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Abstract 

Delayed recall at the primacy position (first few items on a list) has been shown to predict 

cognitive decline in cognitively intact elderly participants, with poorer delayed primacy 

performance associated with more pronounced generalized cognitive decline during follow-up. 

We have previously suggested that this association is due to delayed primacy performance 

indexing memory consolidation, which in turn is thought to depend upon hippocampal function. 

Here, we test the hypothesis that hippocampal size is associated with delayed primacy 

performance in cognitively intact elderly individuals. 

Data were analyzed from a group (N=81) of cognitively intact participants, aged 60 or above. 

Serial position performance was measured with the Buschke selective reminding test (BSRT). 

Hippocampal size was automatically measured via MRI, and unbiased voxel-based analyses 

were also conducted to explore further regional specificity of memory performance. We 

conducted regression analyses of hippocampus volumes on serial position performance; other 

predictors included age, family history of Alzheimer’s disease (AD), APOE ε4 status, education, 

and total intracranial volume. 

Our results collectively suggest that there is a preferential association between hippocampal 

volume and delayed primacy performance. These findings are consistent with the hypothesis that 

delayed primacy consolidation is associated with hippocampal size, and shed light on the 

relationship between delayed primacy performance and generalized cognitive decline in 

cognitively intact individuals, suggesting that delayed primacy consolidation may serve as a 

sensitive marker of hippocampal health in these individuals. 
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Introduction 

A decline in episodic memory performance is an early key symptom in Alzheimer’s 

disease (AD) and is considered critical for the prediction of the disease (e.g., e.g., McKhann et 

al., 2011; Sperling et al., 2011), especially when memory is tested after a delay ( Gomar, Bobes-

Bascaran, Conejero-Goldberg, Davies & Goldberg, 2011). Recently, Bruno, Reiss, Petkova, 

Sidtis and Pomara (2013) have shown that a detailed analysis of serial position performance in 

delayed recall tests is more sensitive to the prediction of subsequent cognitive decline in healthy 

elderly subjects compared to total delayed recall performance. Serial position refers to the pattern 

in free recall whereby early-list items (primacy) and late-list items (recency) are remembered 

better than items learned in the middle (Murdock, 1962; Glanzer, 1972). Bruno et al. (2013), 

using a verbal memory task, tested a group of cognitively intact individuals over a span of up to 

seven years and showed that delayed recall at the primacy position was a better predictor of 

generalized cognitive decline than total memory performance, or performance anywhere else on 

the list (e.g., recency). Poorer delayed primacy recall was associated with greater subsequent 

decline.  

Bruno et al. (2013) argued that the predictive advantage of delayed primacy performance 

over the other memory indices, including immediate primacy performance, was due to its 

reliance upon memory consolidation (McGaugh, 2000). Primacy effects are typically explained 

as a consequence of increased opportunities for rehearsal of early list items as compared to items 

learned later (Rundus, 1971; Tan & Ward, 2000). More rehearsal is expected to lead to better 

encoding of the information and, consequently, stronger memories, although alternative 

interpretations have also been put forward (e.g., Brown, Neath & Chater, 2007). If the value of 

primacy performance in predicting cognitive decline were due to its ability to index effective use 

http://www.ncbi.nlm.nih.gov/pubmed?term=Gomar%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Bobes-Bascaran%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Bobes-Bascaran%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Conejero-Goldberg%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Davies%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Goldberg%20TE%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
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of rehearsal strategies, then little predictive difference would be expected between immediate 

and delayed primacy. However, since Bruno et al. (2013) isolated delayed primacy performance 

as the best predictor of subsequent generalized cognitive ability, it is arguable that a process of 

consolidation, requiring time and structural changes to stabilize memory traces and render them 

more resistant to interference, is required. 

Consolidation is thought to depend upon hippocampal function (Wixted, 2004; Wixted & 

Cai, 2013) and Bruno et al. (2013) have suggested that the assessment of delayed primacy 

performance could work as a proxy measure for hippocampal integrity. Associations between the 

hippocampus and primacy have been reported in the literature, albeit with mixed methods and 

results. Hermann et al. (1996) conducted a study to examine serial position performance in 

participants who underwent anterior temporal lobectomy, including resection of the 

hippocampus. Hermann et al. (1996) measured memory over five learning trials with the 

California Verbal Learning Test (CVLT), and observed a drop in primacy performance (first four 

words), which they interpreted as a loss of consolidation ability, only in those participants who 

underwent resection of the left hippocampus when this was not sclerotic prior to the surgery. In 

other words, only the removal of a relatively healthy left hippocampus caused a drop in primacy 

recall performance in the participants. In contrast, Albuquerque, Loureiro and Martins (2008), 

also using the CVLT, reported that only participants with focal frontal lesions, but not 

participants with mesotemporal lesions, showed reduced primacy performance. 

In a study using functional magnetic resonance imaging (fMRI), Strange, Otten, Josephs, 

Rugg and Dolan (2002) tested 14 healthy participants, aged 19 to 32. Participants were asked to 

learn a set of 12 words and then free recall the words; this procedure was repeated over 30 

consecutive trials. Strange et al. (2002) found that retrieval of early list items (first two items 
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were classed as primacy) was associated with activation of the right anterior hippocampus, the 

posterior fusiform, and parahippocampal areas (bilaterally), but that these areas were not 

engaged with retrieval of later words. In contrast, Talmi, Grady, Goshen-Gottstein and 

Moscovitch (2005), who also tested young adults (n=10) with fMRI, found that primacy items 

were associated with left hippocampal activation in a series of recognition memory tasks. 

Despite some inconsistencies, there is evidence that hippocampal integrity is associated 

with successful retrieval of primacy items. Therefore, following Bruno et al. (2013), we 

hypothesize that hippocampal size should predict the likelihood of successful retrieval of 

primacy words in a delayed memory task in a group of cognitively intact elderly volunteers. 

Moreover, considering the prominence of delayed performance, we hypothesize that 

hippocampal volume should be a better predictor of primacy performance after a delay as 

compared to primacy performance immediately after study (consolidation hypothesis). Finally, 

we also hypothesize (primacy specificity hypothesis) that there should be a special relationship 

between the hippocampus and delayed primacy performance, but not between the former and 

delayed recall performance for items learned afterwards (non-primacy).  

To test our hypotheses, we examined the relationship between hippocampal gray matter 

volume and delayed primacy performance in two groups of participants who were cognitively 

intact and at least 60 years of age. The first group comprised 54 individuals, originally enrolled 

as controls for a study on Major Depressive Disorder (MDD), whereas the second group 

consisted of 28 volunteers recruited for a study on the effects of benzodiazepines on cognition 

(all tested prior to drug/placebo administration). These two groups were merged for the purpose 

of the present study. To estimate the specificity of the relationship between delayed primacy 

performance and hippocampal size, we employed a number of relevant control variables in our 
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analyses, and also explored separately the potential impact on memory of potential indicators of 

AD-related pathology (see Methods), such as APOE ε4 status (e.g., Corder et al., 1993).  

Memory performance was measured with the Buschke Selective Reminding Test (BSRT; 

Buschke & Fuld, 1974). The BSRT (see Procedure), despite some minor differences, is 

analogous to the test used in Bruno et al. (2013; i.e., Rey Auditory Verbal Learning Test). 

Primacy was defined as the first four words on the study list, and the delayed task occurred 

roughly 15-20 minutes after the end of the learning trials. The study prediction was that larger 

hippocampal volumes would be associated with more primacy words retrieved in the delayed 

task. 

Methods 

Subjects. Participants in the first group were recruited via advertisements in local newspapers 

and flyers, or from the Memory Education and Research Initiative (MERI) program at the 

Nathan Kline Institute for Psychiatric Research; participants’ recruitment was part of a study on 

late-life MDD (Bruno et al., 2012; Bruno, Nierenberg, Ritchie, Lutz & Pomara, 2012; Pillai et 

al., 2012; Pomara et al., 2012). All participants provided formal consent prior to testing and 

received compensation for up to $450.00 for their time and efforts. A total of 133 participants 

were recruited for the study. In order to maintain a cognitively intact sample without major 

indication of cerebrovascular disease, we excluded participants who presented MRI evidence of 

confluent deep or periventricular white matter hyperintensities, defined as one or more 

hyperintense lesions measuring at least 10 mm in any direction on the FLAIR scan (see MRI 

Acquisition below), or had a Mini-Mental State Examination (MMSE) score below 28. 

Excluding participants with MDD left us with a total of 54. 
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For the second group, a total of 76 participants were recruited originally through advertisement. 

All participants formally and in writing consented prior to testing and were paid $200 for their 

time and efforts. Participants’ recruitment was for a study on the combined effects of Lorazepam 

and APOE variants on cognition (Pomara, Willoughby, Wesnes, Greenblatt & Sidtis, 2005; 

Pomara, Facelle, Roth, Willoughby, Greenblatt & Sidtis, 2006), but all data analysed here was 

taken from baseline performance on week 1 (i.e., prior to drug/placebo administration). 

Participants did not show any cognitive impairment, and were free of significant neurological or 

medical illnesses, as determined by laboratory tests and medical examination; they were not 

currently using any psychotropic medication, as determined by a urine toxicology exam; and did 

not meet the DSM-IV criteria for a psychiatric disorder after evaluation. Participants also had an 

MMSE score of 28 or higher and a Clinical Dementia Rating of 0. A total of 28 participants 

received an MRI scan of the head and are included in the present analysis. Table 1 reports the 

population demographics split by cohort. Both studies received ethical approval by the 

institutional review boards of the Nathan Kline Institute for Psychiatric Research and the New 

York University School of Medicine, and were conducted at these institutions. 

Table 1 here 

MRI Acquisition. The MRI acquisition was performed on a 1.5 T Siemens Vision system 

(Erlangen, Germany) at the Nathan Kline Institute. All images were acquired using a sagittal 

magnetization prepared rapid gradient-echo sequence [MPRAGE; repetition time (TR)/echo time 

(TE)=11.4/11.9 ms, 1 excitation, (NEX), matrix=256 x 256, FOV=307 mm, 1.2mm3 isotropic 

voxel, 172 slices, no gap].  For evaluation of white matter hyperintensities, we used a fluid 

attenuated inversion recovery sequence [FLAIR; TR/TE=9000/119 ms, inversion time=2400 ms, 

NEX=1, matrix 256 x 256, FOV=240 mm, slice thickness=4 mm, 1 mm gap]. 
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Figure 1 here 

MRI preprocessing and analysis. MRI data processing followed procedures described previously 

(Grothe, Ewers, Krause, Heinsen & Teipel, 2014; Teipel, Heinsen, Amaro, Grinberg, Krause, & 

Grothe, 2014) and illustrated in Figure 1. Briefly, MPRAGE images were segmented into gray 

matter, white matter, and cerebrospinal fluid partitions and high-dimensionally registered to 

Montreal Neurological Institute (MNI) standard space, using a segmentation routine without 

reliance on tissue priors and the diffeomorphic DARTEL warping algorithm (Ashburner, 2007), 

respectively, both implemented in the VBM8-toolbox. Warping parameters were applied to 

individual gray matter maps and voxel values were modulated to account for the volumetric 

differences introduced by the high-dimensional warps, such that the total amount of gray matter 

volume present before warping was preserved. 

Individual gray matter volumes of the hippocampus were extracted automatically from the 

warped gray matter segments by summing up the modulated voxel values within a predefined 

hippocampus mask in template space. This mask was obtained by manual delineation of the 

hippocampus in the MNI standard space template used for high-dimensional image 

normalization in the VBM8 toolbox. Tracing of the hippocampus outlines followed recently 

developed international consensus criteria for manual hippocampus segmentation on MRI 

(Boccardi et al., 2013; http://www.hippocampal-protocol.net/SOPs/index.php) and was 

performed by a certified tracer (MJG) using MultiTracer 1.0 software 

(http://www.loni.usc.edu/Software/MultiTracer). Figure 2 illustrates the hippocampal regions of 

interest (ROIs). The total intracranial volume (TIV) was used in the statistical model to account 

for differences in head size (see below), and was calculated as the sum of the total segmented 

gray matter, white matter and cerebrospinal fluid volumes in native space. For complementary 

http://www.hippocampal-protocol.net/SOPs/index.php
http://www.loni.usc.edu/Software/MultiTracer
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voxel-wise analyses, warped gray matter maps were smoothed with an isotropic smoothing 

kernel of 8 mm full-width at half maximum. 

Figure 2 here 

Procedure. The first cohort was examined at the Nathan Kline Institute for Psychiatric Research 

and at the Clinical and Translational Science Institute, New York University Langone Medical 

Center, over three visits on three successive weeks. On the first visit, after providing informed 

consent, participants were administered a general medical intake questionnaire to obtain family 

and medical history information; after this, vital signs were measured, blood was drawn for 

APOE genotyping, and the MMSE score was obtained. On a second visit, participants received 

an MRI scan of the head. Comprehensive neuropsychological assessment, including the BSRT, 

took place on a third visit. The BSRT comprises a list of 16 unrelated nouns, which are presented 

orally to participants at a rate of 2 seconds each. Participants are asked to recall as many words 

as possible and to indicate when no more words can be recalled. Two trials are the focus of our 

analysis: in the first trial (immediate recall), participants are asked to free recall as many words 

as possible immediately after presentation of the study list; in contrast, in the delayed trial, 

participants are asked to free recall after a 15-20 minutes gap from initial learning and testing. 

More information on the study procedures is also available in Pomara et al. (2012). 

The second cohort was examined at the Nathan Kline Institute for Psychiatric Research. 

Diagnostic evaluations took place one week before testing proper began. All relevant testing for 

the present study was conducted in a single session beginning approximately at 9 AM under non-

fasting conditions, after obtaining vital signs. A comprehensive neuropsychological assessment, 

including the BSRT, was administered to evaluate cognitive performance.  

Study Design and Analysis. To test our hypothesis that hippocampal size predicts delayed 
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primacy performance (dP), we carried out multiple linear regression analyses. In order to assess 

the specificity of hippocampus volume for dP vs. other types of memory performance, analog 

regression models were calculated separately for delayed non-primacy performance (dNP)1,  and 

immediate primacy performance (iP) as outcome variables. Primacy performance was defined as 

the number of recalled items from the first four on the study list, whereas non-primacy 

performance was defined as all words recalled minus primacy words. Immediate performance 

refers to the first BSRT trial, and delayed performance refers to the delayed BSRT trial. To allow 

for a direct comparison, we employed proportions for both primacy and non-primacy in the 

analyses, dividing the total number of correctly recalled items by four and 12, respectively. Once 

one participant was removed due to missing data, thus leading to a total N of 81, all outcome 

variables were normally distributed based on assessment of skewness and kurtosis (absolute z-

value < 3.29; Kim, 2013).  

The main predictor was hippocampal gray matter volume (expressed in mm3), and we tested 

three hypothesis families (Rutherford, 2012; p. 72): 1) whether hippocampal volume predicted 

dP, 2) whether the relationship between hippocampal volume and dP was greater than the 

relationship between hippocampal volume and iP (i.e., the consolidation hypothesis), and 3) 

whether the relationship between hippocampal volume and dP was greater than the relationship 

between hippocampal volume and dNP (i.e., the primacy specificity hypothesis). For this reason, 

to correct for testing three hypothesis families, we lowered the α level from 0.05 to 0.017 

following Sidak’s adjustment.  

We employed a three-model testing procedure. Model 1 included all control variables: Cohort 

(group 1 or 2); age; sex; the MMSE score as a measure of general cognitive ability; years of 

                                                        
1 Given the emphasis on delayed primacy recall, and in consideration of the fact that recency effects are largely 

reduced after a delay (e.g., Glanzer & Cunitz, 1966), we have opted to compare primacy to non-primacy 

performance rather than employing the typical three sections of the serial position: primacy, middle and recency.   
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education as a proxy of cognitive reserve (e.g., Bruno, Brown, Kapucu, Marmar & Pomara, 

2014); and TIV, measured in cm3, to control for head size. Model 2 included the predictor, 

hippocampal gray matter volume. Finally, Model 3 included two potential AD markers: family 

history of AD (FHAD), which has been shown to be a strong risk factor for AD (e.g., Berti et al., 

2011; Silverman, Ciresi, Smith, Marin & Schnaider-Beeri, 2005); and APOE ε4 status. As a 

criterion for multicollinearity, we set the variance inflation factor (VIF) to 4. To evaluate directly 

differences in the magnitude of the association between hippocampal size and different types of 

memory performance, we compared the partial correlation coefficients (controlled for the Model 

1 variables) for dP with those for dNP and iP using Steiger’s Z test (Steiger, 1980; 

conventionally, the threshold for significance is set to |1.96| in 2-tailed tests). 

In order to assess the regional specificity of the different types of memory performance, i.e. 

whether the memory tests are specific for hippocampal volume or show similar associations with 

gray matter volume in other parts of the brain, we further conducted regionally unbiased voxel-

based regression analyses. Thus, dP, dNP, and iP scores were used as predictor variables in 

separate voxel-wise regression models on warped gray matter maps, while controlling for the 

Model 1 variables. Results were assessed at a statistical threshold of p< 0.001, uncorrected, and a 

cluster extension threshold of 50 continuous voxels. Although this choice of statistical 

thresholding reduces control over type 1 errors when compared to the use of more conservative 

multiple comparison correction procedures, it also lowers the risk for type 2 errors, which is 

critical in the context of these complementary analyses addressing the regional specificity of the 

observed memory-hippocampus associations. 

Results 

Table 2 reports the memory performance scores across all the participants. No issues of 

http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
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multicollinearity were observed (VIF ≤ 2.462). When examining dP, Model 2 [F(7,73)=3.270, 

p=.004] provided a better fit than Model 1 [F(6,74)=1.664, p=.142], and Model 3 

[F(9,71)=2.486, p=.016]. Adding hippocampal volume (Model 2) significantly increased 

variance explained [F(1,73)=11.488, p=.001, ΔR2=.120], and, as expected, the size of the 

hippocampus was positively associated with dP performance [β=.462, partial R=.369]. 

Hippocampal volume remained a significant predictor in Model 3 [p=.002, β=.463, partial 

R=.359]. No other variable, including the Model 3 predictors, came close in this analysis to a 

significant level (p’s ≥ .110). When the same analysis was carried out on iP, all models [Model 

1, F(6,74)=5.014, p<.001; Model 2, F(7,73)=4.276, p=.001; Model 3, F(9,71)=3.427, p=.001] fit 

the data well, but hippocampal volume was not a significant predictor [F(1,73)=0.179, p=.673, 

ΔR2=.002, β=.056, partial R=.049]. Model 3 predictors did not yield significant correlations (p’s 

≥ .275), nor were there any other associations of interest. Finally, hippocampal gray matter 

volume was positively correlated with dNP, although not significantly so [F(1,73)=4.296, 

p=.042, ΔR2=.040; Model 2 estimates: β=.266, partial R=.236; Model 3 estimates: p=.069, 

β=.247, partial R=.214], and all models fit the data [Model 1, F(6,74)=5.022, p<.001; Model 2, 

F(7,73)=5.110, p<.001; Model 3, F(9,71)=3.919, p<.001]. Only two predictors, in any of the 

models, reached the significance level of the test: sex [Model 1: p=.010, β=.337, partial R=.296; 

Model 2: p=.007, β=.340, partial R=.306], indicating better memory for females; and the MMSE 

score [Model 1: p=.015, β=.254, partial R=.278; Model 2: p=.008, β=.276, partial R=.306]. To 

evaluate the relative magnitude of the associations between hippocampal size and memory, we 

compared iP (partial R = .049) to dP (partial R = .369), and dP to dNP (partial R = .236). The 

comparison between iP and dP produced a Z value of 2.31 [p=.020], whereas the comparison 

between dP and dNP yielded a Z value of 1.03 [p=.305]. The relationship between memory 
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performance and hippocampal gray matter volume is illustrated in Figure 3.  

Table 2 here. 

Results of the unbiased voxel-based regression analyses across the whole brain are summarized 

in Figure 4. dP showed associations with gray matter volume in a bilateral medial temporal lobe 

cluster, corresponding to the entorhinal cortex and the hippocampal head (Figure 4, top row). 

Additional clusters corresponded to the bilateral superior temporal gyrus and the left posterior 

middle and inferior temporal gyri. dNP also showed associations with gray matter volume in a 

medial temporal lobe cluster, albeit restricted to the left hemisphere and mainly corresponding to 

the amygdala and the hippocampal head (Figure 4, middle row). Further effects for the 

association with dNP were seen in the bilateral superior temporal gyrus, the left temporal pole, 

and also in several frontal lobe clusters, including bilateral middle frontal gyrus as well as left 

inferior frontal gyrus and frontal operculum. In contrast to the delayed recall scores, iP showed 

associations with gray matter volumes in the bilateral orbitofrontal cortex and the basal ganglia 

(putamen), but not in the hippocampus or surrounding medial temporal lobe structures (Figure 4, 

bottom row). Table 3 reports the coordinates for significant clusters in the voxel-wise analyses.  

Table 3, and Figures 3 and 4 here 

Discussion 

Consistent with the work of other researchers (e.g., Egli, Beck, Berres, Foldi, Monsch & 

Sollberger, 2014; Howieson et al., 2011; La Rue, Hermann, Jones, Johnson, Ashtana & Sager, 

2008; Martin et al., 2013), Bruno et al. (2013) showed that primacy performance in delayed trials 

is a predictor of generalized cognitive decline from a baseline of intact cognition; the authors 

suggested that delayed primacy performance was reliant on intact consolidation and, therefore, 

could act as an indirect measure of hippocampal health. In the present study, we set out to test 
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this hypothesis by analyzing data from a group of cognitively intact elderly participants who 

underwent an MRI scan of the head, and took part in a neuropsychological test battery that 

included memory testing (BSRT). Our findings, over two sets of analyses, are largely consistent 

with Bruno et al.’s (2013) suggestion. We observed that hippocampal gray matter volumes were 

associated with performance from the primacy region (first four words) in a delayed free recall 

task, but not with performance in the immediate recall trials, and that larger volumes were 

correlated with better recall. In addition, we found the association between hippocampal size and 

non-primacy delayed recall performance to be weaker, although the direct comparison of 

correlation coefficients between delayed primacy and non-primacy performance did not yield a 

significant difference. 

The lack of statistical difference between primacy and non-primacy coefficients raises the 

issue of the degree of specificity of the association between hippocampal volume and delayed 

primacy performance as compared to delayed non-primacy performance. However, a series of 

complementary regionally unbiased voxel-based analyses reported significant associations 

between delayed primacy performance and the bilateral hippocampus, in addition to clusters in 

the superior temporal gyrus, and the left posterior middle and inferior temporal gyri. In contrast, 

delayed non-primacy performance showed a left lateralized effect in the 

Amygdala/Hippocampus as well as several temporal and also frontal clusters. Therefore, 

qualitatively, these unbiased voxel-based analyses appear to be consistent with a somewhat 

higher regional selectivity of primacy for the hippocampus as compared to non-primacy. Thus, 

taken together, our findings largely support the notion that the hippocampus plays an important 

role in delayed primacy recall and suggest that testing for this type of performance could be used 

as a resource for prediction of hippocampal integrity in cognitively healthy, older populations. 
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A key question that emerges from our results pertains to the specificity of the delayed 

primacy relationship with the hippocampus and neighboring areas, as opposed to memory for 

items elsewhere on the study list. This is indeed an important question that cannot be answered 

exhaustively by this study. However, a few considerations are possible. First of all, it has been 

highlighted how, despite its importance for the formation of long-lasting memories, the medial-

temporal lobe, which includes the hippocampal formation, becomes progressively less involved 

in the maintenance of information in memory over time (e.g., Wixted & Cai, 2013). Hence, 

despite our emphasis here on retrieval processes, it is possible that the hippocampus may be 

primarily involved within the process of encoding new information and, thus, with the formation 

of memories that are effectively preserved, rather than with its extraction from storage. In this 

respect, it is worth noting that primacy effects are typically found to depend upon increased 

rehearsal opportunities for early-list items as opposed to items that are learned later (Rundus, 

1971; Tan & Ward, 2000; although see Sederberg et al., 2006, for an account that incorporates 

both rehearsal and focused attention), which would benefit and strengthen the encoding process. 

Importantly, there is some evidence, both in clinical (Brown, Della Sala, Foster & Vousden, 

2007) and non-clinical (Davachi & Wagner, 2002) studies, that hippocampal regions are 

involved in the rehearsal process. Therefore, we can tentatively propose that the specificity of the 

relationship between delayed primacy performance and the hippocampus is dependent upon the 

role the hippocampus plays (perhaps in conjunction with the dorsolateral prefrontal cortex; see 

Innocenti et al., 2012) in facilitating rehearsal at learning, which in turn would lead to enhanced 

consolidation of primacy items. Further studies, however, are needed to clarify these points.   

The relationship between hippocampal volume and episodic memory function in older 

individuals is somewhat complex with extreme variability noted and limited evidence of a 
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positive correlation between size and performance (Van Petten, 2004). Our study may tentatively 

offer an explanation for these inconsistent findings. If the hippocampus is primarily involved 

with the retrieval of early list items, as our results appear to indicate, then it may be that studies 

using total list memory performance only find associations between hippocampal size and 

memory when, incidentally, primacy and non-primacy outputs are highly correlated. For 

instance, let us assume that Participant A free recalls all primacy items (e.g., 4) and all non-

primacy items (e.g., 12) for a total of 16 items; Participant B free recalls 0 primacy items, but all 

non-primacy items for a total of 12; and finally Participant C free recalls all primacy items, but 0 

non-primacy items for a total of 4. Based on our findings, Participant C would be expected to 

have a larger hippocampus than Participant B due to better primacy performance, despite a lower 

total score; moreover, Participant A would be expected to have roughly a similar-sized 

hippocampus to Participant C despite a much higher total score. In this example, examining total 

performance without considering serial position would lead to rejecting, erroneously, the 

hypothesis that hippocampal volume and episodic memory are positively correlated. This simple 

example illustrates how shifting the focus from total performance onto primacy performance, 

and particularly delayed primacy, may help clarify the relationship between hippocampal volume 

and episodic memory ability (also see Bruno et al., In Press, for a similar argument). 

An obvious limitation of our study was that the sample was made up of two separate 

cohorts, which, despite similarities, had been recruited at different times for different purposes. 

Although we tried to overcome this issue by controlling for cohort in the statistical analysis, it 

would still have been preferable to obtain and analyze data from a single, homogeneous group. 

For these reasons, further investigations are recommended, including studies investigating 

clinical populations of interest (e.g., individuals with mild cognitive impairment).   
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AD is a devastating illness whose cause or causes are currently unknown, and for which 

there currently is no cure. Nonetheless, early, pre-clinical, intervention has been proposed as a 

viable solution to delay the onset of the disease and reduce prevalence (Emery, 2011; but see 

Ames, 2011). The identification of subjects at elevated risk of conversion to AD has benefited a 

great deal from research into the genetic correlates of AD (e.g., the APOE ε4 allele; Blennow, 

DeLeon & Zetterberg, 2006; Corder et al., 1993). Another avenue for early detection that has 

received considerable attention has been the study of disease biomarkers, including plasma (e.g., 

Yaffe et al., 2011) and cerebrospinal fluid (e.g., Pomara et al., 2012) levels of Aβ and tau 

proteins (e.g., Blennow & Zetterberg, 2013; Osorio et al., 2013). A third area for research is the 

study of brain structure. Tondelli, Wilcock, Nichelli, De Jager, Jenkinson and Zamboni (2012), 

for example, have shown that volumetric analysis of MRI data can be used to predict conversion 

to AD up to ten years prior to the disease onset: participants with preclinical AD show reductions 

in volume in the right medial temporal lobe, which includes the hippocampus, and the posterior 

cingulate/precuneus (see also Apostolova et al., 2010; Achterberg et al., 2013; den Heijer, 

Geerlings, Hoebeek, Hofman, Koudstaal & Breteler, 2006). Similar results on the predictive 

value of MRI-based hippocampal volume measurements have been shown in familial AD 

cohorts, such as the DIAN study (Bateman et al., 2012). These findings have prompted, 

somehow controversially (e.g., Le Couteur, Doust, Creasey & Brayne, 2013), the suggestion that 

hippocampal size could be screened in the general population to promote early identification and 

preventive interventions (Ferrarini et al., 2014). 

Despite their promise and proven effectiveness, genetic, biomarker and MRI testing also 

present some limitations, with the main one being cost and availability. These issues become 

especially important when considering developing countries, where, according to the World 
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Alzheimer Report 2009 by Alzheimer's Disease International, it is estimated that a large 

proportion of the world increase in AD prevalence will be observed. Therefore, it is vital that 

research produces less costly alternatives that can either act as a surrogate for early identification 

of AD risk, or, at least, aid the recognition of cases that would warrant further examination. In 

this respect, future lines of inquiry should explore whether our findings, corroborating the role of 

the hippocampus in delayed primacy effects, have clinical utility by investigating whether 

delayed primacy performance can be used as a predictor of conversion to AD from a cognitively 

healthy baseline. 



Hippocampal Size and Delayed Primacy 

 

21 

 

Funding and Conflict of Interest 

These studies were funded in part by NIMH grants (R01 MH-080405 & R01 MH-056994) to 

NP. No conflict of interest to declare. 



Hippocampal Size and Delayed Primacy 

 

22 

 

Acknowledgments 

We would like to thank Marina Boccardi for expert advice and quality check of the traced 

hippocampus outlines following the EADC-ADNI harmonized hippocampus protocol, as well as 

Luigi Antelmi for helping with format conversion of the traced hippocampus mask. We would 

also like to acknowledge the help provided by Chelsea Reichert. The results of Study 2 were 

presented as a poster at the 2014 meeting of the Alzheimer’s Association International 

Conference, Copenhagen, Denmark.  

 



Hippocampal Size and Delayed Primacy 

 

23 

 

References 

Achterberg, H. C., van der Lijn, F., den Heijer, T., Vernooij, M. W., Ikram, M. A., Niessen, W. 

J., & de Bruijne, M. (2014). Hippocampal shape is predictive for the development of 

dementia in a normal, elderly population. Human brain mapping, 35(5), 2359-2371. 

Albert, M., Moss, M. B., tanzi, R., & Jones, K. (2001). Preclinical prediction of AD using 

neuropsychological tests. Journal of the International Neuropsychological Society, 7, 631-

639. 

Albuquerque, L., Loureiro, C., & Martins, I. P. (2008). Effect of lesion site on serial position 

during list learning: A study with the CVLT. International Journal of 

Neuroscience, 118(7), 917-933. 

Ames, D. (2011). Negative argument for debate with VO Emery for J Neural 

Transmission. Journal of Neural Transmission, 118(9), 1379-1381. 

Apostolova, L. G., Mosconi, L., Thompson, P. M., Green, A. E., Hwang, K. S., Ramirez, A., 

Mistur, R., Tsui, W.H., & de Leon, M. J. (2010). Subregional hippocampal atrophy 

predicts Alzheimer's dementia in the cognitively normal. Neurobiology of aging, 31(7), 

1077-1088. 

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.Neuroimage, 38(1), 95-

113. 

Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., ... & Morris, J. 

C. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer's 

disease. New England Journal of Medicine, 367(9), 795-804. 

Berti, V., Mosconi, L., Glodzik, L., Li, Y., Murray, J., De Santi, S., ... & De Leon, M. J. (2011). 

Structural brain changes in normal individuals with a maternal history of 



Hippocampal Size and Delayed Primacy 

 

24 

 

Alzheimer's. Neurobiology of aging, 32(12), 2325-e17. 

Blennow, K, DeLeon, M.J., & Zetterberg, H. (2006). Alzheimer’s disease. Lancet. 368, 387-403. 

Blennow, K., & Zetterberg, H. (2013). The application of cerebrospinal fluid biomarkers in early 

diagnosis of Alzheimer disease. Medical Clinics of North America, 97(3), 369-376. 

Boccardi, M., Bocchetta, M., Ganzola, R., Robitaille, N., Redolfi, A., Duchesne, S., ... & Frisoni, 

G. B. (2013). Operationalizing protocol differences for EADC-ADNI manual hippocampal 

segmentation. Alzheimer's & Dementia. 

Brown, G. D., Della Sala, S., Foster, J. K., & Vousden, J. I. (2007). Amnesia, rehearsal, and 

temporal distinctiveness models of recall. Psychonomic Bulletin & Review, 14(2), 256-260. 

Brown, G. D., Neath, I., & Chater, N. (2007). A temporal ratio model of memory.Psychological 

review, 114(3), 539.Bruno, D., Brown, A. D., Kapucu, A., Marmar, C. R., & Pomara, N. 

(2014). Cognitive Reserve and Emotional Stimuli in Older Individuals: Level of Education 

Moderates the Age-Related Positivity Effect. Experimental aging research,40(2), 208-223. 

Bruno, D., Grothe, M. J., Nierenberg, J., Teipel, S. J., Zetterberg, H., Blennow, K., & Pomara, N. 

(In Press). The relationship between CSF tau markers, hippocampal volume and delayed 

primacy performance in cognitively intact elderly individuals. Alzheimer's & Dementia: 

Diagnosis, Assessment and Disease Monitoring. 

Bruno, D., Nierenberg, J., Ritchie, J. C., Lutz, M. W., & Pomara, N. (2012). CSF cortisol 

concentrations in healthy elderly are affected by both APOE and 

TOMM40.Psychoneuroendocrinology, 37, 366-371. 

Bruno, D., Pomara, N., Nierenberg, J., Ritchie, J. C., Lutz, M. W., Zetterberg, H. & Blennow, K. 

(2012). Levels of cerebrospinal fluid neurofilament light protein in healthy elderly vary as 

a function of TOMM40 variants. Experimental Gerontology, 47, 347-352. 



Hippocampal Size and Delayed Primacy 

 

25 

 

Bruno, D., Reiss, P. T., Petkova, E., Sidtis, J. J., & Pomara, N. (2013). Decreased Recall of 

Primacy Words Predicts Cognitive Decline. Archives of clinical neuropsychology, 28(2), 

95-103. 

Buschke, H., & Fuld, P. A. (1974). Evaluating storage, retention, and retrieval in disordered 

memory and learning. Neurology, 24(11), 1019-1019. 

Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G., 

... & Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk 

of Alzheimer's disease in late onset families. Science, 261(5123), 921-923. 

Davachi, L., & Wagner, A. D. (2002). Hippocampal contributions to episodic encoding: insights 

from relational and item-based learning. Journal of Neurophysiology, 88(2), 982-990. 

den Heijer, T., Geerlings, M. I., Hoebeek, F. E., Hofman, A., Koudstaal, P. J., & Breteler, M. M. 

(2006). Use of hippocampal and amygdalar volumes on magnetic resonance imaging to 

predict dementia in cognitively intact elderly people. Archives of general psychiatry, 63(1), 

57-62. 

Egli, S. C., Beck, I. R., Berres, M., Foldi, N. S., Monsch, A. U., & Sollberger, M. (2014). Serial 

position effects are sensitive predictors of conversion from MCI to Alzheimer's disease 

dementia. Alzheimer's & Dementia. 

Emery, V. O. B. (2011). Alzheimer disease: are we intervening too late? Journal of Neural 

Transmission, 118(9), 1361-1378. 

Ferrarini, L., van Lew, B., Reiber, J. H., Gandin, C., Galluzzo, L., Scafato, E., ... & Pievani, M. 

(2014). Hippocampal atrophy in people with memory deficits: results from the population-

based IPREA study. International Psychogeriatrics, 26(07), 1067-1081.  

Glanzer, M. (1972). Storage mechanisms in recall. In G. H. Bower (Ed.), The psychology of 



Hippocampal Size and Delayed Primacy 

 

26 

 

learning and motivation. New York: Academic Press. Pp. 129-153. 

Glanzer, M., & Cunitz, A. R. (1966). Two storage mechanisms in free recall. Journal of Verbal 

Learning and Verbal Behavior, 5, 351-360. 

Gomar, J. J, Bobes-Bascaran, M. T., Conejero-Goldberg, C., Davies, P., & Goldberg, T. E. 

(2011). Utility of combinations of biomarkers, cognitive markers, and risk factors to 

predict conversion from mild cognitive impairment to Alzheimer disease in patients in the 

Alzheimer's disease neuroimaging initiative. Archives of  General Psychiatry, 68, 961-969. 

Grothe, M. J., Ewers, M., Krause, B., Heinsen, H., & Teipel, S. J. (2014). Basal forebrain atrophy 

and cortical amyloid deposition in nondemented elderly subjects. Alzheimer's & Dementia. 

Hermann, B. P., Seidenberg, M., Wyler, A., Davies, K., Christeson, J., Moran, M., & Stroup, E. 

(1996). The effects of human hippocampal resection on the serial position curve. Cortex, 

32, 323-334. 

Howieson, D. B., Mattek, N., Seeyle, A. M., Dodge, H. H., Wasserman, D., Zitzelberger, T., & 

Jeffrey, K. (2011). Journal of Clinical and Experimental Neuropsychology, 33, 292-299. 

Innocenti, I., Cappa, S. F., Feurra, M., Giovannelli, F., Santarnecchi, E., Bianco, G., Cincotta, 

M., & Rossi, S. (2013). TMS interference with primacy and recency mechanisms reveals 

bimodal episodic encoding in the human brain. Journal of cognitive neuroscience, 25(1), 

109-116. 

Kim, H. Y. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) 

using skewness and kurtosis. Restorative dentistry & endodontics, 38(1), 52-54. 

La Rue, A., Hermann, B., Jones, J. J., Johnson, S., Ashtana, S., & Sager, M. A. (2008). Effect of 

parental family history of Alzheimer’s disease on serial position profiles. Alzheimer’s and 

Dementia, 4, 285-290.  

http://www.ncbi.nlm.nih.gov/pubmed?term=Gomar%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Bobes-Bascaran%20MT%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Conejero-Goldberg%20C%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Davies%20P%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed?term=Goldberg%20TE%5BAuthor%5D&cauthor=true&cauthor_uid=21893661
http://www.ncbi.nlm.nih.gov/pubmed/21893661


Hippocampal Size and Delayed Primacy 

 

27 

 

Le Couteur, D. G., Doust, J., Creasey, H., & Brayne, C. (2013). Political drive to screen for pre-

dementia: not evidence based and ignores the harms of diagnosis. BMJ: British Medical 

Journal, 347. 

Martín, M. E., Sasson, Y., Crivelli, L., Roldán Gerschovich, E., Campos, J. A., Calcagno, M. L., 

... & Allegri, R. F. (2013). Relevance of the serial position effect in the differential 

diagnosis of mild cognitive impairment, Alzheimer-type dementia, and normal 

ageing. Neurología (English Edition), 28(4), 219-225. 

McGaugh, J.L. (2000). Memory: a century of consolidation. Science, 287, 248-251. 

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr, C. R., Kawas, C. H., ... 

& Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer’s disease: 

Recommendations from the National Institute on Aging-Alzheimer’s Association 

workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & 

Dementia, 7(3), 263-269. 

Murdock, B. B. (1962). The serial position effect of free recall. Journal of Experimental 

Psychology, 64, 482-488. 

Osorio, R. S., Pirraglia, E., Gumb, T., Mantua, J., Ayappa, I., Williams, S., ... & de Leon, M. J. 

(2013). Imaging and Cerebrospinal Fluid Biomarkers in the Search for Alzheimer's Disease 

Mechanisms. Neurodegenerative Diseases,13(2-3), 163-165. 

Pillai, A., Bruno, D., Sarreal, A. S., Hernando, R. T., Saint-Louis, L. A., Nierenberg, J., 

Ginsberg, S. D., Pomara, N., Mehta, P. D., Zetterberg, H., Blennow, K., & Buckley, P. F. 

(2012). Plasma BDNF levels vary in relation to body weight in females. PLoS One, 7, 

e39358. 



Hippocampal Size and Delayed Primacy 

 

28 

 

Pomara, N., Bruno, D., Sarreal, A., Hernando, R., Nierenberg, J. J., Petkova, E., Sidtis, J. J., 

Mehta, P. D., Wisniewski, T.M., Pratico, D., Zetterberg, H. & Blennow, K. (2012). Lower 

CSF amyloid beta peptides and higher F2-isoprostanes in cognitively intact elderly 

individuals with major depressive disorder.The American Journal of Psychiatry, 169, 523-

530. 

Pomara, N., Facelle, T. M., Roth, A. E., Willoughby, L. M., Greenblatt, D. J., & Sidtis, J. J. 

(2006). Dose-dependent retrograde facilitation of verbal memory in healthy elderly after 

acute oral lorazepam administration. Psychopharmacology,185(4), 487-494. 

Pomara, N., Shao, B., Wisniewski, T., & Mehta, P. D. (1998). Decreases in Plasma Aβ1-40 

Levels with Aging in Non-Demented Elderly with ApoE-ε4 Allele.Neurochemical 

research, 23(12), 1563-1566. 

Pomara, N., Willoughby, L., Wesnes, K., Greenblatt, D. J., & Sidtis, J. J. (2005). Apolipoprotein 

E ε4 allele and lorazepam effects on memory in high-functioning older adults. Archives of 

general psychiatry, 62(2), 209-216. 

Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of Experimental 

Psychology, 89, 63-77.    

Rutherford, A. (2012). ANOVA and ANCOVA: a GLM approach. John Wiley & Sons. 

Sederberg, P. B., Gauthier, L. V., Terushkin, V., Miller, J. F., Barnathan, J. A., & Kahana, M. J. 

(2006). Oscillatory correlates of the primacy effect in episodic memory. NeuroImage, 32, 

1422-1431. 

Silverman, J.M., Ciresi, G., Smith, C.J., Marin, D.B., & Schnaider-Beeri, M. (2005). ariability of 

familial risk of Alzheimer disease across the late life span. Archives of General Psychiatry, 

62, 565-573. 

http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=
http://www.ncbi.nlm.nih.gov/pubmed?term=


Hippocampal Size and Delayed Primacy 

 

29 

 

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., ... & Phelps, 

C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: 

Recommendations from the National Institute on Aging-Alzheimer's Association 

workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & 

Dementia, 7(3), 280-292. 

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological 

Bulletin, 87, 245-251.  

Strange, B. A., Otten, L. J., Josephs, O., Rugg, M. D., & Dolan, R. J. (2002). Dissociable human 

perirhinal, hippocampal, and parahippocampal roles during verbal encoding. The Journal 

of Neuroscience, 22(2), 523-528. 

Talmi, D., Grady, C. L., Goshen-Gottstein, Y., & Moscovitch, M. (2005). Neuroimaging the 

Serial Position Curve A Test of Single-Store Versus Dual-Store Models. Psychological 

Science, 16(9), 716-723.Teipel S, Heinsen H, Amaro E Jr, Grinberg LT, Krause B, Grothe 

M; Alzheimer's Disease Neuroimaging Initiative. Cholinergic basal forebrain atrophy 

predicts amyloid burden in Alzheimer's disease. Neurobiol Aging. 2014 Mar;35(3):482-91. 

Tan, L., & Ward, G. (2000). A recency-based account of the primacy effect in free 

recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(6), 

1589. 

Tondelli, M., Wilcock, G. K., Nichelli, P., De Jager, C. A., Jenkinson, M., & Zamboni, G. 

(2012). Structural MRI changes detectable up to ten years before clinical Alzheimer's 

disease. Neurobiology of aging, 33(4), 825-e25. 

Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy 

individuals across the lifespan: review and meta-analysis.Neuropsychologia, 42(10), 1394-



Hippocampal Size and Delayed Primacy 

 

30 

 

1413. 

Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of 

Psychology, 55, 235-269. 

Wixted, J., & Cai, D. J. (2013). Memory Consolidation. The Oxford Handbook of Cognitive 

Neuroscience, Volume 1: Core Topics, 1, 436. 



Hippocampal Size and Delayed Primacy 

 

31 

 

Table 1. Study demographics by cohort: Number of subjects (i.e., N); Age in years (mean and 

standard deviation, and range); MMSE score (with standard deviation); Gender (proportion of 

females); Years of Education (with standard deviation); Family history of AD (FHAD, number of 

cases); and APOE ε4 status (number of cases). T-tests and Fisher’s exact tests were used to test 

for significant differences across groups; p values are reported on the far right column.  

 

 Cohort 1 Cohort 2 p value 

N 53 28  

Age  

67.68 (5.93) 

 

60-82 

 

64.46 (3.78) 

 

60-73 

 

 

0.004  

MMSE 29.68 (0.51) 29.39 (0.79) 
 

0.089 

Gender (females) 31 (59%) 17 (61%) 
 

1.000 

Education (years) 16.45 (2.54) 15.93 (2.40) 
 

0.371 

FHAD (yes) 13 (25%) 11 (39%) 
 

0.204 

APOE ε4 (yes) 10 (19%) 13 (46%) 
 

0.018 
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Table 2. Memory performance, dP, dNP and iP (expressed as mean proportion and SD), by 

cohort. T-tests were used as a test of difference; significance values are reported on the far right 

column.  

 

 Cohort 1 Cohort 2 p value 

dP 0.64 (0.25) 0.48 (0.27) 0.013 

dNP 0.53 (0.21) 0.45 (0.23) 0.100 

iP 0.40 (0.23) 0.19 (0.16) <0.001 
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Table 3. Coordinates for significant clusters in the voxel-wise analyses by iP, dP and dNP.  

 Cluster size Peak t-values MNI coordinates 

  x      y      z 

iP 104 

282 

65 

67 

4.48 

3.84 

3.78 

3.68 

16 22 -27 

20 8 -14 

-36 23 -24 

20 4 -6 
 

dP 133 

299 

97 

168 

66 

65 

4.28 

3.99 

3.98 

3.81 

3.80 

3.70 

-66 -45 1 

-18 -15 -18 

-63 -16 -6 

21 -18 -17 

60 -10 -9 

-44 -48 -24 
 

dNP 
334 

367 

 

 

53 

120 

102 

159 

 

93 

 

552 

 

230 

 

 

64 

 

4.44 

4.15 

4.01 

3.31 

4.10 

4.05 

4.02 

3.92 

3.58 

3.89 

3.52 

3.79 

3.66 

3.77 

3.49 

3.43 

3.54 

3.40 

-57 -9 -9 

-50 9 4 

-44 11 -3 

-38 15 3 

-33 -81 10 

44 6 34 

-40 14 -44 

-40 -1 48 

-30 -3 51 

-40 9 22 

-45 14 30 

-21 -4 -15 

-20 5 -30 

60 -4 -14 

54 -4 -24 

56 -12 -20 

-38 23 -14 

-40 23 -21 
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Figure 1. Illustration of the automated volumetry approach used to extract hippocampal volumes 

for each subject. 

Figure 2. Hippocampal ROIs in MNI space. 

Figure 3. Scatterplot of the relationship between hippocampal gray matter volume 

(unstandardized residuals obtained by controlling for Model 1 variables) on the X-axis, and 

memory performance (expressed as a proportion) on the Y-axis. dP = delayed primacy 

performance; dNP = delayed non-primacy performance; iP = immediate primacy performance. 

Figure 4. Voxel-based analyses of the associations between different types of memory 

performance and regional gray matter volumes. Effects of delayed primacy, delayed non-

primacy, and immediate primacy performance on regional gray matter volume are shown on 

representative coronal sections through the MNI space template that was used for high-

dimensional spatial normalization. Statistical threshold was set to p < 0.001, uncorrected, with a 

minimum cluster extension threshold of 50 continuous voxels. Numbers in blue indicate y-

coordinates of MNI space. Effects corresponding to the hippocampus and surrounding structures 

of the medial temporal lobe are seen on coronal slices with MNI y-coordinates -6, -12, and -16. 
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Figure 1. 
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Figure 2.  
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Figure 3 
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Figure 4.  

 


