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Pure 2D context-free grammar (P 2DC F G) with an independent mode of array rewriting, 
was recently introduced and named as I P 2DC F G . Here we consider a variant of I P 2DC F G , 
called (l/u)I P 2DC F G , by requiring rewriting of the leftmost (respy. uppermost) symbol in 
every row (respy. column) of an array, with the symbol having a rewriting rule in a given 
set of pure context-free rules. We introduce an array P system with (l/u)I P 2DC F G kind of 
rules and array rewriting in its membranes. When two membranes are used in the array P 
system, the array generative power is increased compared to using a single membrane.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Motivated by the seminal work [10] of Păun, especially, the variant of a P system with string objects and evolution rules 
involving the rewriting operation, the two areas of membrane computing [11,12,23] and two-dimensional formal language 
theory [7,13,14,22] were linked in [4], by defining a cell-like array P system with array-objects in the compartments of a 
membrane structure and array-rewriting rules of the isometric variety to evolve the arrays. Several kinds of array P systems 
were subsequently introduced and investigated involving rectangular or non-rectangular array-objects and isometric or non-
isometric kind of rewriting rules (see, for example, [18,21] and references therein). Unlike the non-isometric array rewriting 
rules, the isometric array rewriting rules preserve the geometric shape of the rewritten subarray. In the recent past, a 2D 
grammar model, called pure 2D context-free grammar (P 2DC F G), which was introduced in [19,20], has been a simple and 
at the same time an effective non-isometric 2D grammar model generating two-dimensional picture languages consisting 
of rectangular picture arrays. In a P 2DC F G , all symbols in any column or any row of the rectangular array are rewritten 
at a time by applicable rules in a set of pure context-free rules, called table of rules, with equal length strings on the right 
sides of the rules, thus maintaining the array to be rectangular. In [2,3,19,20], several properties of P 2DC F G have been 
established while a variant of P 2DC F G , called (l/u)P 2DC F G , has been introduced in [8], with the feature that rewriting 
of all symbols only in the leftmost column or in the uppermost row of an array, is done in a (l/u)P 2DC F G . Recently, 
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another variant of P 2DC F G , called pure 2D context-free grammar with independent mode of rewriting, called I P 2DC F G
was introduced in [1]. In an I P 2DC F G rules of a column table are applied to symbols in all the rows rewriting one symbol 
in each row but not necessarily in the same column unlike in a P 2DC F G . Likewise rules of a row table are applied to 
symbols in all the columns rewriting one symbol in each column but not necessarily in the same row.

Motivated by an (l/u) mode of rewriting of a picture array, here we consider pure 2D context-free grammars in indepen-
dent mode (I P 2DC F G) and require rewriting of the leftmost (respy. uppermost) symbol in every row (respy. column) of an 
array, with the symbol having a rewriting rule in a column table (respy. a row table) of pure context-free rules [9]. We call 
the resulting array grammar as (l/u)I P 2DC F G . The resulting class (l/u)I P 2DC F L of picture array languages is shown to 
be incomparable but not disjoint with each of the families of P 2DC F L and I P 2DC F L. We then consider an array P system 
with (l/u)I P 2DC F G kind of rewriting using tables of rules as in a P 2DC F G . We show that the use of two membranes 
gives more picture array generative power with respect to the same kind of P systems, but having only one membrane. 
We also construct an array P system with three membranes and (l/u)I P 2DC F G kind of rules in its regions, generating a 
context-sensitive two-dimensional picture array language in the class C S ML introduced in [17].

2. Preliminaries

A finite sequence w = a1a2 · · ·an , (n ≥ 1) of symbols ai, 1 ≤ i ≤ n, belonging to a finite alphabet T is called a non-empty 
word (or non-empty string) over T and the length of the word w is denoted by |w|. The set of all words (also called as 
row words) over T is denoted by T ∗ which includes the empty word λ with no symbols. Given a word w = a1a2 · · ·an , we 
denote by wt the word w written vertically as follows and call it a column word:

a1
a2
...

an

.

Note that (wt)t = w and if wt is a column word, then (wt)t is a row word.
An m × n rectangular array p over T (also called picture array), is of the form

M =
p11 · · · p1n
...

. . .
...

pm1 · · · pmn

where each pij ∈ T , 1 ≤ i ≤ m, 1 ≤ j ≤ n. We denote by T ∗∗ the set of all picture arrays over T , including the empty array λ
and T ++ = T ∗∗ − {λ}.

For notions on formal languages and array grammars, the reader can refer to [13–16] while for concepts concerning P 
Systems we refer to [10,11]. Pure 2D context-free grammar with independent mode of rewriting, introduced in [19,20] is 
now recalled.

Definition 1. A pure 2D context-free grammar in independent mode
(I P 2DC F G) is a quadruple G = (T , P1, P2, I) where

i) T is a finite set of symbols;
ii) P1 is a finite set of column tables c, where c is a finite set of pure context-free rules of the form a1 → x1, a1 ∈ T , x1 ∈ T ∗

with the property that the words x1 and x2 have equal length for any two rules a1 → x1, a2 → x2 in c, i.e |x1| = |x2|;
iii) P2 is a finite set of row tables r, where r is a finite set of pure context-free rules of the form b1 → yt

1, b1 ∈ T , y1 ∈ T ∗
such that for any two rules b1 → yt

1, b2 → yt
2 in r, we have |y1| = |y2|;

iv) I ⊆ T ∗∗ − {λ} is a finite set of axiom arrays.

A direct derivation in a I P 2DC F G G is defined as in a P 2DC F G [19,20] but rewriting of a picture array is done as given 
below and we call the rewriting as an independent mode of rewriting. Also at each derivation step we can apply either a 
column table of rules, or a row table of rules, whenever such a table of rules is available and applicable. A picture array p2
is obtained directly from an m × n picture array p1, written as p1 ⇒i p2, as follows: In applying the rules of a column table 
c to the m × n picture array p1, only one symbol in each of the m rows is rewritten at a time and it can be any symbol 
in that row. Likewise in an application of the rules of a row table r to p1, only one symbol in each of the n columns is 
rewritten at a time and again it can be any symbol in that column. All the symbols chosen for rewriting should have rules 
in the respective table; Otherwise, the table of rules is not applicable. If a picture array p′ is obtained from a picture array p
using a I P 2DC F G , through a sequence of direct derivation steps, we write p ⇒∗

i p′ . The array derived is also a rectangular 
array since the lengths of the right sides of all the rules in a column table or a row table, are the same.
2
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The picture array language generated by a I P 2DC F G G is the set of picture arrays L(G) = {p ∈ T ∗∗ | p0 ⇒∗
i p for some 

p0 ∈ I}. The family of picture array languages generated by I P 2DC F Gs is denoted by I P 2DC F L. We illustrate with an 
example.

Example 2.1. Consider the I P 2DC F G G1 = (T , P1, P2, {p0}) where
T = {a, b, x, d}, P1 = {c}, P2 = {r}, where

c = {a → ab, x → xx,d → bd}, r =
{

a → a
b

, x → x
x
,d → b

d

}
,

and

p0 =
a b b
b x b
b b d

.

G1 generates a picture array language L1 consisting of picture arrays p of size m ×n, m, n ≥ 3 with p(1, 1) = a, p(1, j) =
p(i, 1) = p(m, k) = p(l, n) = b, for 2 ≤ j ≤ n, 2 ≤ i ≤ m, 2 ≤ k ≤ n − 1, 2 ≤ l ≤ m − 1, p(m, n) = d and p(i, j) = x, otherwise. 
We note that a derivation in G1, starting from the axiom array p0, generates picture arrays of the form

a b b · · · b b
b x x · · · x b
b x x · · · x b
...

...
...

. . .
...

...

b x x · · · x b
b b b · · · b d

.

Note that when a column table of rules is used, a symbol in each row (not necessarily in the same column) is rewritten 
while a symbol in each column (not necessarily in the same row) is rewritten when a row table of rules is used. For 
example, if the rules of the column table c are applied to the axiom array p0, then the symbol a in the first row, an x in 
the second row and the d in the third row can be rewritten to yield the array

a b b b
b x x b
b b b d

.

3. Pure 2D context-free grammar in independent mode and (l/u) kind of rewriting

We now introduce the (l/u) kind of rewriting in the pure 2D context-free grammar in independent mode, resulting in 
another variant of P 2DC F G , which we call as (l/u)I P 2DC F G .

Definition 2. A pure 2D context-free grammar in independent mode with (l/u) kind of rewriting ((l/u)I P 2DC F G) G =
(T , P1, P2, I) has its components

T , P1, P2, I as in the I P 2DC F G in Definition 1, with a difference in the mode of rewriting of a picture array and which 
is done as given below:

A direct derivation of a picture array p2 from an m × n picture array p1, written as p1 ⇒ p2, is done in the following 
manner: In applying the rules of a column (respy. row) table c (respy. r) to the m × n picture array p1, among the symbols 
in the rows (respy. columns) which can be rewritten by rules in c (respy. r), only the leftmost (respy. uppermost) symbol 
in each of the m rows (respy. n columns) is rewritten at a time. If a picture array M2 is obtained from a picture array M1
using the (l/u)I P 2DC F G , through a sequence of direct derivation steps, we write M1 ⇒∗ M2. Note that the lengths of the 
right sides of all the rules in a column table or a row table, are the same and so the derived array is also a rectangular 
array.

The picture language generated by a (l/u)I P 2DC F G G is the set of picture arrays L(G) = {M ∈ T ∗∗ | M0 ⇒∗ M for some 
M0 ∈ I}. The family of picture languages generated by (l/u)I P 2DC F Gs is denoted by (l/u)I P 2DC F L.

We illustrate with an example.

Example 3.1. Consider the (l/u)I P 2DC F G G2 = (T , P1, P2, {M0}) where
T = {a, b, d, e, x, y}, P1 = {c1, c2}, P2 = {r}, where

c1 = {a → ab, x → xy, y → yx,d → bd}, c2 = {a → a, x → x, y → y,d → e},

3



S. Bera, A.K. Nagar, S. Sriram et al. Theoretical Computer Science 968 (2023) 114027
a b b · · · b b
b x y · · · y b
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

b x y · · · y b
b x y · · · y b
b y x · · · x b
b b b · · · b d

a b b · · · b b
b x y · · · y b
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

b x y · · · y b
b x y · · · y b
b y x · · · x b
b b b · · · b e

Fig. 1. Picture arrays of Example 3.1.

M0 =
a b b b
b x y b
b y x b

b b b d

⇒
a b b b b
b x y y b

b y x x b

b b b b d

⇒

a b b b b
b x y y b
b x y y b
b y x x b

b b b b d

⇒

a b b b b
b x y y b
b x y y b
b y x x b
b b b b e

= M

Fig. 2. Derivation M0 ⇒∗ M .

r =
{

a → a
b

, x → x
x
, y → y

y
,d → b

d

}

and

M0 =
a b b b
b x y b
b y x b
b b b d

.

G2 generates a picture language L2 consisting of picture arrays p of size m × n, m, n ≥ 4 with p(1, 1) = a, p(1, j) =
p(m, k) = p(i, 1) = p(l, n) = b, for 2 ≤ j ≤ n, 2 ≤ k ≤ n − 1, 2 ≤ i ≤ m and 2 ≤ l ≤ m − 1, p(i, 2) = p(m − 1, j) = x, for 
2 ≤ i ≤ m − 2 and 3 ≤ j ≤ n − 1, p(m, n) = d or e, p(i, j) = y, otherwise. We note that a derivation in G2, starting from 
the axiom array M0, generates picture arrays of the form shown in Fig. 1. A sample derivation M0 ⇒∗ M using the tables 
c1, r, c2 in this order is shown in Fig. 2. We have indicated the symbols rewritten by enclosing these in rectangular boxes. 
Note that when a column table of rules is used, in each row, a symbol which can be rewritten by a rule of the table and 
which is the leftmost symbol among such symbols in the row, is rewritten. If any of the rows has no symbol for which 
there is a rule in the table which can rewrite it, then the table of rules is not applicable. Likewise a row table of rules is 
used. For example, in applying the rules of the table c1 to the array M0, the symbol a in the first row, is rewritten as this 
symbol is the leftmost symbol having a rule in the table c1 that can be used to rewrite it. The symbol x in the second row 
is the leftmost symbol in this row that has a rule in the table c1 which can be used to rewrite it and so this symbol is 
rewritten. Likewise, the symbol y in the third row and d in the fourth row are the leftmost symbols in the respective rows 
having rewriting rules in the table c1 and so these are rewritten, thus completing the application of the rules of the table 
c1 to the array M0, yielding the second array in the derivation. Likewise, the subsequent steps of the derivation are done.

Lemma 1. (i) (l/u)I P 2DC F L \ P 2DC F L 
= ∅
(ii) (l/u)I P 2DC F L \ I P 2DC F L 
= ∅

Proof. It is clear from Example 3.1 that L2 ∈ (l/u)I P 2DC F L. We show that L2 /∈ P 2DC F L. If we assume that L2 can be 
generated by a P 2DC F G , we first note that in a P 2DC F G all the symbols in a single column are to be rewritten if the 
symbols have rules in a column table. The first column or the last column of a picture array in L2 has many consecutive 
b′s with b as the last symbol in the first column and the first symbol in the last column. One such array needs to be an 
axiom array in the P 2DC F G to be constructed. Then the column table of rules used to rewrite the first column or the last 
column of such an array should have a rule for b of the form b → b · · ·b. But then this kind of a rule can be applied to 
any other b in the first column and likewise in the last column. Obviously this will yield pictures not in L2 . On the other 
hand if symbols in a column other than the first and last columns in a picture array L2 are rewritten, we have to include 
suitable rules for x, y and b. In fact in order to rewrite symbols in the second column, we require a column table t of rules 
which includes a rule for x of the form x → y · · · y. But then such a table of rules can be used to rewrite symbols in another 
column. So if symbols in a column (other than the first column, second column and the last column) of the picture array, 
4
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are rewritten, then the rule for x in t could be used for rewriting the symbol x in the column chosen. Again this will result 
in picture arrays not in the language L2. This proves that (l/u)I P 2DC F L \ P 2DC F L 
= ∅.

The argument for I P 2DC F G is not much different from the argument mentioned above for the case of P 2DC F G . The 
main difference is that not all symbols in a single column need be rewritten at a time. So a little reflection will tell that 
any kind of rule for b or x or y included in a column table, will only yield picture arrays that do not belong to L2 while 
inclusion of rules only for a and e in a column table, is not enough to rewrite an array in I P 2DC F G mode. This proves that 
(l/u)I P 2DC F L \ I P 2DC F L 
= ∅. �
Lemma 2. (i) P 2DC F L \ (l/u)I P 2DC F L 
= ∅
(ii) I P 2DC F L \ (l/u)I P 2DC F L 
= ∅

Proof. Consider the picture array language generated by the P 2DC F G with axiom a b a
b c b

and a column table of rules 

{b → aba, c → bcb}. The picture arrays generated by this P 2DC F G are of the form a · · · a b a · · · a
b · · · b c b · · · b

. But this lan-

guage cannot be generated by any (l/u)I P 2DC F G . In fact in order to generate an equal number of a′s to the left and right 
of the b in the first row, we need a rule of the form b → ambam for some m ≥ 1. But then this rule can be applied to the 
first b in the second row in a (l/u)I P 2DC F G . This will yield arrays not in the language. Hence this language cannot be 
generated by any (l/u)I P 2DC F G . This proves that P 2DC F L \ (l/u)I P 2DC F L 
= ∅.

Consider the picture language generated by the I P 2DC F G with axiom a a
a b

, column table of rules {a → aa,b → bb}. 

Picture arrays generated are of the form a a · · · a
a b · · · b

. This language cannot be generated by any (l/u)I P 2DC F G . In fact to 

generate the first row of the arrays, a rule of the form a → am , m ≥ 1 is needed. But then in a (l/u)I P 2DC F G , the first and 
the only a in the second row of the array is to be rewritten. This will then yield arrays not in the language. �
Theorem 3.1. The family (l/u)I P 2DC F L is incomparable but not disjoint with each of the families P 2DC F L and I P 2DC F L.

Proof. Consider the picture array language La consisting of m × n (m, n ≥ 2) picture arrays p over {a} where p(i, j) = a, for 
all 1 ≤ i ≤ m, 1 ≤ j ≤ n. This language La is generated by a P 2DC F G as well as a I P 2DC F G and a (l/u)I P 2DC F G with a 

column table of rules c = {a → aa}, a row table of rules 
{

a → a
a

}
and axiom array a a

a a
.

The incomparability of (l/u)I P 2DC F L with P 2DC F L follows from Lemma 1 while the incomparability of (l/u)I P 2DC F L
with I P 2DC F L follows from Lemma 2. �
4. Array P system based on (l/u)I P 2DC F G

An array P system is considered now with the membranes of the P system containing picture array objects and column 
or row tables of rules as in a P 2DC F G but rewriting of arrays is done as in a (l/u)I P 2DC F G in the sense that the rewriting 
is in independent mode with the leftmost (respy. uppermost) symbol in every row (repy. column) which can be rewritten 
by a rule of the respective table, being rewritten.

Definition 3. An array P system (of degree m ≥ 1) with (l/u)I P 2DC F G kind of rules is a construct

� = (T ,μ, F1, · · · , Fm, P1, · · · , Pm, io),

where T is the alphabet consisting of terminal symbols, μ is a membrane structure with m membranes labelled in a one-
to-one manner with 1, 2, · · · , m; F1, · · · , Fm are finite sets (can be empty) of rectangular picture arrays over T with Fi
being in the membrane or region labelled i for 1 ≤ i ≤ m; P1, · · · , Pm are finite sets of column tables or row tables of pure 
context-free rules over T (as in a P 2DC F G) with Pi being in the membrane or region labelled i for 1 ≤ i ≤ m. A region 
can contain both column tables of rules and row tables of rules. The application of a column or row table is as done in 
a (l/u)I P 2DC F G . The tables have attached targets here, out, in, in j (in general, here is omitted) and io is the label of the 
output membrane which is an elementary membrane of μ.

As done in an array-rewriting P system [4], a computation in � is done with the successful computations being the 
halting ones; each rectangular picture array in each region of the system, which can be rewritten by a column table of 
rules or a row table of rules, associated with that region, should be rewritten. This means that a region can contain column 
tables of rules and/or row tables of rules but one table (column or row) of rules is applied at a time to a picture array 
and the rewriting is done as in a (l/u)I P 2DC F G . If the target associated with the table used is here, the picture array 
obtained by rewriting is retained in the same region while it is sent to an immediate outer region (respy. directly inner 
region, nondeterministically chosen), if the target is out (respy. in). If the target is in j then the array is immediately sent to 
5
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a directly inner membrane with label j. If no internal membrane exists, then a table with the target indication in cannot be 
used. A computation is successful only if it stops, that is, a configuration is reached where no table of rules can be applied 
to the existing arrays in the regions.

The result of a halting computation consists of rectangular picture arrays over T collected in the output membrane 
with label io in the halting configuration. Note that all the picture arrays that stay at the output membrane in the halting 
configuration will belong to the picture language since there is only one kind of symbols, namely terminal symbols.

The set of all picture arrays generated by such a system � is denoted by (l/u)I AL(�). The family of all pic-
ture array languages (l/u)I AL(�) generated by such systems � as above, with at most m membranes, is denoted by 
I A Pm((l/u)I P 2DC F G).

Example 4.1. Consider the picture language L3 consisting of square sized n × n, n ≥ 4, picture arrays p with p(1, 1) = a, 
p(1, j) = p(i, 1) = p(n, k) = p(l, n) = b, for 2 ≤ j ≤ n, 2 ≤ i ≤ n, 2 ≤ k ≤ n − 1 and 2 ≤ l ≤ n − 1, p(i, 2) = p(n − 1, j) = x, 
for 2 ≤ i ≤ n − 2 and 3 ≤ j ≤ n − 1, p(n, n) = e, p(i, j) = y, otherwise. We construct an array P system �3 with only one 
membrane that generates L3. The membrane region contains tables having (l/u)I P 2DC F G kind of rules. �3 is given by

�3 = (T ,μ, F1, P1,1),

where

i) T = {a, b, d1, d2, e, x, y}
ii) μ = [1 ]1

iii) F1 =

⎧⎪⎪⎨
⎪⎪⎩

M0 =
a b b b
b x y b
b y x b
b b b d1

⎫⎪⎪⎬
⎪⎪⎭

,

iv) P1 consists of two column tables c1 and c2 and a row table r each having target here. The tables of rules are given 

as follows: c1 = {a → ab, d1 → bd2, x → xy, y → yx}, c2 = {a → a, d1 → e, x → x, y → y}, r = {a → a
b

, x → x
x

, y →
y
y

, d2 → b
d1

}.

In the array P system �3, the membrane labelled 1 initially contains the array

a b b b
b x y b
b y x b
b b b d1

.

If the column table c2 is applied, then the array generated is

a b b b
b x y b
b y x b
b b b e

.

This is collected in the language. Note that membrane 1 itself is the output membrane and no table of rules is applicable at 
this moment and the computation comes to a halt. If the column table c1 (instead of c2) is applied to the axiom array in 
region 1, then the array generated is

a b b b b
b x y y b
b y x x b
b b b b d2

.

The row table r can be applied now which generates the array

M =

a b b b b
b x y y b
b x y y b
b y x x b
b b b b d1

.

Note that the process can be repeated. If the column table c2 is applied during the process instead of c1 in region 1, the 
symbol d1 is changed to e in the array M and the generated array is
6
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a b b b b
b x y y b
b x y y b
b y x x b
b b b b e

.

The computation comes to a halt and the array is collected in the language generated by �3. The generated array at the 
halting configuration will have an equal number of rows and columns and will be an element of L3 . Thus the system �3
generates the language L3.

We now examine the generative power of the array-rewriting P systems with I P 2DC F G kind of rules in independent 
mode of derivation.

Theorem 4.1. (l/u)I P 2DC F L ⊂ I A P1((l/u)I P 2DC F G).

Proof. For proving the inclusion (l/u)I P 2DC F L ⊆ I A P1((l/u)I P 2DC F G), consider a picture array language L ∈
(l/u)I P 2DC F L. Let G = (T , P1, P2, I) be an (l/u)I P 2DC F G generating L. An array P system of degree 1, � is now con-
structed with (l/u)I P 2DC F G kind of application of P 2DC F G type of rules. � = (T ∪ T , [1 ]1, F , P , 1) where T = {a | a ∈ T }. 
In other words � contains all the symbols of T as well as the “barred” version of every symbol of T . Every symbol in 
each picture array of I is replaced by its barred version and F contains all these picture arrays. The array obtained from 
the array M ∈ I by replacing each symbol of M by the corresponding barred symbol is denoted by M . P contains all the 
column tables of P1 and all the row tables of P2 but each symbol in the right and left sides of every rule in the tables, 
is replaced by the corresponding barred symbol. In addition P contains a new column table c = {a → a | a ∈ T }. It can be 
seen that for every direct derivation M1 ⇒ M2 in G , there is a computation in � with the array M1 generating M2 which 
then generates M2 by the application of the rules of the column table c (until all the barred symbols are changed into their 
original symbols) and the computation halts. Hence every picture array in L generated in G from an axiom array in I is also 
computed by �. Thus L ∈ I A P1((l/u)I P 2DC F G).

The proper inclusion follows from the picture array language L3 in Example 4.1 which shows that L3 ∈
I A P1((l/u)I P 2DC F G). On the other hand this picture language cannot be generated by any (l/u)I P 2DC F G since we need 
to have some control on the application of column tables of rules and row tables of rules to maintain square shape of the 
picture arrays generated by a (l/u)I P 2DC F G . In fact if we assume that L3 can be generated by a (l/u)I P 2DC F G , then by 
the definition of (l/u)I P 2DC F G kind of rules and the mode of rewriting, a column table of rules cannot have any rule for 
the symbol b since such a rule will have to be applied only to the leftmost b in each row and clearly this will result in a 
picture array not in L3. Thus the (l/u)I P 2DC F G should have a column table of rules with rules for a, x, y, e. Likewise a row 
table of rules also can have rules only for a, x, y, e. But then there is no restriction on the number of times this column or 
row table of rules can be applied. This means that the picture arrays of L3 only cannot be generated as the arrays in L3 are 
all square sized arrays. The argument that we can use some “intermediate” symbols in order to alternate the application 
of the column and row tables of rules is also not possible as this will result in picture arrays having these “intermediate” 
symbols, that are not in the language. �
Theorem 4.2. I A P1((l/u)I P 2DC F G) ⊂ I A P2((l/u)I P 2DC F G).

Proof. The inclusion I A P1((l/u)I P 2DC F G) ⊆ I A P2((l/u)I P 2DC F G) is simply a consequence of the definition of the family 
(I A Pm((l/u)I P 2DC F G).

For the proper inclusion we consider the language L consisting of picture arrays p of size m × (2n + 5), m ≥ 4, n ≥ 1 over 
{a, b, d, e, p, q, x, y}. The array p has its first row in the form ab2n+4 (n ≥ 1) and the last two rows are respectively of the 
forms bedneqpnb and b2n+4 y. All other rows are of the form bdendpqnb. The language L belongs to I A P2((l/u)I P 2DC F G)

generated by the P system with two membranes having the membrane structure [1 [2 ]2 ]1. The only axiom array

a b b b b b b
b d e d p q b
b e d e q p b
b b b b b b x

is in membrane 1 initially. Membrane 1 has a row table r with target here and a column table c1 with target in. Membrane 
2 is the output membrane and has a column table c2 with target out and another column table c3 with target here.

The tables of rules are given below:

r = {a → a
b

, d → d
d

, e → e
e

, p → p
p

, q → q
q

, x → b
x

}, c1 = {a → ab, d → de, e → ed, x → bx}, c2 = {a → ab, p → pq, q →
qp, x → bx}, c3 = {a → ab, p → pq, q → qp, x → by}.

Application of the rules of the row table r will add in general, a row of the form bden pqnb for some n ≥ 1, to a picture 
array in membrane 1 and the resulting picture array will remain in membrane 1. This row table can be applied any number 
7
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of times. At any moment an application of the rules of the column table c1 in membrane 1 can be done to such an array. If 
the computation starts applying the rules of the column table c1 in membrane 1 to the axiom array, the generated array is

a b b b b b b b
b d e e d p q b
b e d d e q p b
b b b b b b b x

which will be sent to membrane 2. If the rules of the column table c2 are applied, then the generated array is

a b b b b b b b b
b d e e d p q q b
b e d d e q p p b
b b b b b b b b x

which is sent back to membrane 1. This process can repeat. If the rules of the column table c3 are applied to an ar-
ray in membrane 2 (instead of c2), the computation halts and the generated array is collected in the language. Thus the 
picture language L is generated and hence L belongs to I A P2((l/u)I P 2DC F G). This picture language cannot belong to 
I A P1((l/u)I P 2DC F G). In fact when there is only one membrane, all the tables of rules of the system are in this membrane. 
In a picture array in L having m(≥ 4) rows and 2n + 5(n ≥ 1) columns, row 2 to row m − 2 have for the same n ≥ 1, both 
en and qn respectively to the left and right of dp while the row m − 2 has dn and pn respectively to the left and right of eq. 
But we cannot generate picture arrays in L with this feature using tables of pure context-free rules in a single membrane 
as the rewriting is for the leftmost symbol in each row, having a rule to rewrite it.

We now show that the array P system with three membranes and (l/u)I P 2DC F G kind of rules in its regions can be 
constructed to generate a picture array language which is an element of the family of context-sensitive two-dimensional 
matrix languages (C S ML) introduced and investigated in [17]. We briefly recall in an informal way, a context-sensitive 
matrix grammar (C S MG). A C S MG has two phases of derivation. In the first phase, a context-sensitive string language is 
generated over an alphabet of “intermediate” symbols. In the second phase, “vertical derivations” take place as follows: A 
string of intermediates generated in the first phase is considered and each of the symbols in this string is rewritten in 

parallel in the vertical direction by regular rules of the form A → a or by regular rules of the form A → a
B

, a is a terminal 

symbol. �
Theorem 4.3. I A P3((l/u)I P 2DC F G) ∩ C S ML 
= ∅.

Proof. Consider the C S MG generating a picture array language Labc consisting of m × 3n arrays p (m ≥ 1, n ≥ 1) such that 
p(1, j) = a for 1 ≤ j ≤ n, p(1, j) = b for n + 1 ≤ j ≤ 2n, p(1, j) = c for 2n + 1 ≤ j ≤ 3n and all other entries are d. A member 
of Labc is given below:

a · · · a b · · · b c · · · c
d · · · d d · · · d d · · · d
...

. . .
...

...
. . .

...
...

. . .
...

d · · · d d · · · d d · · · d
d · · · d d · · · d d · · · d

.

Note that the first row has an equal number of a′s, b′s and c′s. This picture array language is generated by a CSMG which 
generates the string language {Sn

1 Sn
2 Sn

3 | n ≥ 1} in the first phase. In the second phase vertical derivations are done using 
the regular nonterminal rules S1 → aX1, S2 → b X2, S3 → c X3 initially applied in parallel and the derivation is continued 
as many times as needed using the regular nonterminal rules X1 → dX1, X2 → dX2, X3 → dX3. Vertical derivations are 
terminated using the regular terminal rules X1 → d, X2 → d, X3 → d yielding picture arrays in Labc .

An I A P3((l/u)I P 2DC F G) � generating the language Labc , is defined as follows: The membrane structure of � is 
[1 [2 ]2 [3 ]3 ]1. The only axiom array

a b c
d d d

is in membrane 1 initially. Membrane 1 has a row table r with target here, a column table c1 with target in2 and another 
column table c3 with target in3. Membrane 2 has a column table c2 with target out . Membrane 3 is the output membrane 
and has no tables of rules.

The tables of rules are given below:

r = {d → d
d

}, c1 = {b → abb, d → ddd}, c2 = {c → cc, d → dd}, c3 = {a → a, d → d}.
8
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Membrane 1 is the only region having an initial array. An application of the rules of the row table r initially will add 
a row of d′s of length 3n and this application can be repeated with a row of d′s being inserted after the second row, 
everytime the table of rules is used. The array remains in region 1. If the rules of the column table c1 are applied, then the 
leftmost column of the form (bd · · ·d)t is replaced by

a b b
d d d
...

...
...

d d d

.

The array is then sent to region with label 2. The rules of the column table c2 are applied, then the leftmost column of the 
form (cd · · ·d)t is replaced by

c c
d d
...

...

d d

.

The array is then sent back to region with label 1. The process can repeat. When the rules of the column table c3 are 
applied in region 1, then the generated array is of the required form and is sent to region 3, the computation halts as there 
is no table of rules in this region and the picture array is collected in the language. �
5. Conclusions

For the generation of picture array languages, a variant is introduced in pure 2D context-free grammars with the indepen-
dent mode of rewriting, motivated by (l/u) kind of rewriting. The resulting class of grammars is denoted by (l/u)I P 2DC F G . 
Using P systems as a control mechanism for array rewriting with (l/u)I P 2DC F G kind of rules and rewriting, we have 
generated square pictures of a certain type (Example 4.1) using only one membrane and target agreement for rules. Also 
increase in the generative power is shown when using two membranes compared to the use of only one membrane. It 
remains to be seen whether the number of membranes used, especially in the Theorem 4.3 can be reduced. It remains open 
to characterize the classes of languages that can be generated by these P systems using m membranes, for each m ≥ 1. Also, 
it will be of interest to compare the array models considered here with other types of array grammars [4–6].
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