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Abstract: Graph grammars can be used to model the development of diverse graph families. Since
their creation in the late 1960s, graph grammars have found usage in a variety of fields, such as
the design of sophisticated computer systems and electronic circuits, as well as visual languages,
computer animation, and even the modelling of intricate molecular structures Replacement of edges
and nodes are the two primary approaches of graph rewriting. In this paper we introduce a new type
of node replacement graph grammar known as nc-eNCE graph grammar. With this new class of graph
grammars we generated certain graph classes and we showed that these class of graph grammars
are more powerful than the existing edge and node controlled embedding graph grammars. In
addition, these graph grammars were used to model several common protein secondary structures
such as parallel and anti-parallel β-sheet structures in different configurations. The use of these graph
grammars in modelling other bio-chemical structures and their interactions remains to be explored.

Keywords: graph grammars; non-confluence; connection instructions; regular control; protein
secondary structures; generative power; node replacement; node rewriting

1. Introduction

Graphs offer a logical and relevant approach in representing a collection of items as
nodes and their interactions as edges. Numerous fields of study and practical applications
have benefited from the broad influence of graph theory. Problems in combinatorial opti-
mization [1], which include selecting the best option from a limited number of options, have
been studied using graph theory. Various applications, including routing in communication
networks [2], transportation systems, and geographic information systems, use shortest
path algorithms in graphs. Graph coloring has several applications in scheduling, register
allocation, and resource allocation, among others. Graph theory is also used in the study
of network reliability, which is a measure of the ability of a communication network to
function correctly even in the presence of failures or disruptions. Network reliability can be
modeled as a graph, and graph-theoretic techniques can be used to analyze the robustness
of the network and identify potential points of failure.

In biology, graphs can be used to represent the relationships between different bio-
logical entities, such as genes, proteins, and metabolic pathways [3]. One of the major
applications of graph theory in biology is the study of protein-protein interaction networks
[4], which are networks of proteins that interact with each other in the cell. These networks
can be represented as graphs, with the vertices representing the proteins and the edges
representing the interactions between the proteins. Graph-theoretic techniques have been
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used to study the topology and structure of protein-protein interaction networks and to
identify key proteins that play important roles in the network.

Another application of graph theory in biology is the study of metabolic networks,
which are networks of chemical reactions that take place in the cell. These networks can
also be represented as graphs, with the vertices representing the chemical compounds and
the edges representing the reactions between the compounds. Graph-theoretic techniques
have been used to study the structure and function of metabolic networks and to identify
key pathways that are involved in the metabolism of the cell. In addition, graph theory has
been used to study the structure and function of other types of biological networks, such as
gene regulatory networks [5], neural networks, and social networks.

Generation of families of graphs [6–8] has been studied extensively. Graph grammars
which were introduced in sixties have evoked the interest of researchers due to the possi-
bilities of their application in disciplines that range from program design to modelling of
biochemical interactions. They are used to formalise the idea of a set of graphs that can
be specified recursively. The technique of transformation of a graph is known as graph
rewriting. This involves starting with a graph G (which is called host graph) from which
a subgraph S is removed and then embedding a graph E with the remaining portion of
G, say, R. Graph rewriting is usually performed by the recursive replacement of either a
node or an edge. We develop non-confluent edge and node label controlled embedding to
generate new graphs. This class of graph grammars have an enhanced generative capacity
compared to normal node-replacement graph grammars.

A protein, on the other hand, is a complex organic compound made up of amino acids
linked by chemical bonds [9,10]. An alphabetic string of 20 letters can be used to represent
the linear amino acid sequence that makes up a protein’s fundamental structure. Secondary
structures in proteins are created by the local orientation of amino acids along the chain.
These structures are stabilised by hydrogen interactions among the amino-keto groups in
the peptide bond. Protein secondary structures are divided into four categories: α-helix,
β-sheet, turns, and coils.

There are many areas of application of different formalisms of graph grammars.
Recently, Guo et al. [11] have studied graph grammars for molecular generation. Here we
study non-confluent eNCE graph grammars for modelling biological structures. Section
2 covers the essential definitions involving graph grammars. Section 3 introduces the
notion of Non-confluent eNCE (nceNCE) graph grammars and some variants of this class
of graph grammars. Section 4 addresses the application of constructs discussed earlier
in the simulation and structural analysis of some standard biological structures. We then
demonstrate how parallel and anti-parallel β-sheet structures are generated using our new
grammar.

2. Graph Grammars

In general, a graph grammar [7,12] has a set of rules with the format p(M, D, E) which
are used to recursively transform a host graph H (initially H is the start graph GS). Here
M (known as mother graph) is a subgraph of GS which is to be replaced by another graph
D (known as daughter graph). New edges are to be established with designated nodes of
D due to the loss of edges incident to the vertices in M using an appropriate embedding
mechanism E. As a result a new family of graphs is generated.

Graph grammars have been applied to the modelling of numerous biological structures.
They have been used to forecast protein folding patterns as well as model the structure
and dynamics of proteins. The structure and operation of genetic networks, including
the control of gene expression, have been modelled using graph grammars. The structure
and operation of metabolic pathways, including the movement of metabolites through
a cell, have been modelled using graph grammars. The structure and operation of cell
signalling pathways, which are crucial in cell communication, have been modelled using
graph grammars.
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A bipartite graph can also be used to represent a graph grammar. The edges in the
bipartite graph represent the production rules of the grammar, connecting a nonterminal
symbol on the left of a rule to the terminal symbols on the right that it can be expanded
into. In this representation, a graph can be generated by starting with a single nonterminal
symbol and repeatedly expanding it according to the production rules until only terminal
symbols remain. This process is called graph rewriting, and the resulting graph is called a
derived graph.

Embedding styles may be categorized into two types, namely, connecting and gluing.
In a graph grammar based on gluing [8,13–15], certain nodes of H′ (H′ = H −M) and D
are fused. In addition, some edges in H (which were initially incident on M) and D are
fused.

In the connecting approach [6], new edges are introduced between the daughter graph
D and some specific nodes of H′ (which were initially adjacent with nodes in M).

Node Replacement Graph Grammars

When M is a single node and the connection instructions are independently defined for
each production rule, the graph grammar is termed as a node replacement graph grammar
[16].

A graph grammar is said to be a node label controlled (NLC) [17,18] graph grammar
if the nodes that participate in the embedding process are specified using labels. When a
production rule is applied, a node labelled by the non-terminal A is removed and instead a
graph D is embedded. This embedding is done using any valid connection instruction with
the format (α, β). As a result of the application of this connection instruction, undirected
edges labelled β are established between some node of D and any neighbor of A in H
which had an edge labelled α incident on it and some node of D. Formally we have the
definition:

Definition 1 ([17]). A construct nG = (Σ, Γ, P, C, GS) is known as an NLC graph grammar where

Σ is an alphabet used to label nodes,
Γ is a collection of terminal symbols in Σ,
A production rule in P, p : A→ D acts on the mother node labelled A,
C is a collection of embedding instructions in Σ× Σ,
GS is the initial graph.

We say G
p⇒ G′ or G⇒G′ if an application of p to the graph G yields G′. Furthermore we can

write G ∗⇒ H if
G⇒G1⇒G2⇒· · ·⇒Gn = H

This grammar [19] generates the language

L(nG) = {G ∈ GΓ|GS
∗

=⇒ G}

and all nodes of graphs in GΓ are labelled using Γ.

In a neighbourhood controlled embedding (NCE) [6] we have : cG = (Σ, Γ, P, S), each
production rule p: A → (D, C) has an independent connection instruction C unlike the
construct in definition 1. Here C ⊆ Σ× ND and ND is a collection of nodes in D.

Another extension of the NLC embedding [17] is the eNCE or edge and node controlled
embedding [6] which uses both edge and node labels to specify the new edges added during
the embedding process. Formally, we have the definition:

Definition 2 ([20]). A construct eG = (Σ, ∆, Γ, Ω, P, GS) is known as eNCE graph grammar where

Σ and Γ are sets of symbols used to label nodes and edges respectively,
∆ and Ω are the collections of terminal symbols in Σ and Γ respectively,
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A production rule in P, p : A → (D, C) acting on the mother node M with label A has a
collection C of connection instructions (a, p | q, B) associated with it. Here B is a node in
D and x with label a is one of the neighbors of M. The edge p which connected x and M is
removed and an edge q is established between x and B .
GS is the initial graph.

The graph grammar eG generates the language [19]

L(eG) = {G ∈ G∆|GS
∗⇒ G}

where all the nodes of graphs in G∆ are labelled using ∆. Here GS
∗⇒ G is defined as in Definition 1.

3. Non-Confluent Edge and Node Controlled Embedding (nc-eNCE) Graph Grammar

In order to introduce a measure of determinism in the intrinsically non-deterministic
concept of a graph grammar, we restrict the sequence of production rules used and thereby
obtain a new class of graph grammar. Formally we have the definition:

Definition 3 ([21]). A construct ncG = (Σ, ∆, Γ, Ω, P, GS, R(P)) is known as an nc− eNCE
graph grammar where

Σ and Γ are sets of symbols used to label nodes and edges respectively,
∆ and Ω are the collections of terminal symbols in Σ and Γ respectively,
A production rule in P, p : A → (D, C) acting on the mother node M with label A has a
collection C of connection instructions (a, p | q, B) associated with it. Here x with label a is a
neighbor of M and B is a node in D. The edge p which connected x and M is removed and a
new edge q is established between x and B.
GS is the initial graph,
The regular control, R(P), regulates the sequence of application of the production rules.

The graph grammars ncG generates the language

L(ncG) = {G ∈ G∆|GS
R(P)
=⇒ G}

Here, all the nodes of graphs in G∆ are labelled using ∆ and GS
∗⇒ G is defined as

in definition 1. The ordered application of productions in the sequence p1, p2, · · · , pn
(p1 p2 · · · pn ∈ L(R(P)) leads to the generation of graphs specified by the language of the
grammar.

3.1. nc-eNCE Graph Grammar with Deletion (dnc-eNCE)

In order to improve its generative capability, we introduce here another version of the
nc-eNCE graph grammar. In this version there are some special productions used to simply
delete a node and establish edges between its neighbors. Formally, we have the definition:

Definition 4. A construct dncG = (Σ, ∆, Γ, Ω, P, GS, R(P)) is known as a dnc-eNCE graph
grammar (nc-eNCE graph grammar with deletion) where,

Σ is an alphabet used to label nodes,
∆ ⊂ Σ is a collection of terminal symbols,
Γ is an edge labelling alphabet,
Ω is the edge labels of the final graph, [22].
P contains in addition to productions defined in Definition 2, the rules A → ε where, M
labelled A is the node to be deleted. The connection instruction for this rule has the format
((a, x), z, (y, b)). In this rule the edges labelled x, y connecting M to a and b respectively are
removed, and a new edge with label z is established between the two nodes.
GS is the initial graph.
The regular control R(P) regulates the sequence of application production rules.
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The graph grammar dncG generates the language

L(dncG) = {G ∈ G∆|GS
R(P)
=⇒ G}

where all the nodes of graphs in G∆ is labelled using ∆. The following example shows
the generation of a parse tree with yield {wwrwwr|w ∈ (a + b)∗} using a dnc-eNCE graph
grammar ncGT .

Example 1. Consider dncG = (Σ, ∆, Γ, Ω, P, GS, R(P)) with Σ = {S, r, u, a, b}, ∆ = {r, u, a, b},
Γ = {α}, Ω = {α}, P = {p1, p2, p3}, GS consists of a single mode labelled S and R(P) =
(p1 + p2)

∗p3. Figure 1 depicts the production rules that generates parse trees with the yield
wwrwwr, w ∈ (a + b)∗ and Figure 2 demonstrates the application of these rules when w = ab

p1 : 1

S
→ 2

r
C1 = {(r, α|α, 2), (u, α|α, 3)}

1S4

a
4

a

3u

4

a
4

a

α

α

α α

α α

p2 : 1

S
→ 2

r
C2 = {(r, α|α, 2), (u, α|α, 3)}

1S4

b

4

b

3u

4

b

4

b

α

α

α α

α α

p3 : 1

S
→ ε C3 = {((r, α), α, (α, u))}

Figure 1. Production rules for tree strings wwrwwr, w ∈ (a + b)∗.

1

S
⇒ 2

r

1S4

a
4

a

3S

4

a
4

a

α

α

α α

α α

⇒ 2

r

2r4

a
4

a

1S4

b

4

b

3u

3u4

b

4

b

4

a
4

a

α

α

α

α α

α α

α αα

α α

⇒ 2

r

2r4

a
4

a

3u4

b

4

b

3u4

b

4

b

4

a
4

a

α

α

α α

α α

α αα

α α

Figure 2. Derivation of trees with yield wwrwwr, w ∈ (a + b)∗.

3.2. Non-Confluent eNCE Graph Grammar with ψ Labelled Edges (ψnc-eNCE)
Another version of the nc-eNCE graph grammar introduces special edges labelled ψ. Formally,

we have the following definition.

Definition 5. A construct ψncG = (Σ, ∆, Γ, Ω, P, GS, R(P)) is known as a non-confluent eNCE graph
grammar with ψ labelled edges or simply ψnc-eNCE graph grammar where

Σ is an alphabet used to label nodes,
∆ ⊂ Σ is a collection of terminal symbols,
Γ ∪ ψ is the edge labelling alphabet,
Ω is the collection of edge labels of the final graph,
P contains rules similar to those in Definition 2. In addition we introduce a special edge label ψ which
acts as follows: While concatenating two graphs together or embedding a daughter graph in a mother
graph, this edge can be introduced between two nodes with terminal labels. The connection instruction
associated with this edge has the format (x, ψ, y). This label can be bypassed or ignored while specifying
the graph language.
GS is the initial graph.
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The regular control R(P) regulates the sequence of application of the production rules.

The graph grammar ψncG generates the language L(ψncG) = {G ∈ G∆|GS
R(P)
=⇒ G} where all

the nodes of graphs in G∆ is labelled using ∆ . Edges with label ψ can be used with nc-eNCE graph
grammars as well as dnc-eNCE graph grammars for connecting two or more graphs without loss of
generality.

Example 2. Consider the graph grammar ψncG = (Σ, ∆, Γ, Ω, P, GS, R(P)), with Σ = {S, t, #, u, v, w},
∆ = {t, u, v, w, a, b}, Γ = {α}, Ω = {α}, P = {p1, p2, p3, p4}, GS is the graph shown in Figure 3 and
R(P) = ((p1 + p2)p3)

∗p4. Figure 4 depicts the production rules that generates a parse tree with the yield
wtwrtwtwr, w ∈ (a + b)∗. Figure 5 shows the application of these rules when w = ab.

1

S

2

t

α

Figure 3. Start graph GS

3

u

4a 1S 4 a
p1 : 1

S
→ C1 = {(t, α|α, 6), (w, α|α, 6), (u, α|α, 3)}

5w

4a 6# 4 a

αα α

α

αα α

3

u

4b 1S 4 b
p2 : 1

S
→ C2 = {(t, α|α, 6), (w, α|α, 6), (u, α|α, 3)}

5w

4b 6# 4 b

αα α

α

αα α

p3 : 6

#
→ ε C3 = {((w, α), α, (α, t)), ((w, α), α, (α, w))}

7

v

p4 : 1

S
→ C4 = {(t, ψ, v), (u, ψ, v), (w, ψ, v)}

2t 3 t

α α

Figure 4. Production rules for tree string wtwrtwtwr, w ∈ (a + b)∗.
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3

u
3

u

1

S
4a 1S 4 a 4a 1S 4 a

⇒ ⇒
2

t

5w 5w

4a 6# 4 a 4a 2

t

4 a

2

t

α

αα α

α

αα α

α

αα α

α

αα α

3

u
3

u
3

u

4a 3u 4 a 4a 3u 4 a 4a 3u 4 a

4b 1S 4 b 4b 1S 4 b 4b 7v 4 b

⇒ ⇒ ⇒
5w 5w 2t 5w 2 t

4b 6# 4 b 4b 5w 4 b 4b 5w 4 b

5w 4a 2

t

4 a 4a 2

t

4 a

4a 2

t

4 a

αα α

α α α

α

α αα

α

α α α

αα α

α α α

α

α α α

α α α

αα α

α ψ α

α ψ α

α α α

α α α

Figure 5. Derivation of the tree string abtbatabtba.

The graph grammar in Example 2 can generate parse trees with yield of the form {wtwrtwtwr|w ∈
(a + b)∗}. Figure 5 shows the derivation of tree yielding the string abtbatabtba which is obtained
when w = ab.

4. Generation of Certain Graph Classes
The class of nc− eNCE graph grammars are capable of generating several graph classes. Some

of these graph classes are dealt with in the following results.

4.1. Wheel Graphs
Definition 6 ([23]). A wheel graph Wn is a graph that consists of a central node, called the hub, and several
spoke nodes that are connected to the hub. The spoke nodes are connected to the hub by edges, and to each other
by a rim or cycle of edges. The number of spoke nodes in a wheel graph is referred to as its order. A wheel graph
with n spoke nodes is also known as a wheel graph of order n.

Lemma 1. The class of wheel graphs can be generated by a nc-eNCE graph grammar.

Proof. Consider ncGW = (Σ, ∆, Γ, Ω, P, GS, R(P)), Σ = {W, E, a, c, s, e}, ∆ = {a, c, s, e}, Γ = {α},
Ω = {α}, P = {p1, p2, p3}, GS consists of a single node labelled W and R(P)= p1 p∗2 p3. The productions
in P are depicted in Figure 6.
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2

s

p1 : 1

W
→ 5

c

3a 4 E C1 = φ

p2 : 4

E
→ 3

a
4

E
C2 = {(c, α|α, 3), (c, α|α, 4),

(a, α|α, 3), (s, α|α, 4)}

p3 : 4

E
→ 6

e
C3 = {(c, α|α, 6), (a, α|α, 6),

(s, α|α, 6)}

α α

α

α
α α

α

Figure 6. Production rules for Wheel graph.

Figure 7 shows the generation of the Wheel graph W6 using the grammar ncGW .

2

s
2

s
4

E

1

W
⇒
p1

5

c
⇒
p2

5

c

3

a
4

E

3

a
3

a

2

s
2

s

⇒
p2

3a 5

c
4 E ⇒

p3

3a 5

c
6 e

3

a
3

a
3

a
3

a

α α

α

α
α α

α α

α

α α

α αα

α αα

α α

α α

α
α α

α αα

α α

α α

α
α α

Figure 7. Generation of the Wheel graph W6.

4.2. Complete Bipartite Graphs
Definition 7 ([23]). A bipartite graph is a graph in which the vertex set can be decomposed into 2 disjoint
sets such that no two vertices within the same set are adjacent. A complete bipartite graph is a bipartite graph
such that every vertex in the first set is connected to each vertex of the second set.

Lemma 2. The class of complete bipartite graphs can be generated by a nc-eNCE graph grammar.

Proof. Let ncCB = (Σ, ∆, Γ, Ω, P, S = A, R(P)) be an nc-eNCE graph grammar with, Σ = {A, a, b},
∆ = {a, b}, Γ = {α, β}, Ω = {α}, P = {p0, p1, p2, p3, p4, p5} and R(P) = (p0 p∗1 p2 p∗3 p4) + p5. Figure
8 shows the production rules and the associated connection instructions for generating complete
bipartite graphs.
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1

A
→ 2

a
p0 : 1

A

3B

α

α α

2

a
→1

A
p1 : 1

A

C1 = {(B, α|α, 2), (B, α|α, 1)}

C0 = φ

α

p2 : 1

A
→ 2

a

C2 = {(B, α|α, 2)}

p3 : 3

B
→ 4

b

4

B
α

C3 = {(a, α|α, 4), (a, α|α, 3)}

p4 : 3

B
→ 4

b

C4 = {(a, α|α, 4)}

p5 : 1

A
→ 2

a

4b

α

C5 = φ

Figure 8. Production rules for Complete bipartite graph.

4.3. Binary Tree
Definition 8 ([23]). A rooted tree is a connected acyclic graph which has a special vertex called the root. A
binary tree is a rooted tree in which each vertex has at most two children.

Lemma 3. The class of binary trees can be generated by a nc-eNCE graph grammar.

Proof. Let ncBT = (Σ, ∆, Γ, Ω, P, S = A, R(P)) be an nc-eNCE graph grammar with, Σ = {A, a},
∆ = {a}, Γ = {α}, Ω = {α}, P = {p1, p2, p3} and R(P) = (p1 + p2)

∗p+3 . Figure 9 shows the
production rules and the associated connection instructions for generating binary trees.

p1 : 1

A
→ 2

a

1

A

1

A

C1 = {(a, α|α, 2)}

p2 : 1

A
→ 2

a

1

A

C2 = {(a, α|α, 2)}

p3 : 1

A
→ ε C3 = φ

α α

α

Figure 9. Production rules for Binary Tree.

Other classic graph classes which can be generated using nc-eNCE graph grammars include
complete graphs, caterpillar graphs and star graphs. In fact nc-eNCE graph grammars provide finite
tools for the generation of such classic graph classes.

5. Generative Power of nc-eNCE Graph Grammars
Theorem 1. Let eNCEGG be the class of all the Edge and Node Controlled Embedding Graph Grammars and
nc-eNCEGG be the class of all the Non-Confluential Edge and Node Controlled Embedding Graph Grammars.
Then L(eNCEGG) ⊂ L(nc-eNCEGG).

Proof. Let eG = (Σ, ∆, Γ, Ω, P, GS) ∈ eNCEGG with P = {p1, p2, p3, · · · , pm} and let A = {W ∈
P∗|GS

W
=⇒ G ∈ L(eG)}. Then we can construct an nc− eNCEGG, ncG = (Σ, ∆, Γ, Ω, P, GS, R(P))

where all the components except R(P) can be obtained from eG and R(P) is a regular expression
corresponding to set A.
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Theorem 2. L(nc-eNCEGG)− L(eNCEGG) 6= φ

Proof. Consider a graph language consisting of graphs of the form shown in Figure 10. This graph
can be interpreted as follows: Each graph contains a series of n hanging triangles T followed by a
series of (2n + 1) rhombuses R glued together and followed again by a series of n hanging triangles
T. This graph language can now be represented using the string language L = {TnR2n+1Tn, n ≥ 0}.
It is known that the language L is not context free. Based on this feature of non-contextfreeness it
can be shown that any graph language of this form cannot be generated using an edge and node
controlled embedding graph grammar. The eNCEGG production rules can be applied in any order
and a single node replacement happens when we apply a rule. Hence any grammar of this type will
generate certain graphs which are not in the required form. We now show that this graph language
can be generated using a non-confluential edge and node controlled embedding graph grammars
as follows. Consider an nc-eNCEGG ncGdi f f = (Σ, ∆, Γ, Ω, P, GS, R(P)), Σ = {A, C, X, Y, a, b},
∆ = {a, b}, Γ = {α}, Ω = {α}, P = {p1, p2, p3, p4, p5, p6, p7, p8}, GS is the graph in Figure 11 and
R(P) = (p1 p2 p3 p4)

∗(p5 p6 p7 p8). Figure 12 shows the production rules and the associated connection
instructions for generating the pattern of the form TnR2n+1Tn, n ≥ 0. Figure 13 shows the derivation
of the pattern of the form TnR2n+1Tn, n = 2 .

a

a a

a

a a

· · ·
a

a a

b

b

b

b

b

b

b
· · ·

b

b

b

b a

a a

a

a a

· · ·
a

a a
{← Tn →} {← R2n+1 →} {← Tn →}

Figure 10. L = {TnR2n+1Tn, n ≥ 0}.

1

A

4

X
3

b

5

Y

3

b

2

C
α α

α α

α α

Figure 11. Start graph GS.

p1 : 1

A
→ 7

a

6
a

6
a

1

A
C1 = {(X.α|α, 1), (a, α|α, 7)}

α α
α

α p2 : 2

C
→ 2

C

7

a

6
a

6
a

C2 = {(Y, α|α, 2), (a, α|α, 7)}α

α α
α

p3 4

X
→ 4

X
3

b

8

b

3

b

C3 = {(Y, α|α, 2), (a, α|α, 7)}
α

α

α

α

p4 : 5

Y
→ 8

b
3

b

5

Y

3

b

C4 = {(b, α|α, 8), (C, α, α, 5)}
α

α

α

α

p5 1

A
→ ε C5 = {((a, α), α, (α, X)} p6 : 2

C
→ ε C5 = {((a, α), α, (α, Y)}

p7 4

X
→ 1

b
C7 = {((b, α|α, 8), (a, α|α, 8)} p8 : 5

Y
→ 8

b
C8 = {((b, α|α, 8), (a, α|α, 8)}

Figure 12. Production rules for ncGdi f f .
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1

A

4

X
3

b

5

Y

3

b

2

C
=⇒
p1

α α

α α

α α
7

a

6
a

6
a

1

A

4

X
3

b

5

Y

3

b

2

C
=⇒
p2

α α
α

α α α

α α

α α
7

a

6
a

6
a

1

A

4

X
3

b

5

Y

3

b

2

C

7

a

6
a

6
a

α α
α

α α α

α α

α α α

α α
α

=⇒
p3

7

a

6
a

6
a

1

A

4

X
3

b

8

b

3

b

3

b

5

Y

3

b

2

C

7

a

6
a

6
a
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p4

α α
α

α α α

α

α α

α α α

α α α

α α
α

7

a

6
a

6
a

1

A

4

X
3

b

8

b

3

b

3

b

8

b

3

b

3

b

3

b

5

Y

2

C

7

a

6
a

6
a

=⇒
p1 p2 p3 p4

α α
α

α α α

α α

α α

α α

α α

α α α

α α α

α α
α

7

a

6
a

6
a

7

a

6
a

6
a

1

A

4

X
3

b

8

b

3

b

3

b

8

b

3

b

3

b

3

b

8

b

3

b

3

b

8

b

3

b

3

b

5

Y

2

C

7

a

6
a

6
a

7

a

6
a

6
a

=⇒
p5 p6 p7 p8

α α
α

α

α α
α

α α α

α

α α

α α

α α

α α α

α α

α α

α α

α α α

α α α

α α
α

α

α α
α

7

a

6
a

6
a

7

a

6
a

6
a

8

b
3

b

3

b

8

b

3

b

3

b

8

b

3

b

3

b

8

b

3

b

3

b

8

b

3

b

5

b

8

b

7

a

6
a

6
a

7

a

6
a

6
a

α α
α

α

α α
α

α α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α α
α

α

α α
α

Figure 13. Sample derivation for grammar in Example for n = 2.

6. Modelling of Biological Structures
Graphs and graph grammars play a pivotal role in the field of bioinformatics, especially in

studies related to structural analysis of DNA and proteins. In particular the secondary structure
prediction of proteins is a topic of active research [9,10,24]. In this section, we show how nc-eNCE
graph grammars can be used to model some biological structures with their associated characteristics.

In Example 2, an informal description of this concept is shown using a ψnc-eNCE graph
grammar to generate a tree with its yield given by a string that can be read from leftmost leaf node
label to the right most leaf node label. The structure shown in Figure 5 is a linguistic description of
anti-parallel β-sheet structure of protein. The symbols a, b and t in the graph shown in Figure 5 can be
replaced with the corresponding amino-acid sequences so that the original β-sheet sequence can be
obtained. Since the generated structure is a tree, it can be parsed using a computational device. This
model can also be used to learn and predict the occurrence of a beta sheet structure when a sequence
is given. The following examples shows the generation of some popular β-sheet structures.

6.1. Modelling of Parallel β-Sheet Structures
Consider an dnc-eNCE graph grammar pβncG = (Σ, ∆, Γ, Ω, P, GS, R(P)) with Σ = {S, t, #, u1,

u2, l1, l2, v, a, b}, ∆ = {u1, u2, l1, l2, a, b, v}, Γ = {α}, Ω = {α}, P = {p1, p2, p3, p4, p5}, GS is the graph
in Figure 14 and R(P) = ((p1 + p2)p3 p4)

∗p5. Figure 15 depicts the production rules that generate
parse trees with yield wl1wl2w, w ∈ (a + b)∗. Figure 16 show the application of these rules when
w = ab.

1

S

2

l1

2

l2

α α

Figure 14. Start graph GS.
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3

t

4
a

1S

p1 : 1

S
→ C1 = {(l1, α|α, 6), (l2, α|α, 7), (u1, α|α, 6), (u2, α|α, 7)}

5 u1 5u2

6

#

4
a

7

#

4
a

αα

α α

α α α α

3

t

4

b

1S

p2 : 1

S
→ C2 = {(l1, α|α, 6), (l2, α|α, 7), (u1, α|α, 6), (u2, α|α, 7)}

5 u1 5u2

6

#

4

b

7

#

4

b

αα

α α

α α α α

p3 : 6

#
→ ε C3 = {((u1, α), α, (α, l1)), ((u1, α), α, (α, u1))}

p4 : 7

#
→ ε C4 = {((u2, α), α, (α, l2)), ((u2, α), α, (α, u2))}

p5 : 1

S
→ 8

v
C5 = {(t, α|α, 8), (u1, α|α, 8), (u2, α|α, 8),

(l1, α|α, 8), (l2, α|α, 8)}

Figure 15. Production rules for tree strings wl1wl2w, w ∈ (a + b)∗.
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3

t

4

a
1S

1

S
⇒ ⇒

5 u1 5u2

2

l1

2

l2 6# 4

b

7# 4b

2

l1

2

l2

α α

αα

α α

α α α α

α α

3

t
3

t

4

a
1S 4

a
3t

⇒ ⇒
5 u1 5u2 4

b

1S

2

l1

4

a
2

l2

4

a
5 u1 5u2

6 # 4b 7 # 4b

5 u1 5u2

2 l1 4a 2l2 4a

αα

α α

α α α α

α αα α

α α

αα

α α α α

α α

α α α α

3

t
3

t

4

a
3t 4

a
3t

⇒
4

b

1S 4

b

8v

5u1 5 u2 5u1 5 u2

5u1 4

b

5 u2 4

b

5u1 4

b

5 u2 4

b

2

l1

4

a
2

l2

4

a
2

l1

4

a
2

l2

4

a

αα

α α

α

α

α

α α α

α α α α

α α

α α

αα

α α α α

α α α α

Figure 16. Derivation for tree strings wl1wl2w, w ∈ (a + b)∗.

6.2. Modelling of Anti-Parallel β-Sheet Structures with a Semi-Greek Key Conformation
Consider gβncG = (Σ, ∆, Γ, Ω, P, GS, R(P)) with Σ = {S, l1, l2, t, u, #, v, a, b}, ∆ = {l1, l2, t, u, v, a,

b}, Γ = {α}, Ω = {α}, P = {p1, p2, p3, p4}, GS is the graph in Figure 17 and R(P)= ((p1 + p2)p3)
∗p4.

Figure 18 depicts the production rules that generate parse trees with the yield wl1wr l2wr, W ∈ (a+ b)∗.
Figure 19 shows the application of these rules when w = ab.
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1

S

2

l2

α

Figure 17. Start graph GS.

3

t

4

a
1S 4

a
p1 : 1

S
→ C1 = {(l2, α|α, 6), (u, α|α, 6), (t, α|α, 3)}

5u

4

a
6

#

αα α

α

αα

3

t

4

b

1S 4

bp2 : 1

S
→ C2 = {(l2, α|α, 6), (u, α|α, 6), (t, α|α, 3)}

5u

4

b

6

#

αα α

α

αα

p3 : 6

#
→ ε C3 = {((u, α), α, (α, l2)), ((u, α), α, (α, u))}

7

v

p4 : 1

S
→ C4 = {(t, α|α, 7), (u, α|α, 7), (l2, α|α, 7)}

2

l1

α

Figure 18. Production rules for tree strings wl1wr l2wr, w ∈ (a + b)∗.
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3

t
3

t

1

S
4

a
1S 4

a
4

a
1S 4

a
⇒ ⇒

2

l2

5u 5u

4

a
6# 4

a
2

l2

2

l2

α

αα α

α

αα

α

αα α

α

αα

3

t
3

t
3

t

4

a
3t 4

a
4

a
3t 4

a
4

a
3t 4

a

4

b

1S 4

b

4

b

1S 4

b

4

b

7v 4

b

⇒ 5u ⇒ 5u ⇒ 2

l1

5u

4

b

6# 4

b

5u 4

b

5u

5u 4

a
2

l2

4

a
2

l2

4

a
2

l2

αα α

α α α

α

α α

α

α α

αα α

α α α

α

α α

α α

αα α

α α α

α α

α α

α α

Figure 19. Derivation of tree strings wl1wr l2wr, w ∈ (a + b)∗
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As stated in the introduction, we investigate the modelling and prediction of the β-sheet regions.
Figures 5, 16 and 19 depict this feature, as does Figure 20, which shows a schematic illustration of
various common β-sheet configurations. The β-sheet strands are shown by solid arrow marks, while
the turns between the strands are represented by light line segments. Another illustration can be
found to the right of this schemata, which depicts the beta sheets with amino acids (stereotyped as
a and b) held together by the hydrogen bond (shown with dotted lines). This leads us to believe
that there is a strong link between amino acids in those positions. Our new grammar, together with
its variants, can handle these beta sheet topologies. Parsing becomes easier when the development
of graphs using our grammar is limited by the regular control of graph production rules. It is also
worth noting that there will be sequences in between the β-sheet sections that can be handled by the
nc-eNCE graph grammar.

t

t

t

a

b

t

a

b

t

a a

b b

t

l1 l2
a

b

l1
a

b

l2
a

b

l2

l1

b

a
l2

a

b

l1

b

a

Figure 20. Schematic illustration of different β sheet configurations.

7. Conclusion
We have established a new type of edge and node driven embedding graph grammar called nc-

eNCE graph grammars along with some variants. We have shown how some of the classic symmetric
graph classes can be easily generated by our new graph grammar. The generative power of nc-eNCE
graph grammars have been demonstrated. We have shown how these grammars can be used to
represent and analyse biological structures such as β-sheets in proteins. It will be interesting to see
how these grammars are used for identifying biochemical structures especially those of higher order
proteins and their symmetry in terms of the sequences of amino acids present. It will also be of high
interest if we can apply these graph grammar constructs and explore their symmetry in building
unpredictable linear games.

Author Contributions: Conceptualization, Jayakrishna Vijayakumar, Lisa Mathew and Atulya K.
Nagar; Writing – original draft, Jayakrishna Vijayakumar; Writing – review & editing, Lisa Mathew;
Supervision, Lisa Mathew; Funding acquisition, Atulya K. Nagar. All authors have read and agreed
to the published version of the manuscript.

Funding: The APC was funded by Liverpool Hope University.

Data Availability Statement: The data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results

References
1. Avis, D.; Hertz, A.; Marcotte, O. Graph Theory and Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2005;

Volume 8.



Symmetry 2023, 15, 349 17 of 17

2. Majeed, A.; Rauf, I. Graph Theory: A Comprehensive Survey about Graph Theory Applications in Computer Science and Social
Networks. Inventions 2020, 5, 10. https://doi.org/10.3390/inventions5010010.

3. Koutrouli, M.; Karatzas, E.; Paez-Espino, D.; Pavlopoulos, G.A. A guide to conquer the biological network era using graph theory.
Front. Bioeng. Biotechnol. 2020, 8, 34. https://doi.org/10.3389/fbioe.2020.00034.

4. Balasubramanian, K.; Gupta, S.P. Quantum Molecular Dynamics, Topological, Group Theoretical and Graph Theoretical Studies
of Protein-Protein Interactions. Curr. Top. Med. Chem. 2019, 19, 426–443. https://doi.org/10.2174/1568026619666190304152704.

5. Yue, H.; Chunmei, L. Study of gene regulatory network based on graph. In Proceedings of the 2011 4th International Conference on
Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October 2011. https://doi.org/10.1109/bmei.2011.6098719.

6. Engelfriet, J.; Rozenberg, G. Node Replacement Graph Grammars. In Handbook of Graph Grammars and Computing by Graph
Transformation; World Scientific: Singapore, 1997; pp. 1–94. https://doi.org/10.1142/9789812384720_0001.

7. Fahmy, H.; Blostein, D. A survey of graph grammars: theory and applications. In Proceedings of the Proceedings, International
Conference on Pattern Recognition. Conference B: Pattern Recognition Methodology and Systems, The Hague, The Netherlands,
30 August–3 September 1992; Volume 2, pp. 294–298. https://doi.org/10.1109/ICPR.1992.201776.

8. Ehrig, H. Introduction to the algebraic theory of graph grammars (a survey). In Graph-Grammars and Their Application to Computer
Science and Biology; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1978; Volume 1073, pp. 1–69.
https://doi.org/10.1007/BFb0025714.

9. Abe, N.; Mamitsuka, H. Predicting Protein Secondary Structure Using Stochastic Tree Grammars. Mach. Learn. 1997, 29, 275–301.
https://doi.org/10.1023/a:1007477814995.

10. Vishveshwara, S.; Brinda, K.V.; Kannan, N. Protein Structure: Insights from Graph Theory. J. Theor. Comput. Chem. 2002, 1,
187–211. https://doi.org/10.1142/S0219633602000117.

11. Guo, M.; Thost, V.; Li, B.; Das, P.; Chen, J.; Matusik, W. Data-Efficient Graph Grammar Learning for Molecular Generation. In
Proceedings of the International Conference on Learning Representations, Virtually, 25–29 April 2022.

12. Engelfriet, J.; Vereijken, J.J. Concatenation of Graphs. In Graph Grammars and Their Application to Computer Science. Graph
Grammars 1994; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 1073, pp. 368–382.
https://doi.org/10.1007/s002360050106.

13. Ehrig, H.; Korff, M.; Löwe, M. Tutorial Introduction to the Algebraic Approach of Graph Grammars. In Graph Grammars and Their
Application to Computer Science; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1986; Volume 291,
pp.24–37. https://doi.org/10.1007/bfb0017375.

14. Ehrig, H.; Habel, A.; Kreowski, H.J. Introduction to graph grammars with applications to semantic networks. Comput. Math.
Appl. 1992, 23, 557 – 572. https://doi.org/https://doi.org/10.1016/0898-1221(92)90124-Z.

15. Habel, A.; Kreowski, H. May we introduce to you: Hyperedge Replacement. In Graph Grammars and Their Application to Computer
Science ; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1986, 291, 15–26. https://doi.org/10.1007/3-
540-18771-5_41.

16. Drewes, F.; Kreowski, H.J.; Habel, A. Hyperedge Replacement Graph Grammars. In Handbook of Graph Grammars and Computing
by Graph Transformation; World Scientific: Singapore, 1997; pp. 95–162. https://doi.org/10.1142/9789812384720_0002.

17. Engelfriet, J.; Rozenberg, G. Graph grammars based on node rewriting: an introduction to NLC graph grammars. In Graph
Grammars and Their Application to Computer Science: 4th International Workshop, Bremen, Germany, 5–9 March 1990; Springer:
Berlin/Heidelberg, Germany, 1991; pp. 12–23. https://doi.org/10.1007/BFb0017374.

18. Subramanian, K.G. Regular control on NLC grammars. Bull. EATCS 1985, 26, 63–64.
19. Janssens, D.; Rozenberg, G. Generating graph languages using hypergraph grammars. In Fundamentals of Computation Theory;

Springer: Berlin/Heidelberg, Germany, 1981; pp. 154–164. https://doi.org/10.1007/3-540-10854-8_16.
20. Rozenberg, G.; Salomaa, A. (Eds.) Handbook of Formal Languages, Volume 1: Word, Language, Grammar; Springer: Berlin/Heidelberg,

Germany, 1997. https://doi.org/10.5555/267846.
21. Jayakrishna, V.; Mathew, L. nc-eNCE Graph Grammars and Graph Rewriting P Systems. In Proceedings of the International

Conference on Membrane Computing, Online, 25–26 August 2021; pp. 582–589.
22. Pavlidis, T. Linear and context-free graph grammars. J. ACM 1972, 19, 11–22. https://doi.org/10.1145/321356.321364.
23. Harary, F. Graph Theory; Addison-Wesley: Boston, MA, USA, 1991.
24. Searls, D.B. The Computational Linguistics of Biological Sequences. In Artificial Intelligence and Molecular Biology; American

Association for Artificial Intelligence: Palo Alto, CA, USA, 1993; pp. 47–120.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Graph Grammars
	Non-Confluent Edge and Node Controlled Embedding (nc-eNCE) Graph Grammar
	nc-eNCE Graph Grammar with Deletion (dnc-eNCE) 
	Non-Confluent eNCE Graph Grammar with  Labelled Edges (nc-eNCE) 

	Generation of Certain Graph Classes
	Wheel Graphs
	Complete Bipartite Graphs
	Binary Tree

	Generative Power of nc-eNCE Graph Grammars
	Modelling of Biological Structures
	Modelling of Parallel -Sheet Structures
	Modelling of Anti-Parallel -Sheet Structures with a Semi-Greek Key Conformation 

	Conclusion
	References

