however, indicate that this approach alone will be insufficient.

Another optimization approach is based on the observation that the main contribution
to the computation time comes from detail-oriented computational meshing with relatively
small cells. We plan to work on improving the meshing balance between small cells in
the areas of high importance and large cells in the less significant areas, to lower the
computational cost without significant loss of accuracy. Finally, we plan to investigate how
using the results of prediction from OpenFOAM that have proven to be accurate in this
work as training data for a model that require more initial data but process the calculation
significantly faster, such as deep learning models.

4.3. Adding More Target Parameters

One of the most important advantages of the model we chose is that it is relatively
easy to add other target parameters. It is important that the model is versatile and able to
accommodate many requirements that agriculture imposes. Adding another parameter,
such as temperature, requires only temperature input and temperature interactions with
the existing 3D model rigid bodies. As a direct example of the next step in this area, we can
add temperature since thermal spread equations can be a part of the current solver.

We believe that this extensibility is a feature of our approach. For example, heat
transfer (which the current model computes but which we have not validated) will be
important to applications such as frost prevention and irrigation scheduling. Validation
of the model accuracy for these additional target parameters will likely require additional
sensing infrastructure. However, the results of this study indicate that good model accuracy
based on the physics of fluid flow is possible for these parameters as well.

5. Conclusions

With this paper, we present a novel advance in smart agriculture that provides climate
modeling and prediction for Citrus Under Protective Screens (CUPS). CUPS structures are
used in citrus production in Florida and elsewhere to exclude large insects (including the
vector that causes citrus greening). However, screen structures also change the climate
conditions (airflow, temperature, humidity, solar radiation, etc.) inside the CUPS, requiring
that adjustments be made to farming practices (irrigation, spray applications, disease
control, etc.). The goal of our research is to develop techniques that enable us to better
understand the impacts of using CUPS for growing citrus in California in order to expedite
adoption of CUPS and to encourage the development of smart agriculture solutions for
CUPS structures.

In this paper, we develop and describe a computational fluid dynamics (CFD) model to
capture, simulate, and predict the airflow patterns inside CUPS (from the airflow measure-
ments outside of CUPS). Accurate predictions of airflow are key for informing application
practices of sprays (e.g., pesticide) and water (for irrigation and frost mitigation) inside
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CUPS. We validate our model using both a scaled-down and commercial-scale CUPS de-
ployment. We use an IoT deployment of devices and sensors to perform this validation.
We find that our model is sufficiently accurate in both cases, suggesting that it has the
potential to enhance the next generation in decision support and intelligent automation for
CUPS growers.
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