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ABSTRACT Accurate prediction of sugarcane yields is crucial, particularly for developing countries like 

India, due to its economic significance and impact on farmers’ livelihood. Unexpected fluctuations in 

production can affect farmers’ income and the stability of the market, emphasizing the necessity of accurate 

forecasting to avoid adverse economic consequences. This research aims to enhance the precision of 

sugarcane yield prediction in India by developing a stacking ensemble learning model. The developed model 

incorporates the least absolute shrink and selection operator (LASSO), artificial neural network (ANN), and 

random forest (RF) as base models alongside random forest regression (RFR) and Ridge regression (RR) as 

meta-models and utilizes principal component analysis (PCA) and SHAPLEY values to reduce dimensions 

and explore feature correlations within the dataset. The data used in the study is obtained from ICRISAT and 

NASA databases covering 40 years (1982 to 2021) of meteorological information and sugarcane yield data 

across 24 districts of Uttar Pradesh, India. The model’s generalizability is further improved through 5-fold 

cross-validation. For comparison, the vector autoregression moving average (VARMA) statistical method 

was also applied and it was observed that the outcome was not desirable. The findings indicate competence 

of stacking ensemble model over individual models like LASSO, ANN, KNN, RF, and SVR.  

INDEX TERMS Sugarcane Forecasting, Ensemble learning, Machine learning, Agriculture, Meteorological 

Data. 

ABBREVIATIONS 
 VARMA, Vector Autoregression Moving Average; ML, Machine learning; EL, Ensemble learning; RF, 

Random Forest; ANNs, Artificial Neural Networks; KNN, k-nearest neighbour; RF, Random forest; LASSO, 

The least absolute shrink and selection operator regression; RR, Ridge regression, RFR, Random Forest 

Regressor; PCA, Principal Component Analysis; R2, Coefficient of determination; RMSE, Root Mean Square 

Error; MAE, Mean Absolute Error;  MSE, Mean Squared Error; MAPE, Mean Absolute Percentage Error; 

GDP, Gross Domestic Product; CCF, Comprehensive Climate Factor; UP, Uttar Pradesh; ICRISAT, 

International Crops Research Institute for the Semi-Arid Tropics; NASA, National Aeronautics and Space 

Administration; CV, Cross Validation; kPa, Kilo Pascal; m/s, Meter/Second; wfv, Water Fraction by Volume.

I. INTRODUCTION 

India is one of the world’s largest producers of sugarcane 

after Brazil [1]. Sugarcane is a crucial cash crop that plays a 

vital role in the country’s agricultural economy. The 

cultivation of sugarcane serves as a dual powerhouse, 

boosting the national Gross Domestic Product and serving as 

the lifeblood for millions of farmers and industry laborers. 

This versatile plant produces various sugars and holds 

potential as a renewable energy source, capable of generating 

electricity, various bio-products, and biofuels. Due to its 

multifaceted nature, it is also known as “Wonder Cane” [2]. 
Accurate prediction of sugarcane yield holds significant 

importance in India’s agricultural as well as economic sector 

[3]. The correlation between crop yield and market prices is 

deeply interconnected. Unexpected decline in production can 

lead to reduced surplus available for sale and diminished 

earnings for farmers, resulting in price hikes. Conversely, 

excessive production can trigger price drops, adversely 

affecting farmers’ incomes [4]. The impact of price 

fluctuations of sugarcane plays a pivotal role in determining 

inflation rates, wages, salaries, and various economic 

strategies. The cost of raw materials of sugarcane for 

companies and their competitive positions in the market are 

directly impacted by production levels [5]. 

Various factors, from the unpredictable nature of weather 

patterns to developments in agricultural technology, impact 

the production of crops [6], [7]. Factors such as traits 

inherent in seeds, methods to combat pests, improved 

management techniques, and adjustments in the application 

of fertilizers play important roles in managing crop yield. 
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Other factors that influence the yield of sugarcane include 

diverse land types, limited resource availability, and 

fluctuating weather patterns [8], [9], [10]. 

Scientists across the globe are focusing on methods that 

can predict crop yields as accurately and as consistently as 

possible [11], [12]. Initially, sugarcane yield forecasting 

focused on statistical models such as ARIMA, SARIMA, 

and Exponential Smoothing [13], [14]. However, as research 

progressed, attention shifted towards exploring more 

advanced techniques, including regression analysis [15], 

machine learning algorithms[16], and crop simulation 

models. Nowadays, the integration of machine learning and 

artificial intelligence has encouraged their extensive 

utilization in agriculture, especially for forecasting crop 

yields [17] [18]. In conventional machine learning methods, 

predicting agricultural output from meteorological data 

typically involves utilizing a single model, like linear 

regression or decision trees  [19]. While these models can 

provide reasonable predictions under certain conditions, they 

may not fully capture the complexities and nuances present 

in the relationships between meteorological factors and crop 

yields [20], [21], [22]. 

In contrast, Ensemble Learning (EL) offers a more 

efficient solution to enhance predictive accuracy by 

combining the strengths of multiple models [23]. EL 

combines several independent models, also referred to as 

weak learners or base models, to generate a prediction model 

that is more reliable and accurate [24]. The core principle 

behind EL lies in the belief that the collective wisdom of 

several models can outperform any individual model since 

the errors made by individual models often offset or diminish 

within the ensemble [25]. By obtaining reliable predictions, 

farmers can proactively prepare and implement suitable 

strategies to tackle future challenges in agriculture [26] [27]. 

Table I provides the prior works in the domain of yield 

forecasting.  

The present research aims to exploit the potential of EL 

in developing a robust model for forecasting sugarcane 

yields in India.  

The developed approach integrates five distinct machine 

learning models, from which the top three performers are 

chosen as base models for stacking, and then RR and RFR 

are used as meta models. Additionally, feature analysis is 

conducted to understand the relative importance of 

meteorological variables in predicting sugarcane yields. 

Furthermore, dimensionality reduction techniques such as 

PCA and Shapley values have been incorporated to improve 

computational efficiency and streamline model performance. 

For improving the generativity of the model 5-fold cross-

validation technique has been used. Statistical technique 

VARMA has also been used for forecasting and comparing 

the results with EL techniques. 

The rest of this paper is organized as follows: Section II 

describes the materials and methods. Section III discusses 

the experimental results and comparison. Section IV shows 

the analysis and discussion. Finally, the conclusion is 

presented in Section V. 

II. MATERIALS AND METHODS 

In this section, study area is described along with data 

collection process and the methodology developed for the 

proposed stacking EL model. 

A. STUDY AREA 

Study area taken is of Uttar Pradesh (UP), situated in the 

northern part of India with an area of 243286 km2 with 

coordinates 26.85°N 80.91°E. UP covers 48% of the nation’s 

sugarcane cultivation area and contributes 50% of the total 

production of India, making it the leading sugarcane-

producing state in India [28] offering ideal growing 

conditions for sugarcane like sufficient sunshine, suitable 

temperature, simultaneous rainfall and heat, and moderate 

precipitation. 

Sugarcane and climatic data were collected for twenty-four 

districts of UP, known for their significant sugarcane 

production. This data covers a period between 1982 to 2021. 

Figure 1 shows the geographical location of the area 

considered in this study  [29]. 

B. DATA COLLECTION 

1) YIELD DATA 

Datasets with respect to yield were obtained from 

International Crops Research Institute for the Semi-Arid 

Tropics (ICRISAT) databases from the prominent website 

https://www.icrisat.org//?s=sugarcane [30]. A 

comprehensive collection of 24 district-level datasets 

pertaining to sugarcane production and planting areas was 

compiled for around 40 years, from 1982 through 2021. 

Equation (1) given below is used for calculating sugarcane 

yield: 

 

𝑌𝑖 =
𝑃𝑖

𝐴𝑖
   (1) 

where 𝑌𝑖 is the yield of sugarcane; 𝑃𝑖 is the district-level 

sugarcane production and 𝐴𝑖 is the planted area of sugarcane 

at the district level. Figure 2 displays a portion of data 

concerning the top five sugarcane-producing districts. It 

includes information on area, production, and yield for each 

district. 

2) METEOROLOGICAL DATA 

The meteorological data sets were collected from NASA 

https://power.larc.nasa.gov/data-access-viewer/. [31]. The 

geographic spread of these meteorological observation 

stations is illustrated in Figure 2. Table II provides the 

meteorological variables that are considered for the present 

analysis.

https://www.icrisat.org/?s=sugarcane
https://power.larc.nasa.gov/data-access-viewer/
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Figure 1. Geographical map of UP [29]

 
  

TABLE I 

PREVIOUS WORKS DONE ON ESTIMATING THE YIELD FOR DIFFERENT CROPS   

Year Objective Method(s) used Data Study Area 

2011[32] To forecast the sugarcane 

area, production, and yield  

Univariate ARIMA models Sugarcane production data from 

1950 to 2007  

Tamil Nadu, India 

2011[33] To forecast the sugarcane 

area, production, and 

productivity 

Univariate ARIMA models Sugarcane production data from 

1950 to 2012  

Uttar Pradesh and 

Tamil Nadu, India 

2019[21] EL for a cropping systems 

simulator (APSIM) to forecast 

the production of maize  

LASSO Regression, RR, RF, 

Extreme Gradient Boosting, 

and their ensembles 

Maize Management, cultivar, 

and environmental factors taken 

from 1983 to 2016 

Kelley and 

Nashua, United 

States of America 

2020[6] To explore the influence of 

historical climate fluctuations 

on the yields of five major 

cereal crops  

DSSAT crop model Five main cereal crops: barley, 

maize, millet, sorghum, and 

wheat yield data from 1979 to 

2014:  

Ethiopia 

2021[34] To check the impact of 

climate variability on yield 

variation 

CCF approach determines the 

sensitivity 

Socio-economic and climate data 

for Rice, Maize, and Wheat from 

1981 to 2015 

North and South 

regions of China 

2021[35] To investigate the best 

ARIMA model for sugarcane 

yield forecasting 

Different variants of ARIMA 

model 

Sugarcane production data from 

1950 to 2018 

Uttar Pradesh, 

India 

2021[36] To forecast sugarcane yield 

using Various weighted and 

un-weighted weather indices 

Statistical model using 

regression techniques 

35 years of historical weather 

and sugarcane yield data from 

1981 to 2015 

Uttar Pradesh, 

India 

2021[9] To investigate varying trends 

in ten climate variable and 

their impact on the wheat 

yield in India 

Regression modelling and 

correlation analysis 

Wheat yield data from 1986 to 

2015 

India 

2022[37] To evaluate the effects of 

severe climatic indices and the 

mean climate on the actual 

and simulated yields of 

soybeans 

DSSAT-CROPGRO soybean 

model 

Weather and Soybeans yield data 

from 1981 to 2017  

Northeast China 

2023[38] To develop climate-based 

soybean yield prediction 

models using machine 

learning 

ML algorithms: MLR, MLP, 

SVM, RF, XG Boosting 
Soybean yield data from 2002 to 

2021 
Mato Grosso do 

Sul, Brazil 
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2023[39] To estimate the crop yield 

using ML techniques  

ML algorithms: RF, SVR, 

LSTM, Gradient Descent, 

LASSO 

Yield data of Mustard Wheat, 

Barley, Bajra, Jowar, Onion, and 

Maize crops from 33 districts 

from 1997to 2019 

Rajasthan, India 

2023[24] To develop a soybean 

forecasting model based on 

the stacking EL framework 

using weather parameters 

KNN, RF and SVR used as the 

base-models and RR as meta 

model to establish stacking EL 

framework 

Meteorological records along 

with Soybean yield data 

spanning a period of 34 years. 

China 

 

(a)

(b)

(c) 
FIGURE 2. (a) Area, (b) Production, and (c) Yield of five districts of UP

TABLE II 

PARAMETERS CONSIDERED IN THIS STUDY 
Sugarcane Parameters 

Features Description Units 

Area Sugarcane Cultivation 

area 

1000 Hectares 

Production Sugarcane production 1000 Ton 

Saharanpur Muzaffarnagar Meerut Moradabad Bijnor

Saharanpur Muzaffarnagar Meerut Moradabad Bijnor

Saharanpur Muzaffarnagar Meerut Moradabad Bijnor
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Yield 

(Productivity) 

Production of sugarcane 

per unit area 

Kg per 

Hectare 

Meteorological Parameters 

Features Description Units 

PS Surface Pressure kPa 

T2M Temperature at 2 Meters °C 

T2M_MAX                Temperature at 2 Meters 

Maximum 

°C 

T2M_MIN                  Temperature at 2 Meters 

Minimum 

°C 

PRECTOTCORR Precipitation Corrected mm/day 

QV2M Specific Humidity at 2 

Meters: It is the water 

vapor weight per unit of 

air. 

grams of 

water vapor 

per kilogram 

of air (g/kg) 

RH2M      Relative Humidity at 2 

Meters measures the 

moisture in the air 

compared to its 

maximum capacity at a 

given temperature. 

Percentage 

(%) 

WS2M Wind Speed at 2 Meters m/s 

WS2M_MAX                 Wind Speed at 2 Meters 

Maximum 

m/s 

WS2M_MIN                 Wind Speed at 2 Meters 

Minimum 

m/s 

GWETTOP Surface Soil Wetness  wfv or m3m-3 

GWETPROF Profile Soil Moisture  wfv or m3m-3 

GWETROOT    Root Zone Soil Wetness  wfv or m3m-3 

C. METHODOLOGY 

In order to achieve the set research objectives, several steps 

were undertaken. First, the meteorological data related to 

sugarcane yield at the district level were obtained. Next, the 

records of sugarcane meteorological factors were averaged 

annually. PCA and SHAPLEY were used to reduce 

dimensionality and analyse feature correlations. After 

applying VARMA Statistical method, five machine learning 

models were employed, and the best three were selected for 

further analysis using MAPE, RMSE, MAE, and 𝑅2 values. 

Finally, a stacking model was developed, utilizing the 

prediction strengths of various machine learning algorithms to 

create an EL framework. We also incorporated a 5-fold cross-

validation approach to enhance the model’s robustness and 

generalizability. As shown in Figure 3, the research 

framework comprises four main components. 

1) DATA PROCESSING 

Effective data pre-processing is fundamental to ensure the 

accuracy and robustness of sugarcane yield forecasting 

models. This study involves the processing of yield and 

meteorological data from 24 sugarcane-producing districts in 

Uttar Pradesh over a 40-year period.  

The dataset consists of 15 input variables and one 

output variable, organized into a time series format with 24 

rows and 16 columns for each year. Each variable is 

represented numerically. To prepare the data for analysis, a 

thorough examination was conducted to identify and address 

missing values, outliers, and inconsistencies. The processed 

data for Meerut district is shown in the Figure 4. 

The meteorological data obtained included a broad 

range of features, including three related to soil properties, 

eleven related to wind and pressure, four related to humidity 

and precipitation, twelve in solar fluxes, and eight related to 

temperature. However, after consulting the farmers and plant 

protection experts, the dataset was refined to include 13 key 

features: three related to soil properties, four related to wind 

and surface, three related to humidity and precipitation, and 

three related to temperature. The original meteorological 

data was recorded on a monthly basis. To facilitate analysis, 

the data was aggregated to an annual level by calculating the 

average of the monthly values for each year. Finally, a 

dataset containing 13 features for each of the 24 districts, 

spanning a 40-year period was obtained.  

2) FEATURE REDUCTION AND FEATURE IMPORTANCE 

PCA and SHAPLEY were incorporated in the study to 

optimize the dataset by reducing the dimensionality of the 

features. This analysis helped in identifying the correlation 

between meteorological factors and sugarcane yield. 

3) DEVELOPING THE STACKING MODEL 

Stacking EL model was developed by merging individual base 

models’ unique strengths and traits to enhance the precision 

and robustness in forecasting sugarcane yields. Construction of 

the model is described in detail in the following subsections:  

 
a. CONSTRUCTION OF THE STACKING ENSEMBLE 

LEARNING MODEL 

Stacking, also known as Stacked Generalization, is a 

combination technique that merges multiple base models 

through meta-models. Unlike traditional methods such as 

bagging and boosting that aggregate outcome from base 

learners, stacking constructs a multi-layered learning system 

by integrating diverse base learners for model fusion. [40]. 

The different Base and Meta-models used in this study are 

described in Table III. 

To enhance the model’s stability and 

generalizability, we used the 5-fold cross-validation 

approach. This approach divides the dataset into five equal-

sized folds, where the model is trained on four folds and 



 

VOLUME XX, 2017 7 

validated on the remaining fold. This process is repeated five 

times, ensuring that each fold serves as the validation set 

once. By averaging the performance metrics across all folds, 

we obtain a more reliable and unbiased estimate of the 

model's predictive accuracy. This approach mitigates the risk 

of overfitting and ensures that the model’s performance is 

not dependent on a particular data split, thereby improving 

its generalizability to unseen data. 

For tuning the hyperparameters of the employed models, 

Grid Search CV is utilized to find the optimal 

hyperparameter settings. This technique systematically 

explores the hyperparameter space and selects the 

combination that results in the best model performance. 

Table IV displays the best-tuned parameters of all employed 

methods. 

 

 

 

Figure 3. Sugarcane Yield Prediction Framework’s Technological Roadmap 

 

 

 
FIGURE 4. Dataset for Meerut District  

 

 

 

TABLE III 

METHOD & ALGORITHMS USED IN THIS STUDY 

Algorithm Definition Applicability  Key Parameters Advantages 

VARMA 

[41] 

It is a statistical method that combine vector 

autoregression and moving average 

Dealing with interrelated 

time series data, 

Lag order, error term, 

coefficient matrices 

Captures complex 

dynamic relationship 
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multivariate time series 

data 

in multivariate time 

series data 

SVR[42] It a regression-based supervised ML algorithm 

that finds a hyperplane to best fit data while 

minimizing prediction errors. 

When the data has non-

linear patterns and complex 

relationships between 

variables. 

Kernel type, kernel 

parameters (e.g., gamma, 

degree), regularization (C), 

epsilon (ε) 

Effective in handling 

non-linear 

relationships. 

It can be adapted to 

various kernel 

functions. 

KNN[43] KNN, a versatile lazy learning algorithm, 

handles classification and regression tasks by 

predicting based on the majority class or the 

mean of the k nearest neighbors. 

When data exhibits local 

patterns and neighbors’ 

behavior is relevant. 

Number of neighbors (k), 

distance metric, weight 

function (uniform or 

distance-based), etc. 

Simple and easy to 

understand.  

Non-parametric and 

adaptable to data 

changes. 

RF[44] RF, an EL algorithm, combines multiple 

decision trees for predictions in classification 

and regression tasks. 

When dealing with noisy 

data and complex 

relationships between 

variables. 

Number of trees, tree 

depth, minimum samples 

per leaf, maximum 

features, bootstrap samples, 

etc 

High accuracy and 

robustness. 

Handles feature 

importance and 

variable interactions 

well. 

LASSO[45] LASSO, L1 regularization [46], is a linear 

regression technique that adds a penalty term 

to the linear regression objective function. It 

can be used for feature selection and 

regularization. 

Dealing with high-

dimensional data and 

multi-collinearity issues. 

Regularization strength (λ), 

alpha (α) 

Feature selection by 

shrinking some 

coefficients to zero. 

Addresses multi-

collinearity effectively 

ANN[47] It is a deep-learning algorithm inspired by the 

human brain that comprises interconnected 

nodes (neurons) arranged in layers. 

For capturing complex 

temporal dependencies and 

patterns in data. 

Number of layers, number 

of neurons per layer, 

activation functions, 

learning rate, batch size, 

etc. 

Capable of handling 

large and complex 

datasets.  

Suitable for capturing 

non-linear 

relationships. 

RR[48] RR, identified as L2 regularization, integrates 

a penalty term into the linear regression 

objective function to mitigate overfitting in 

linear regression techniques. 

Dealing with multi-

collinearity and overfitting 

issues. 

Regularization strength (λ), 

alpha (α) 

Addresses multi-

collinearity by 

shrinking coefficients.  

Stabilizes parameter 

estimates. 

D. Assessment metric 

The predictive method’s accuracy was evaluated using four 

evaluation metrics: 𝑅2, RMSE, MAE, MSE, and MAPE. 

𝑅2 assesses the adequacy of the prediction model with a 

value closer to 1, indicating a superior fit of the regression 

equation. RMSE quantifies the variance between predicted 

and observed values, and a value closer to 0 signifies a more 

accurate prediction model. MAE provides insight into the 

actual error of the estimated values. A value closer to 0 

implies a more precise model. 

TABLE IV 

 VALUES OF PARAMETERS USED AFTER FINE TUNING 

Methods Parameters used 

VARMA Maxlags = 1, order = (1,1) 

SVR Kernel = Linear, C= 10, Degree = 2, Epsilon = 0.01 

RF Min-samples-leaf= 2, n-estimators = 200  

ANN Hidden layer sizes= (100, 50), Learning rate init=0.1, Max 

iteration=1500, Optimizer= “lbfgs” stands for Limited-

memory Broyden–Fletcher–Goldfarb–Shanno. 

LASSO Alpha = 1 (constant, controlling regularization strength) 

KNN n neighbors = 5, power parameter (p) =2, Weights = 

uniform 

A lower MSE value indicates that the predicted values are 

closer to the actual values, signifying a more accurate model. 

MAPE calculates the average relative error between 

predicted and measured values, directly revealing the 

variance between predicted and actual results. A value closer 

to 0% indicates higher accuracy. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

 (6) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

𝑛
 (7) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1
 (8) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2
𝑛

𝑖=1
 (9) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖

|
𝑛

𝑖=1
  ∗ 100% 

(10) 
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E. SYSTEM CONFIGURATION 

The experiments were executed on Spyder 4.1.5 Integrated 

Development Environment (IDE) with Python 3.8 through 

an Anaconda distribution on an Intel Xeon W-1290P CPU @ 

3.70GHz dual-processor system with 64 GB RAM, an 

Nvidia Quadro P1000 GPU, and a 64-bit Windows 11 Pro 

Operating System. All algorithms were implemented using 

Python, employing libraries such as Numpy, Pandas, 

Matplotlib, Sklearn, Seaborn, and Shap. 

III. RESULTS 
A. VARIABLE SCREENING AND DIMENSIONAL 
PROCESSING 

This study chose a feature set comprising 15 variables and 

one target variable, encompassing 13 annual meteorological 

indicators. The results for Meerut district are being presented 

herein. The feature correlation matrix provides an extensive 

overview of the of the interrelationships among all variables 

considered in the analysis. It allows us to assess the strength 

and direction of correlations between each pair of variables, 

helping to identify patterns and associations within    

Figure 5 displays the correlation matrix of 15 features, 

particularly emphasizing the variable area. From the figure, 

we observe that among the 15 features, 9 exhibit positive 

correlations, while 5 are negatively correlated with area. 

Production is highly correlated with area, while T2M_max is 

observed to have minimal impact. 

In order to address potential issues of duplicated 

information and limited generalizability in the feature set, 

PCA [49] is employed. PCA allows the transformation of a 

set of correlated variables into a set of uncorrelated variables 

while retaining the essential information from the original 

feature set.  

PCA aims to capture the maximum information in the 

first principal component, the maximum remaining 

information in the second component, and so on, as depicted 

in the Scree plot figure 6. The Elbow Point in the Scree Plot 

is where the cumulative explained variance levels off or 

plateaus. It indicates that additional principal components 

contribute less and less to the overall variance explained. The 

Elbow Point occurs at PC 8 in this figure, suggesting that the 

first eight principal components are crucial in capturing most 

of the dataset’s variability. 

In the context of feature importance, the Shapley value 

assesses the contribution of each feature to the prediction by 

considering all possible permutations of features [50]. Figure 

7(a) indicates that PS is the most important feature, followed 

by Qv2m, among all 15 features that are correlated to the 

yield. 

The bar chart in figure 7(b) represents the Shapley values 

in descending order of all features, where higher values 

indicate greater importance and lower values indicate lesser 

importance of the feature in predicting the output variable 

yield. 

 

 

 

FIGURE 5. Feature Correlation matrix  
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FIGURE 6.  Explained variance ratio & Cumulative explained variance by PCA 

 
(a) 

 
(b) 

FIGURE 7. Feature importance obtained through Shapley value 

B. Base Model Selection 

In the initial phase, five machine learning models (RF, ANN, 

KNN, SVR, and LASSO) were utilized to forecast sugarcane 

yield. To ensure robustness, we partitioned our dataset with 

80% for training and the remaining 20% for testing purposes. 

Here, the results for Meerut district are shown, offering 

valuable insights into model performance by comparing 

predicted yields with actual values on the test dataset. 

Among the models, SVR and KNN exhibited deviations 

from the actual values, indicating lower accuracy. In 

contrast, the RF, ANN, and LASSO models demonstrated 

closer alignment with actual values, suggesting superior 

performance. Moreover, we conducted an assessment of 

feature importance by generating column plots for each 

machine learning method, shown in figure 8. This facilitated 

the identification of the most influential features in 

sugarcane yield prediction for each respective model, 

contributing to a deeper understanding of the predictive 

dynamics involved. 

After the analysis, we computed the evaluation metrics 

for all five ML methods on the test dataset, which were used 

to forecast the sugarcane yield. The results are summarized 

in Table V.  

TABLE V 

 EVALUATION METRICS 

Methods MAE MSE RMSE MAPE 𝑅2 

VARMA 778.62 768545.25 876.66 8.87% 0.28 

SVR 429.31 308126.45 555.09 6.48% 0.50 

KNN 405.488 204871.46 483.47 6.42% 0.665 

RF 125.65 24864.71 157.68 1.92% 0.96 

ANN 290.25 135923.74 368.68 4.38% 0.78 

LASSO 93.91 9916.37 99.58 1.47% 0.98 

The superior performance of LASSO in comparison to other 

models is clearly visible through Table V for every 

evaluation metrics taken in this study and was it was 

therefore selected as the base model. Conversely, VARMA, 

SVR and KNN models exhibited notable underperformance, 

leading to their exclusion as base models for the stacking 

ensemble framework. RF and ANN did not perform as 

efficiently as LASSO but were around 50% better than SVR 

and KNN and were hence taken as base models along with 

LASSO.  
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FIGURE 8. Prediction of yield over time through ML Models 
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C. Yield forecast 

Within the stacking EL framework, RR and RFR are utilized 

as meta-models. Figure 9 illustrates the stacking model’s 

performance compared to individual single models. The 

ensemble models utilizing the stacking EL approach showed 

closer alignment with 

 actual yield values, indicating superior performance and 

predictive accuracy in contrast to single models. A 

significant improvement in closeness to actual yield values 

was observed when RFR was utilized as the meta-model in 

the stacking framework, as opposed to RR. 

  

  

FIGURE 9. Prediction of yield over time through meta-models as RFR & RR 

Table VI provides a comprehensive comparison of 

evaluation metrics between the stacking model and three 

base models. The stacking model always outperformed the 

individual single models. Stacking done through RFR meta-

model performed better in comparison to stacking done 

through RR as meta model in terms of lower MAPE (0.43%), 

MAE (27.837), MSE (1106.698), RMSE (33.267) and 𝑅2 

(0.998). 
TABLE VI  

EVALUATION METRICS, INCLUDING STACKING 

Index ANN RF LASSO Stacking 

(RR) 

Stacking 

(RFR) 

MAE 290.25 125.65 93.91 42.006 27.837 

MSE 135923 24864.71 9916.37 2281.71 1106.698 

RMSE 368.67 157.68 99.58 47.767 33.267 

MAPE 4.38% 1.92% 1.47% 0.67% 0.43% 

𝑅2 0.778 0.959 0.98 0.996 0.998 

Figure 10 shows the results of yield forecasting using the 

stacking EL model, with RFR utilized as the meta-model, for 

the next ten years across five districts: Meerut, Moradabad, 

Muzaffarnagar, Bijnor, and Saharanpur. The dotted line 

represents the actual yield, while the asterisk line indicates 

the forecasted yield for future years. The graph illustrates an 

upward trajectory in yield over the forthcoming years. 

IV. Discussion 

This study addresses the need for improved sugarcane yield 

forecasting by utilizing meteorological data and introducing 

a stacking EL approach to overcome the limitations of 

traditional forecasting methods.   

The model is designed to enhance predictive accuracy and 

flexibility, incorporating Principal Component Analysis 

(PCA) and SHAPLEY values for a better understanding of 

feature correlations. Accurate yield prediction is crucial for 

effective agricultural management, providing stakeholders 

with critical insights to support sustainable practices, 

optimize resource use, and stabilize the agricultural 

economy.  

Previous studies on sugarcane yield forecasting 

have utilized simpler statistical models such as multiple 

linear regression and simple regression, and ARIMA, mainly 

considering the environmental variables such as Tmax, 

Tmin, Rainfall and humidity [51]. While these studies 

covered several years of data, they were unable to capture 

complex relationships between various meteorological 
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factors. More recent work has used various ML algorithms 

such as RF, SVR, and ANN, while these methods improved 

the accuracy of prediction but did not employ ensemble 

approaches, limiting the full potential of combining model 

strengths.  

The present study improves on previous work by 

using 13 meteorological variables related to soil, wind, 

humidity, and temperature, along with area, production and 

yield data of sugarcane. We also applied VARMA method 

for multivariate time series forecasting of sugarcane yield, 

but the results were not satisfactory. To improve the 

accuracy, we implemented a stacking EL approach, which 

provides stronger generalization and better captures complex 

relationships. This method significantly enhanced the 

accuracy and reliability of sugarcane yield prediction, 

outperforming traditional models in both precision and 

scalability. Table VII provides a comprehensive comparison 

of last five years of the research in the field of sugarcane 

yield forecasting in India, highlights the differences in 

methodologies and meteorological factors used in our study 

and the existing body of work. 

 

 

FIGURE 10. Predicted yield when meta-model as RFR 

 

 
TABLE VII PREVIOUS WORK IN SUGARCANE FORECASTING 

 

Predicted Yield
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The findings of our study are significant for precise 

sugarcane yield predictions, particularly with ongoing 

impacts of climate changes on farming. By using the 

developed model in real world agriculture, farmers can get 

valuable insights about future yields considering weather 

conditions. With this information, farmers and decision-

makers may make better plans for maximizing their crops 

yield, including when to harvest, when to apply fertilizer and 

irrigation, and which seeds to use in response to changing 

weather patterns. Agribusinesses can also benefit from these 

predictions by optimizing their supply chains, emphasizing 

more efficient operations, cutting waste, and minimizing 

losses after harvest. 

Given sugarcane’s pivotal role in India’s economy and 

the livelihoods of millions of farmers and laborers, accurate 

forecasting is essential for ensuring food security, stabilizing 

markets, and guiding policy decisions. Considering the 

significance of sugarcane to the Indian economy and the 

livelihoods of millions of people, reliable forecasting is 

essential for maintaining food security, stabilizing market 

 

Year 

No of Meteorological Parameters Methods  

Data 

Study Area 

Temperatur

e 

Humidit

y 

Wind/ 

Pressur

e 

Soil 

Propertie

s 

Tota

l 

Statistical  ML Advance

d 

No. of 

Region

s 

State 

2020 

[52] 
˟ ˟ ˟ ˟ ˟ ARIMA ˟ ˟ 50 

years 

(1967-

2016) 

2 Haryana 

2021 

[53] 
˟ ˟ ˟ ˟ ˟ ARIMA ˟ ˟ 69 

years 

(1950-

2018) 

6 Andhra 

Pradesh, 

Uttar 

Pradesh, 

Karnataka, 

Tamil 

Nadu, 

Maharashtr

a 

2021 

[54] 

2 3 ˟ ˟ 4 Regression 

Techniques 
˟ ˟ 35 

years 

(1981-

2015) 

1 Uttar 

Pradesh 

2022 

[55] 
2 1 ˟ ˟ 3 ARIMA, 

ARIMAX 
˟ ˟ 40 

years 

(1979-

2018) 

3 Haryana 

2023 

[56] 

2 4 ˟ ˟ 6 Discriminan

t Function 

Analysis 

˟ ˟ 57 

years 

(1960-

2016) 

1 Tamil Nadu 

2024 

[57] 

2 3 ˟ ˟ 5 ˟ RF, 

SVM, 

SMLR, 

ANN 

˟ 24 

years 

(1997-

2020) 

10 Karnataka 

Presen

t Study 

3 3 4 3 13 VARMA SVR, 

ANN, 

KNN, 

RF, 

LASS

O 

Stacking 

Ensemble 

Learning 

40 

years 

(1982-

20021

) 

24 Uttar 

Pradesh 
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prices, and assisting policymakers in formulating measures 

that better assist the agriculture sector. 

V. Conclusion 

Accurate prediction of sugarcane yield is crucial for effective 

agricultural management and early warning systems. We 

utilized VARMA method to forecast the sugarcane yield by 

incorporating this multivariate dataset but the results were 

not satisfactory. So, we developed a stacking EL model. 

The model developed for this study comprised ANN, RF, 

and LASSO as base models and RFR as the meta-model and 

PCA aids in reducing dimensionality while preserving 

essential information, while SHAPLEY values offer insights 

into feature importance. These techniques not only enhance 

the predictive capability of the model but also provide 

interpretability. Numerical results and graphs demonstrated 

the efficiency of the model in terms of forecasting within 

primary sugarcane cultivation regions. Our approach 

provides a robust, data-driven framework that can be 

expanded to other crops and regions, contributing to more 

efficient and sustainable agricultural practices. Some 

concluding remarks that can be drawn from the current study 

are: 

 

i. In comparison to utilizing VARMA and 

machine learning techniques LASSO, ANN, 

KNN, RF, and SVR in a standalone manner, the 

stacking model is better for all evaluation 

indicators, such as MAE, MSE, RMSE, MAPE, 

and R2  

ii. Utilizing the strengths of its base models, the 

stacking model notably enhances forecast 

accuracy, predicting the meteorological yield of 

sugarcane. 

iii. The forecasting system developed in the study 

can help the farmers in planning cultivation 

strategies more effectively. It can also help the 

retailers n optimizing the supply chains, and 

policymakers to make informed decisions for 

resource allocation and agricultural 

sustainability. 

Future research directions could explore refining the 

stacking EL approach by incorporating additional 

machine learning techniques or exploring alternative 

meta-models and uses of hybrid models that 

combine convolution layers to extract spatial 

features with recurrent layers. Also, one could 

explore the integration of real-time data sources, 

such as satellite imagery and IoT-based sensors, 

which could further enhance the model’s 

responsiveness to changing environmental 

conditions. Additionally, expanding the model’s 

application to different crops or geographic areas 

could provide valuable insights and contribute to a 

broader understanding of agricultural forecasting. 

Incorporating socio-economic factors—such as 

market trends, labor availability, and policy 

changes—into the forecasting model could provide 

a more holistic view of the factors influencing crop 

yields.  
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