
Journal Name | Volume xx | Issue xx

https://doi.org/ 1

 1

Journal Name

http://ojs.ukscip.com/index.php/xxxx

Article Type (Article, Review, Communication, etc.)

Raspberry-PI based design of an interactive Smart Mirror for
daily life

Joe Reginald Lyons 1, Ogbonnaya Anicho 1 and Emanuele Lindo Secco 1,*

1 School of Mathematics, Computer Science and Engineering, Liverpool Hope University, Hope Park, L16 9JD, UK
* Correspondence: seccoe@hope.ac.uk; Tel.: +44 (0)151 291 3641

Received: Day Month Year; Accepted: Day Month Year; Published: Day Month Year

 2

Abstract: The Internet of Things and spatial computing are increasingly becoming pervasive in today's technological 3

landscape. These devices can sometimes offer the counter effect of complicating interaction between non-expert end-4

users and the device itself. In this paper, we propose a simple, user-friendly, cost-effective configurable smart mirror able 5

of displaying useful, relevant real-time information. This system is designed around a low-cost Raspberry PI, paired with 6

an LCD screen the system can be connected to a PC via the IEEE 802.15 wireless communication protocol. Preliminary 7

results showed the intuitive usability of the device in a daily life context. 8

 9

Keywords: internet of things; low-cost interactive design; intuitive design; user-friendly design. 10

 11

 12

 13

1. Introduction 14

 15

The smart home industry is an ever-growing industry [1]. Smart mirrors are a type of home technology, they display 16

relevant useful information, offering applications in health and energy efficiency [2]. 17

 18

Currently, there is a limited market for the device, hobbyists primarily make them, and it is “almost impossible to 19

acquire one” [3], therefore it can be deduced that there is a lack of customisable software, a deficit we aim to fulfil within 20

this project. Like smart mirrors, smart displays display relevant information visually. Evaluated at $3.78 billion in 2020 21

the global smart display market continues to rise, signifying the increasing demand for smart home technologies [4]. This 22

rise in popularity is partly due to an increase in functionality and configurability, with voice assistants now being 23

integrated into the technology, further improving functionality. 24

 25

Homes are bespoke to user needs and differ greatly in requirements, therefore, smart devices must be configurable 26

to meet this range of requirements. Regardless of the growing industry, these devices are not being adopted, we think this 27

is due to a lack of configurability and cost. Some smart mirrors do offer reconfigurability, however, these devices are on 28

average more than double the cost of similar smart home technologies this price is not justified, an idea explored within 29

this paper. In this context, the main contributions of this paper are: 30

 31

• Low-cost smart mirror design 32

• Configurable smart mirror design 33

• Energy-efficient smart mirror design 34

• Overview of the deficits within the smart mirror industry 35

• Improvements that can be made to current smart mirror technologies 36

 37

http://ojs.ukscip.com/index.php/ptnd
mailto:seccoe@hope.ac.uk

Journal Name | Volume xx | Issue xx

 2

 We want to design a novel smart mirror with the following aims and objectives: the device will be used frequently, 38

it will be left on for prolonged periods and be part of the user's home, therefore the proposed design should be robust, 39

aesthetically pleasing, and functional. 40

 41

The proposed device must also maintain user privacy, a growing concern within the home technology industry [5]. 42

To achieve these objectives, development will be user-centred, based on user feedback and testing, namely: 43

 44

• User data is kept secure. 45

• The application and device display data graphically. 46

• Up-to-date relevant information is displayed. 47

• The user can configure where and what data is displayed. 48

• The interface is easy to understand and use. 49

• There is a range of widget options 50

• The device can connect to the internet wirelessly. 51

• The device can connect to devices via Bluetooth. 52

 53

The paper is organised as follows: Section 2 presents the hardware and software of the system, Section 3 explores 54

system testing and corrective maintenance, and Section 4 contains an evaluation and conclusion of the system. 55

 56

 Two applications are developed using Python 3.12.2, one for configuration, running on a Windows machine and one 57

running the mirror’s interface on a Raspberry Pi 3B. Python is a high-performance, portable language supporting rapid 58

development, this allows for ease of development reducing development time and multiple iterations of the device being 59

made across a range of operating systems [6]. 60

 61

2. Materials and Methods 62

 63

The device will need access to the internet for API requests, a Wi-Fi network is ideal for this, however, the mirror 64

cannot connect to a Wi-Fi Network due to a lack of credentials and input. Instead, the application will communicate via 65

IEEE 802.15 protocol, namely Bluetooth PAN initially, receiving Wi-Fi credentials later. 66

 67

A set of algorithms need to be scheduled and planned: precisely, two differing flowcharts detail the execution path 68

of the applications, helping application development, decreasing development time, and ensuring project aims are met by 69

aiding algorithm comprehension [7]. An overview of these algorithms is reported in Figures 1 and 2. 70

Journal Name | Volume xx | Issue xx

 3

Figure 1. The mirror algorithm flow chart. 71

Journal Name | Volume xx | Issue xx

 4

Figure 2. The configuration algorithm flow chart. 72

 73

Journal Name | Volume xx | Issue xx

 5

2.1. Software 74

 75

The applications use various libraries to improve software functionality and help to fulfil the success criteria. 76

Libraries required and the justification of each: 77

 78

• The requests library is required to retrieve API information that the application displays. 79

• CustomTkinter is used to create the graphical user interface, it adds methods and classes that can be used to 80

create custom graphical interfaces. 81

• Pillow is an image library used to load and format images so they can be displayed graphically. 82

• The subprocess library allows terminal commands to be made from within the program, this is required to fetch 83

nearby network credentials which are sent to the Pi and used to connect. 84

• Threading is required for simultaneous multi-threading; this can lower program execution time allowing 85

processes requiring constant CPU attention to be executed [8]. 86

• The socket library is used to connect and send data via Bluetooth to and from the mirror. 87

• Datetime is required to retrieve the system time and date, this is parsed and the widget updated as necessary. 88

• CTkListBox is a small library built on top of “CustomTkinter”, it adds functionality for another type of graphical 89

widget. 90

• CTkMessageBox is another small library built on “CustomTkinter”, it adds functionality for pop-up message 91

windows. 92

 93

2.2. Hardware 94

 95

As well as having a significant software aspect, the project also has a significant hardware aspect; I have listed the 96

hardware and the rationale for these choices below: 97

 98

LCD - the project requires an LCD screen to display the graphical user interface, this screen sits behind a transparent 99

two-way mirrored Perspex sheet. The LCD is 1024X600, a 7” Inch HDMI display, the right size for the planned 100

GUI. 101

 102

The Raspberry Pi 3B is a single-board computer, this model boasts four 1.2GHz cores with 1GB RAM. This is 103

sufficient for my application and for the physical design of the device due to its small size and energy efficiency [9]. 104

 105

Transparent mirror, this material is a two-way see-through mirror, it is acrylic Perspex, therefore won't smash 106

making the device safer. The material allows light to pass through while maintaining its mirror-like appearance. 107

 108

Cables - a 12V power supply is required for the Raspberry PI 3B and a USB A to Micro USB with a HDMI for the 109

screen. 110

 111

When selecting the hardware, the cost was taken into consideration. Each component and its respective cost are 112

reported in Table 1. A comparison vs other commercial products is also reported in Figure 3. 113

 114
 115

Journal Name | Volume xx | Issue xx

 6

 116

Table 1. Components and their respective costs 117

 118

Hardware Cost (£) Supplier

Raspberry Pi Model 3B 27.89 Amazon

Raspberry Pi heat sync 2.20 Amazon

LCD 1024X600 display 54.99 Amazon

Two-way reflective Perspex (A5) 10.00 Ebay

12V micro USB power supply 5.30 Amazon

HDMI cable 3.46 Amazon

Wooden frame 9.67 B&Q

Total Cost: 113.51

 119

Figure 3. Graph comparison between the cost of similar devices 120

 121

 122

Table 1 and Figure 3 show the low-cost nature of the proposed device vs similar systems in the market1. The device’s 123

overall cost is similar to devices of less functionality such as the Amazon Echo, not the more expensive similar smart 124

mirror devices, showing it is possible to create a configurable low-cost smart mirror. 125

 126

 Power efficiency was another important factor when considering the hardware components, to comply with energy 127

efficiency regulations and compete with similar smart devices, energy certifications can impact product sales significantly, 128

such as the widely recognised and adopted Energy Star rating program [10]. 129

 130

The Raspberry Pi 3B uses a RISC ARM processor, which is more efficient than CISC x86 processors as less heat is 131

produced [11], the device also uses a small LCD. Housed within a thin wooden picture frame, with a perspex two-way 132

mirrored front, heat can easily dissipate, therefore, further cooling was not required, as passive cooling sufficed, reducing 133

energy consumption further. 134

 135

1 Costs taken on May 2024 from: https://uk.pcmag.com/smart-home/39701/amazon-echo; https://formelife.com/pages/hardware?sscid=51k8_hgutk;

https://www.amazon.co.uk/dp/B086MBPXWJ?ascsubtag=&linkCode=gs2&tag=hearstmagazin-21.

0

500

1000

1500

2000

2500

Echo (1st) Echo
Show (5th)

Smart
Mirror

Google
Nest (2nd

Gen)

Forme
Studio

Echelon
Reflect

Haocrown
mirror

C
o

st
 (

£
)

Smart Devices

Comparison cost to simialr devices

https://uk.pcmag.com/smart-home/39701/amazon-echo
https://www.amazon.co.uk/dp/B086MBPXWJ?ascsubtag=&linkCode=gs2&tag=hearstmagazin-21

Journal Name | Volume xx | Issue xx

 7

Figure 4. The project hardware layout 136

 137

Figure 5. Initial Sketch Up design 138

 139

Journal Name | Volume xx | Issue xx

 8

2.3. Design of the User Interface 140

 141

Due to the applications differing functionality, two graphical user interface designs are required. The interface 142

designs should be easy to use, display relevant information and be easily understood as outlined within the project aims. 143

 144

Mirror Interface 145

 146

This Interface is displayed on the mirror, it is used frequently and constantly, displaying data varying in size and 147

type. 148

 149

First Iteration - This design has had a focus on readability, to achieve this, information and interface widgets are 150

spaced, and a gap in the middle has been left for the mirror's reflection. The bold large titles ensure that data is easily 151

identifiable and understandable. This design includes a quote which is generated daily, a time greeting, the date, reminders, 152

current Spotify song, and the top news headlines (Figure 6, left panel). 153

 154

Figure 6. First and second mirror interface designs, panel left and right, respectively 155

 156

 Second Iteration - This design is a revamped version of the first iteration, it contains less information, however, it is 157

easier to read and understand due to the increased spacing, the more readable “Arial” font and the increase in font size 158

[12]. A weather widget has been added to the design replacing Spotify which requires a paid account; these widgets can 159

be swapped and customized to user preference (Figure 6, right panel). 160

 161

This interface will be configurable with the information displayed and the location of that data on the interface. Possible 162

configuration changes are listed below: 163

 164

• Widget interface locations 165

• Real-time weather data 166

• Time and Date 167

• No data 168

• Real-time news 169

• Time-table 170

• Reminders 171

• Updating complements 172

Journal Name | Volume xx | Issue xx

 9

• Greeting based on time e.g. “Good Morning {name}!” 173

• Generic time-based greeting 174

 175

Configuration and Setting 176

 177

The configuration application will run on a Windows machine, its interface will be similar to the mirror’s interface, 178

simulating the mirror. The interface needs to handle user input, Wi-fi information and UI options; therefore, the interface 179

will need easily interactable elements (Figure 7). 180

 181

Figure 7. Configuration interface design 182

 183

Dropdown elements are typical for other UIs making them intuitive, they offer a dynamic solution to widget choices 184

as they can be appended with more options without significantly changing the UI [13]. 185

Dropdown menus have been coloured to contrast the background and other UI colours so that they stand out, 186

improving the interface’s accessibility. 187

 188

2.4. Development of the Algorithm 189

 190

The applications are graphically user-centred and, therefore programmed modularly. Modularity provides the 191

opportunity to reuse program parts in other applications, allowing multiple UI instances to be created, each with its own 192

attributes. The code can be found here at the following link: System source code. 193

 194

A. Configuration Algorithms 195

 196

The following functions and methods have been integrated into the algorithm. 197

 198

Send_Pi_Data() - This function is called by the “Send_Widget_Data” method within the “App” class, it is called 199

by a separate thread enabling the UI to keep updating. The function connects to the Pi via Bluetooth, formatted parameters 200

and variable data are then sent in a specific order and unpackaged relative to this. A Bluetooth socket object is initialised 201

using the socket library, relevant methods are then called to connect and send encoded byte data to the application’s port 202

and the Pi’s Mac Address. If the Pi’s Wi-Fi status stored as a Boolean value within a text file is false, the program awaits 203

https://github.com/Numb11/Magic_Mirror_Py

Journal Name | Volume xx | Issue xx

 10

another thread’s execution before continuing. This is required as the awaiting thread will be gathering Wi-Fi credential 204

inputs, which will be sent to the Pi via Bluetooth. 205

 206

 Get_Near_NetworksName() – This function is called within the WI-FI Selection class’s constructor method, this 207

function is responsible for fetching network credentials enabling the Pi to connect via Wi-Fi. The function uses the 208

subprocess library to fetch nearby network data. Fetched data is formatted to Unicode, whitespace is removed and nearby 209

network SSIDS are appended to the local SSID list and returned, if an exception occurs “Absent” is returned. 210

 211
Figure 8. The mirror interface and the configuration interface on the left and right panels, respectively 212

 213

Get_NetworkPass() - Taking a network’s SSID as parameter, this function uses the SSID to execute a terminal 214

command requesting the saved network password. The return is decoded and formatted, enabling the password to be 215

fetched and returned. If the password cannot be attained or an exception occurs the local variable “Network_Pass” is 216

initialized to None. 217

 218

WifiSelection Class – This function is used to create a popup window interface, nearby network SSIDs are displayed 219

using a “ListBox” widget. Once the appropriate network is selected the respective password is fetched, and the data is 220

sent to the Pi using the “Send_Pi_Data()” function. 221

 222

Methods - The class's methods are designed to fetch data, process inputs and update interface widgets. 223

 224

Update_ConnectionsList() – This set up is used to update the “ListBox” widget displaying nearby networks, this 225

method first assigns a local RGB variable. This is decremented per appended value and used to change the object’s text 226

color, this creates a unique aesthetic and improves readability. The value list passed in by the “values” parameter is looped 227

by a for loop. Each value is formatted and appended to the widgets options attribute; a break line character is added to the 228

middle of each value to ensure readability. 229

 230

Get_password() – The function is responsible for fetching network credentials indicated by the SSID parameter 231

and updating necessary variables this function first strips the SSID to avoid errors. Once stripped the “Get_NetworkPass” 232

method is called with the “SSID” parameter. Using selection, a status message is displayed via a “CTKMessageBox” 233

Journal Name | Volume xx | Issue xx

 11

object, dependent on the result returned by the “Get_network” function call. If “None” has been returned, a button object 234

is created prompting the user to continue with Bluetooth. The variables “Wifi_Pass” and Pi Wi-Fi status are updated. 235

 236

ContinueBlue() - This method is called by a button widget, the object offers the option to continue with a Bluetooth 237

connection, only created if the network password can’t be attained. The method destroys the “WifiSelection” object 238

instance using the “destroy()” method. 239

 240

App class – This class defines the main window display. Due to the similarity to the App class of the Mirror script, 241

the differences have been listed: 242

 243

• ComboBoxes and Inputs - This script’s version of the class uses “Combobox” widgets offering configuration 244

input. Example data is used where possible instead of making API requests as this is not necessary to represent 245

the configuration. As well as “ComboBox” widgets, the class fetches input using “CTkInputDialog” objects 246

which produce pop-up windows. These objects prompt Timetable and Reminder input, this is sent to the Pi after 247

submission. 248

 249

• Widget placements - Due to screen size differences and “ComboBox” widget requirements, interface elements 250

are placed in differing locations using screen coordinates, anchors aren’t used as data is pre-defined. Widget 251

placement is representative of the mirror interface. 252

 253

B. Mirror Algorithms 254

 255

The The Raspberry Pi 3B has minimal resources and is passively cooled, therefore, to avoid overheating the program 256

must be time and memory-efficient. The mirror will only have network input and will likely be left on for days, therefore, 257

it is essential the program can detect and handle errors efficiently. 258

 259

Get_IP_Location() – This function is called to fetch the Pi’s public IP address location, this function’s return is used 260

to gain weather information. The function will make an API request using the requests library, this is returned in a JSON 261

format. 262

The JSON format will be decoded into a dictionary data type and relevant information fetched to be returned. If an 263

exception occurs the longitude and latitude for Manchester will be returned. 264

 265

Get_Weather_Data() – This class is responsible for fetching weather data, this function takes latitude and longitude 266

as parameters which are used to make an API request. The returned JSON data is formatted to a data type dictionary, and 267

the relevant data is held and returned, if an exception occurs, the image path of the universal no Wi-Fi icon is returned. 268

 269

Get_Date_prefix() – The function takes an integer value as a parameter representing the date. A local dictionary is 270

defined and initialised with the relevant date postfixes, using selection the relevant postfix is returned. 271

 272

Get_quote() - This function makes an API request, fetching a random quote. The request return is cast from JSON 273

to dictionary data type and the quote is fetched. If the quote’s length is greater than eight or less than five characters 274

recursion is used to request another, otherwise the quote is returned. 275

Quote length is limited to maintain usability and readability. 276

 277

Get_time() - The result of the “now()” method on the “DateTime” object is returned, returning the current date and 278

time. 279

 280

Class App - This class is very similar to the class used in the configuration application. It is used to create a main 281

window instance, this window acts as the primary user interface, displaying widgets per user preference. 282

 283

Journal Name | Volume xx | Issue xx

 12

App class methods - This class has been designed to differ in method functionality, the differing types being location, 284

widget updating and widget creation. 285

 286

Location methods 287

 288

• Location methods act as controllers for specific areas of the screen, they call methods dependent on parameters, 289

they can create or destroy widgets. 290

 291

• Upp_left(), Upp_Right(), Bott_Centre(), Centre() - Sharing the same functionality, these methods using 292

selection and appropriate method calls create the widget specified by the parameter “type”. If the widget already 293

exists, it is swapped from that location by updating that location's attributes and calling the “Widget_Destory()” 294

method. This prevents errors from occurring due to multiple API requests and unsupported thread instances 295

overloading the Pi. 296

 297

Widget updating methods 298

 299

• Widget updating methods are called to update specific widgets dependant on parameter values, they are 300

typically called within the time updating threads. 301

 302

• Update_Compliment(), Update_Greeting(), Update_Quote(), Update_Day(), Update_Weather() and 303

Update_Date() - Sharing similar functionality these methods call necessary fetching methods and functions 304

getting up-to-date relevant information to update widgets. Widgets are updated using the “configure()” method. 305

 306

• Update_Interface() and Update_Hour() - Responsible for updating widgets at specific times these methods 307

are called in separate threads. The methods require constant CPU attention as “while true” loops are used to 308

avoid recursion depth limits. Widgets are updated using the sleep() method of the “time” class and selection 309

specifying which widgets to update. 310

 311

Instead of using time the “Update_Interface()” method acts upon a Bluetooth connection. When data is received it is 312

decoded, unpackaged, and the relevant widget objects and variables updated. 313

 314

Widget creation methods 315

 316

• Widget creation methods are called to create a new widget, the widget created is dependent on parameter value 317

and other widgets. 318

 319

• WeatherWidget(), Create_Greeting_Widget(), Create_Subgreet_Widget(), Create_ListWidget() and 320

Greeting_Widget() - Sharing similar functionality these methods update the necessary widget objects, 321

depending on parameter, attributes are updated and method calls made to fetching relevant information. 322

 323

3. Results 324

 325

An input/output table has been used to test both applications, the mirror application has no input relying on the 326

configuration algorithm, therefore, this test will identify errors in both applications (Table 1). 327

 328

Table 2. Results of the testing, where trials show that the applications can handle boundary, erroneous and normal input 329

data 330

 331

 332

 333

 334

Journal Name | Volume xx | Issue xx

 13

 335

 336

 337

 338

 339

 340

 341

 342

 343

 344

 345

 346

 347

 348

 349

 350

 351

 352

 353

 354

 355

 356

 357

A 24-hour use test has been performed. This tested the hardware and the application’s usability, the device and 358

application stayed on for 24 hours without major errors, however, a logical error did occur. The date did not update, after 359

examination, it was found the “Update_Hour()” method was comparing the “date” attribute to the starting date local 360

variable that wasn’t being updated, this resulted in the “Update_day()” method not being called. Figure 9 displays the 361

results of this test. 362

 363

Figure 9. A graph displaying the device's power consumption 364

 365

 366

Data Type Input Output

Normal Upper Right Interface combo box choices Expected, interface updated

Normal Upper Left Interface combo box choices Expected, interface updated

Normal Centre Interface combo box choices Expected, interface updated

Normal Bottom Centre Interface combo box choices Expected, interface updated

Erroneous
Upper Right Interface choice is equal to

Upper left Interface choice

Expected, error handled the widgets were

swapped

Erroneous
The network chosen has no network

password saved on the system

Expected, error handled the continue

Bluetooth button was displayed

Boundary
The submit button is pressed multiple times

while data is sent

Expected output, the configuration data sent

as normal

Erroneous
The submit button is pressed while the

mirror is not connected

Expected output, error handled, warning

message displayed notifying the user to “try

again”

0

1

2

3

4

5

6

1 2 3 4 5 6 7

W
at

ta
g

e

Entries

Power Usage

Wattage Start-up Wattage Running Wattage Config

Journal Name | Volume xx | Issue xx

 14

Figure 10. A graph displaying average power consumption for differing devices 367

 368

A comparison vs the power consumption of other devices is also reported in Figure 102. As shown in the Figures 9 369

and 10, the proposed smart device uses minimal power having a maximum of 5.58 W during the initial start-up of the 370

system. Compared with similar products, the device outperforms them significantly with the only exception being the 371

Amazon Echo. This device offers less functionality and lacks a screen, this comparison shows that this design's power 372

consumption is closer to a device offering significantly less functionality than a similar device that displays data visually. 373

 374

Figure 11. The Smart Mirror final iteration 375

 376

 377

 378

 379

 380

 381

 382

 383

 384

 385

 386

 387

 388

 389

 390

 391

 392

 393

 394

 395

 396

 397

2 Power consumption reported on data sheet of the producst at th efolowing links: howtogeek.com (How Much Electricity Does the Amazon Echo

Use?); https://www.argos.co.uk/product/9325195?clickSR=slp:term:smart%20home:5:566:2

1.8

22

5.58

15

0

5

10

15

20

25

Echo (1st) Echo Show Smart Mirror Google Nest (2nd
Gen)

W
at

ta
g

e

Smart Devices

Power consumption comparisons

https://www.argos.co.uk/product/9325195?clickSR=slp:term:smart%20home:5:566:2

Journal Name | Volume xx | Issue xx

 15

4. Conclusion 398

 399

The following aims and objectives have been covered in the presented project 400

 401

• User data is secure - User data is kept secure, sensitive information is not recorded, or sent anywhere else 402

other than the mirror via a secure Bluetooth connection. 403

• The application displays data graphically - This has been met, as seen by the images below the application 404

displays data graphically via a graphical user interface. 405

• The application displays up-to-date relevant information - The application does display relevant up-to-date 406

information, achieved by the various methods used to update the interface’s widgets. 407

• The user can configure where and what data is displayed - Using the configuration application, widget 408

location and widget type can be changed. 409

• The interface is easy to understand and use - The interface has been designed to be intuitive by increasing 410

readability and following universal standards. 411

• There is a range of widget options - The configuration application offers multiple widget options supported by 412

the mirror. 413

• The device can connect to the internet wirelessly – The device can connect to the internet via WI-FI with the 414

application making API requests. 415

• The device can connect to devices via Bluetooth – The device is able to connect to differing windows devices 416

via a Bluetooth connection. 417

In summary, the project has highlighted the deficits within home technologies and the benefits of innovation within 418

this sector. This design can be made quickly at low cost, customised to user requirements, and used in a range of 419

applications. The device can display relevant up-to-date information in an easily understandable format, that can be 420

configured to user needs. 421

 422

Clearly, a set of further work can be foreseen: the smart mirror proposed in this project can be easily improved, the 423

software is modular, and designed to allow perfective maintenance. The next step for this device would be to gain further 424

user feedback to add additional widget support and make interface changes, as well as to consider integrating machine 425

learning and assistive technologies to further provide service and support to the end users [14, 15]. Such a system could 426

also be integrated with a set of sensors and other smart home devices or connected to an Ambient Assisted Living or 427

medical system [16, 17]. In this context, it is reasonable to also foresee the integration with gesture recognition systems 428

making the mirror more intuitive when interacting with the end-user [18, 19]. Hardware could be changed to increase size 429

and reduce depth; increasing usability and functionality while reducing noticeability, while Artificial Intelligence and 430

Augmented reality technologies could be implemented using a camera. More importantly further support should be added 431

for differing devices allowing for greater accessibility when configuring the device, the configuration application could 432

be moved to the web using Javascript, HTML and CSS to increase the application's portability and ultimately its 433

accessibility. 434

 435

Supplementary Materials 436

The project code is reported on the following GitHub repository – System source code 437

 438

Author Contributions 439

Conceptualisation, JL and ES; methodology, JL; software, JL; validation, JL; supervision, AO and ES; writing—original 440

draft preparation, JL and ES. 441

 442

 443

https://github.com/Numb11/Magic_Mirror_Py

Journal Name | Volume xx | Issue xx

 16

Funding 444

This work received no external funding. 445

 446

Acknowledgements 447

This work was completed by Joe Lyons as part of his coursework requirements for the BSHH in Computer Science at 448

Liverpool Hope University's within the School of Mathematics, Computer Science, and Engineering. We thank Mr I Steel 449

for his support. 450

 451

Conflicts of Interest 452

The authors declare no conflict of interest. 453

 454

References 455

 456
1. Buil-Gil, D. et al. (2023) The digital harms of Smart Home Devices: A systematic literature review. Computers in 457

Human Behavior, 145, pp.1–3. 458
2. Moris, M. E. et al. (2013) Smart-home technologies to assist older people to live well at home. Journal of Aging 459

Science, 01(01). 460
3. Kulovic, S. and Ramic-Brkic, B. (2018) DIY smart mirror. Lecture Notes in Networks and Systems, pp.329–336. 461
4. Tewari, D., Jangra, H. and Mutreja, S. (2021) Smart Display Market Size, Share, Competitive Landscape and 462

Trend Analysis Report by Type, Resolution, Display Size and End User : Global Opportunity Analysis and 463
Industry Forecast, 2021-2028. rep. Display Technologies, pp. 0–332. 464

5. Guhr, N. et al. (2020) Privacy concerns in the smart home context. SN Applied Sciences, 2(2). 465
6. The Python Language Reference (2024) The python language reference, Python documentation [online]. 466

Available from: <https://docs.python.org/3/reference/index.html> [accessed 7 April 2024]. 467
7. Scanlan, D. A. (1989) Structured flowcharts outperform pseudocode: An experimental comparison. IEEE 468

Software, 6(5), pp.28–36. 469
8. Mahmmod, B. M. et al. (2023) Performance enhancement of high order Hahn polynomials using multithreading. 470

PLOS ONE, 18(10). 471
9. Gamess, E. and Hernandez, S. (2022) Performance evaluation of different Raspberry Pi models for a broad 472

spectrum of interests. International Journal of Advanced Computer Science and Applications, 13(2), pp.819–828. 473
10. Brown, R., Webber, C. and Koomey, J. G. (2002) Status and future directions of the Energy Star Program. Energy, 474

27(5), pp.505–520. 475
11. Gupta, K. and Sharma, T. (2021) Changing trends in computer architecture : A comprehensive analysis of ARM 476

and x86 processors. International Journal of Scientific Research in Computer Science, Engineering and Information 477
Technology, pp.619–631. 478

12. Tullis, T. S., Boynton, J. L. and Hersh, H. (1995) Readability of fonts in the windows environment. Conference 479
companion on Human factors in computing systems - CHI ’95, pp.127–128. 480

13. Raskin, J. (1994) Viewpoint: Intuitive equals familiar. Communications of the ACM, 37(9), pp.17–18. 481
14. M Innes, EL Secco, An Understanding of How Technology Can Assist in the Epidemic of Medicine 482

Nonadherence with the Development of a Medicine Dispenser, European Journal of Applied Sciences, 11(3), 522-483
550, 2023, DOI: 10.14738/aivp.113.14878 484

15. VD Manolescu, EL Secco, Design of an Assistive Low-Cost 6 d.o.f. Robotic Arm with Gripper, 7th International 485
Congress on Information and Communication Technology (ICICT 2022), Lecture Notes in Networks and 486
Systems (ISSN: 2367-3370), 1, 39-56, 2022, DOI: 10.1007/978-981-19-1607-6 487

16. M Van Eker, EL Secco, Development of a low-cost portable device for the monitoring of air pollution, Acta 488
Scientific Computer Sciences, 5(1), 2023 489

17. K Brown, EL Secco, AK Nagar, A Low-Cost Portable Health Platform for the Monitoring of Human Physiological 490
Signals, The 1st EAI International Conference on Technology, Innovation, Entrepreneurship and Education, 491
2017, DOI 978-3-030-02242-6_16 492

18. D McHugh, N Buckley, EL Secco, A low-cost visual sensor for gesture recognition via AI CNNS, Intelligent 493
Systems Conference (IntelliSys) 2020, Amsterdam, The Netherlands 494

19. Buckley N, Sherrett L, Secco EL, A CNN sign language recognition system with single & double-handed 495
gestures, IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), 1250-1253, 2021 - 496
10.1109/COMPSAC51774.2021.00173 497

 498

Journal Name | Volume xx | Issue xx

 17

 499
 500
 501

Copyright © 2024 by the author(s). Published by UK Scientific Publishing Limited. This is an open access

article under the Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

 502
Publisher’s Note: The views, opinions, and information presented in all publications are the sole responsibility of the 503
respective authors and contributors, and do not necessarily reflect the views of UK Scientific Publishing Limited and/or 504
its editors. UK Scientific Publishing Limited and/or its editors hereby disclaim any liability for any harm or damage to 505
individuals or property arising from the implementation of ideas, methods, instructions, or products mentioned in the 506
content. 507

