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MINKOWSKI SYMMETRY SETS FOR 1-PARAMETER FAMILIES OF
PLANE CURVES

GRAHAM REEVE

Abstract. In this paper the generic bifurcations of the Minkowski symmetry set for 1-
parameter families of plane curves are classified and the necessary and sufficient geometric
criteria for each type are given. The Minkowski symmetry set is an analogue of the standard
Euclidean symmetry set, and is defined to be the locus of centres of all of its bitangent pseudo-
circles. It is shown that the list of possible bifurcation types is different to that of the list of
possible types for the Euclidean symmetry set.

1. Introduction

Symmetry sets and related constructions have provided useful representations of shapes for
object recognition as well as attracted interest in their own right and in the geometric properties
of curves that they reveal. In the standard Euclidean plane, the (Euclidean) symmetry set of a
curve γ is defined as the locus of the centres of circles that are tangent to γ in at least two distinct
points (bitangent), see for example [3, 4]. The medial axis of γ is a subset of its symmetry set,
and is defined to be the locus of the centres of circles that are bitangent to γ and completely
contained in γ. Introduced by Blum in 1967 [1], the medial axis (also referred to as the central
set, the topological skeleton, and the shock set for grassfire flows) was originally designed as a
tool for biological shape recognition and has found various applications in computer vision (see
for example [5, 12]).

The Minkowski symmetry set of a curve γ was introduced in [13] as a Minkowski analogue of
the (Euclidean) symmetry set. It is defined to be the locus of the centres of pseudo-circles that
are bitangent to γ. In [10] the singularities of the Minkowski symmetry set for a generic curve
are classified and in [11] a Minkowski version of the medial axis was introduced.

In [3], the transitions that occur for (Euclidean) symmetry sets of 1-parameter families of
curves are classified. Moreover, the complete list of full bifurcation sets for a generic family of
functions are given, and it is demonstrated that certain transitions are excluded for geometrical
reasons. Analogous to this, in the present paper the generic bifurcations of the Minkowski sym-
metry set for 1-parameter families of plane curves are classified and their criteria are determined.

Main Theorem 1.1. The possible transition types of the Minkowski Symmetry set for a generic
curve are A4

1(a), A
4
1(b), A

2
2(a), A

2
2(b), A1A3(a), A1A3(b), A2

1A2(a), A2
1A2(b) and A4.

Remark 1.2. Note that the list of possible transition types for the Minkowski Symmetry Set
differs from that of the Euclidean Symmetry Set where only types A4

1(a), A2
2(a), A2

2(b), A1A3(a),
A2

1A2(a), and A4 can occur (see [3]).

Remark 1.3. For the Euclidean Medial Axis, only types A4
1(a) and A1A3(a) can have the centre

on the medial axis (see for example [7]). The Minkowski Medial Axis was defined in [11] as the
locus of centres of pseudo-circles that are bitangent to γ with one of its branches. It follows that
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only A4
1(b) and A1A3(a) can have their centres on the Minkowski Medial Axis (see main text and

the table below).

Remark 1.4. In [8] an affine version of the Symmetry Set called the Affine Distance Symmetry
Set was considered. It was shown that A4

1(a), A4
1(b),A2

2(a), A2
2(b), A1A3(a), A1A3(b), A2

1A2(a),
A2

1A2(b) and A4 could occur generically. In the case where γ is an oval (a strictly convex, smooth
and closed curve), it was also shown that A4

1(b), A
2
1A2(b) and A1A3(b) were prohibited.

Euclidean Minkowski Affine
A4

1(a) ✓ Odd # points per branch ✓
A4

1(b) × Even # points per branch Not for Ovals
A2

2(a) κ′
1κ

′
2 > 0 κ′

1κ
′
2 > 0 (M. Curvature) ✓

A2
2(b) κ′

1κ
′
2 < 0 κ′

1κ
′
2 < 0 (M. Curvature) ✓

A1A3(a) ✓ Points on different branches ✓
A1A3(b) × Points on the same branch Not for Ovals
A2

1A2(a) ✓ A1 points on same branch ✓
A2

1A2(b) × A1 points on opposite branches Not for Ovals
A4 ✓ ✓ ✓

2. The Minkowski pseudo-metric

The Minkowski plane (R2
1, ⟨, ⟩) is the vector space R2 endowed with the pseudo-scalar product

⟨u, v⟩ = −u0v0 + u1v1, for any u = (u0, u1) and v = (v0, v1). A vector u ∈ R2
1 is called timelike

if ⟨u, u⟩ < 0, spacelike if ⟨u, u⟩ > 0, and lightlike if ⟨u, u⟩ = 0.
The norm of u is defined by ||u|| =

√
|⟨u, u⟩|, and the perpendicular operator ⊥ assigns

u⊥ = (u1, u0).
There are three distinct types of pseudo-circles in R2

1 with centre c ∈ R2
1 and radius r, r > 0,

are defined as follows:

H1(c,−r) = {p ∈ R2
1 | ⟨p− c, p− c⟩ = −r2},

S1
1(c, r) = {p ∈ R2

1 | ⟨p− c, p− c⟩ = r2},
LC∗(c) = {p ∈ R2

1 \ {c} | ⟨p− c, p− c⟩ = 0}.
Observe that LC∗(c) is the union of the two lines through c with tangent directions (1, 1) and

(1,−1), with the point c removed. The pseudo-circle H1(c,−r) has two branches which can be
parametrised by c+ (±r cosh(t), r sinh(t)), t ∈ R. The pseudo-circle S1(c, r) is also composed of
two branches and these can be parametrised by c+ (r sinh(t),±r cosh(t)), t ∈ R.

Let γ : S1 → R2
1 be an immersion, where S1 is the unit Euclidean circle. Call the curve γ the

image of the map γ and say that it is a closed smooth curve (that is, γ is a regular closed curve
and may have points of self-intersection).

The curve γ at t0 is said to be spacelike if γ′(t0) is spacelike and is said to be timelike if γ′(t0)
is timelike. These are open properties so there is a neighbourhood of t0 where the curve is either
spacelike or timelike. If γ′(t0) is lightlike then γ(t0) is said to be a lightlike point. It is shown
in [13] that the set of lightlike points of γ is the union of at least four disjoint non-empty and
closed subsets of γ. The complement of these sets are disjoint connected spacelike or timelike
pieces of the curve γ.

The spacelike and timelike components of γ can be parametrised by arc length. Suppose that
γ(s), s ∈ (λ, µ), is an arc length parametrisation of a component of γ. Then t(s) = γ′(s) is a
unit tangent vector and t′(s) = κ(s)n(s), where κ(s) is the Minkowski curvature of γ at s and
n is the unit normal vector at s. The tangent and unit normal vectors are pseudo-orthogonal so
they are of different types, that is, one is spacelike and the other is timelike.
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When γ is not necessarily parametrised by arclength, the unit tangent is given by

T (t) =
γ′(t)

|⟨γ′(t), γ′(t)⟩| 12
,

the unit normal by
N(t) = (−1)βT (t),

where β = 1 if γ is spacelike and β = 2 if γ is timelike, and the Minkowski curvature (dropping
the parameter t) is given by

κ =
⟨γ′, γ′′⊥⟩
|⟨γ′, γ′⟩| 32

.

3. The Minkowski Symmetry Set

The evolute of a spacelike or timelike component of γ(s), s ∈ (λ, µ) is the image of the map

e(t) = γ(t)− 1

κ(t)
N(t).

In general, the curvature tends to infinity as t tends to λ or µ and the evolute of the curve
γ is not defined at these lightlike points. However, the caustic of γ is defined everywhere and
contains the evolute of γ (see for example [13]). The caustic can be defined via the the family of
distance-squared functions f : S1 × R2

1 → R on γ given by

f(t, c) = ⟨γ(t)− c, γ(t)− c⟩.
Denote by fc : S1 → R the function given by fc(t) = f(t, c). We say that fc has an Ak-

singularity at t0 if f ′
c(t0) = f ′′

c (t0) = . . . = f
(k)
c (t0) = 0 and f

(k+1)
c (t0) ̸= 0. This is equivalent to

the existence of a local re-parametrisation h of γ at t0 such that (f◦h)(t) = ±tk+1. Geometrically,
fc has an Ak-singularity if and only if the curve γ has contact of order k + 1 at γ(t0) with the
pseudo-circle of centre c and radius r, with r = ⟨γ(t0) − c, γ(t0) − c⟩. Thus, the curve γ has
point contact of order 1 with a pseudo-circle at t0 if it transversally intersects the pseudo-circle
at γ(t0). The order of contact is 2 if the circle and the curve have ordinary tangency at γ(t0).

The caustic of γ is the local component B1 of the bifurcation set of the family f , given by

B1 = {c ∈ R2
1 | ∃t ∈ S1 such that f ′

c(t) = f ′′
c (t) = 0}.

This is the set of points c ∈ R2
1 such that the germ fc has a degenerate singularity at some

point t. In [13] it was shown that the caustic of γ is defined at all points on γ including its
lightlike points where it is a smooth curve and has ordinary tangency with γ.

The multi-local component of the bifurcation set of the family f is defined as

B2 = {c ∈ R2
1 | ∃t1, t2 such that t1 ̸= t2, fc(t1) = fc(t2), f

′
c(t1) = f ′

c(t2) = 0}.
The full-bifurcation set of f is defined as

Bif(f) = B1 ∪ B2.

Definition 3.1. The Minkowski Symmetry Set (MSS) of γ is the locus of centres of pseudo-
circles which are tangent to γ in at least two distinct points p and q. The pairs of points p, q are
called bitangent pairs.

The MSS is precisely the multi-local component B2 of the bifurcation set of the family of
distance-squared function f on γ.

In [10] it is shown that the singularities which can occur on the MSS for a generic plane
curve are A1, A2, A

3
1, A1A2 and A3, and that they are all versally unfolded. It follows that

these singularities are also versally unfolded for a 1-parameter family of plane curves. It can
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happen for a generic 1-parameter family of plane curves that at isolated points one of the above
singularities occurs at lightlike points and this case is also dealt with in [10]. It only remains now
to show the versality and the transition type for the other generically occurring singularities for a
1-parameter family of plane curves, namely A4

1, A
2
1A2, A1A3, A

2
2 and A4. For these singularities,

which only occur generically for a family of curves depending on a parameter, the bifurcation
sets undergo a (sudden) structural change as we vary the parameter, so for this reason (following
[7]) we refer to these as ‘transitions’.

In [3] it was shown that for general functions some of these singularities occur in two distinct
transition types. For example, in the A4

1 case there exist two types referred to as A4
1(a) and

A4
1(b). It was shown in that paper that only types A4

1(a), A
2
2(a), A

2
2(b), A1A3(a), A

2
1A2(a) and

A4 could occur for (Euclidean) symmetry sets (see Table on page 362). In the present paper a
similar analysis is carried out for the Minkowski symmetry set and the geometric conditions for
the possible types are determined. In particular, the following theorem is proven:

Theorem 3.2. The possible transition types of the Minkowski Symmetry set for a generic curve
are A4

1(a), A
4
1(b), A

2
2(a), A

2
2(b), A1A3(a), A1A3(b), A2

1A2(a), A2
1A2(b) and A4.

Each generically occurring singularity type is considered in turn. Considering the reduction
of the distance-squared family to its normal form, the necessary geometrical criteria for each
transition type (e.g. a or b) is determined.

4. The A4
1 singularity

Consider the standard multi-versal unfolding of an A4
1 singularity given by

G : R(4) × R3 → R,

where R(4) denotes the set of parameters t1, t2, t3, t4, R3 denotes the y-space of unfolding pa-
rameters (y1, y2, y3) and the multi-versal unfolding G is given by

Gi : (ti,y) 7→ t2i + yi, i = 1, 2 and 3

G4 : (t4,y) 7→ t24.

Consider now four families of curve segments γ1, γ2, γ3 and γ4 each being close to one of the
tangency points. With family parameter u, denote these segments as

γi,u(si) = (Xi,u(si), Yi,u(si)),

where the arclength parameters si are close to zero. Take x = (x1, x2) ∈ R2
1, and denote by

x0 the A4
1-point on the MSS. Then the family of Minkowski distance functions on the family of

curve segments consists of four germs

Fi : R× R× R2
1, (0, 0,x0) → R,

given by

Fi(si, u,x) = ⟨x− γi,u,x− γi,u⟩.

Using standard techniques, as outlined in [3], and used for example in [8] and [9], the aim
is to reduce the family Fi to a standard family Gi. The big bifurcation set (BBS), which sits
in y-space and comprises of subsets which correspond to A2

1 sets of G, contains all the possible
types bifurcations of A4

1, and the individual bifurcation sets can be recovered locally by slicing
the BBS with non-singular families of surfaces passing through the origin in y-space. Firstly, the
possible generic transition types and their criteria are found, and then through keeping track of
the geometric properties in reducing the family to the standard type, the relevant bifurcation
type can be determined.
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Figure 1. The transitions that can occur on Minkowski Symmetry Sets.
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4.1. Bad planes. Following [3], a plane containing the origin given by the equation

a1y1 + a2y2 + a3y3 = 0

is called a bad plane if it contains any of the limiting tangent vectors to the strata of the big
bifurcation set of G. Non-generic transitions occur when these slicing surfaces are themselves
tangent to the limiting tangent vectors to the strata of the big bifurcation set tending to the
origin. A plane can be represented by a point with homogeneous coordinates (a1 : a2 : a3) in the
real projective plane RP 2 and the pencils of bad planes therefore correspond to lines in RP 2.

If ∆ represents the set of bad planes each component of RP 2 − ∆ represent collections of
normals, which as kernels of dh(0) give C0-stratified equivalent functions of h. (For remarks on
stratified equivalence see for example [3] and [2].) Each connected component of RP 2 −∆ can
potentially give a different type of transition. By considering each region in turn and identifying
the type of transition it is possible to determine the criteria for realising each one.

The one-dimensional strata adjacent to the BBS for the standard A4
1 are

A3
1 : {(a1, a2, a3) = (t1, t1, t1) ∪ (t1, 0, 0) ∪ (0, 0, t2) ∪ (0, 0, t3)}

A2
1/A

2
1 : {(a1, a2, a3) = (t1, t1, 0) ∪ (0, t2, t2) ∪ (t3, 0, t3)}.

The limiting tangent vectors to these one-dimensional strata are therefore given by (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 1, 0), (0, 1, 1), and (1, 0, 1) so the bad planes are given by a1 = 0,
a2 = 0, a3 = 0, and a1 + a2 + a3 = 0, a1 + a2 = 0, a2 + a3 = 0, and a1 + a3 = 0.

It is determined that the shaded regions of Figure 3 (right) correspond to one type of transition
and the non-shaded regions give another from which the following proposition can be deduced.

Proposition 4.1. If a1a2a3(a1 + a2 + a3) is negative the point (a1 : a2 : a3) lies in the shaded
region of Figure 3 (right) and the corresponding full bifurcation set has type A1A3(a). If however
a1a2a3(a1+a2+a3) is positive, then the point lies in the unshaded region and the corresponding
full bifurcation set is of type A1A3(b).

Since it is assumed that each Fi is a multi-versal unfolding, then by the uniqueness of multi-
versal unfoldings each of the unfoldings Gi in the standard multi-versal unfolding G can be
induced from the affine distance functions Fi by

Gi(ti,y) = Fi(Ai(ti,y), B(y)) + C(y), for i = 1, 2, 3 and 4,(1)

where each Ai : R× R3 → R is a germ at (0,0) and B,C denote the germs

B : (R3,0) → (R× R2, (0,x0)) and C : (R3,0) → (R, d0).

R× R3 G−−−−→ R× R3 −−−−→ R3 h−−−−→ Ry(Ai×B)

y(−C×B)

yB

yidentity

C
F−−−−→ D −−−−→ D

π1−−−−→ R

From the commutative diagram it can be seen that h = π1 ◦ B, where π1 denotes projection
onto the first coordinate. Thus, B1 (where Bi denotes the ith component of B) is the map h on
the standard A4

1 set (the BBS), which corresponds to the plane through the origin in y-space
representing the tangent plane to the surface with which we are slicing the BBS. This tangent
plane thus corresponds to the kernel of the map h on the BBS, i.e.

ker dB1 : R3 → R, with matrix

(
∂B1

∂y1
,
∂B2

∂y2
,
∂B3

∂y3

)∣∣∣∣
y=0

.
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Hence the kernel plane has equation

∂B1

∂y1

∣∣∣∣
y=0

y1 +
∂B2

∂y2

∣∣∣∣∣
y=0

y2 +
∂B3

∂y3
y3

∣∣∣∣∣∣
y=0

= 0.

Proposition 4.2. The MSS has a transition of type A4
1(a) if there are an odd number of points

on each branch and is of type A4
1(b) if there are an even number of points on each branch.

Proof. Consider the case i = 1:(
∂G1

∂t1

∂G1

∂y1

∂G1

∂y2

∂G1

∂y3

)∣∣∣∣
y=0

= (2t1 1 0 0).

Using relation (1) and applying the chain rule for derivatives gives the left-hand side of this
as:

(
∂F1

∂s1

∂F1

∂x1

∂F1

∂x2

∂F1

∂x3

)∣∣∣∣∣
(A1(t1,0),x0)

×


∂A1

∂t1
∂A1

∂y1

∂A1

∂y2

∂A1

∂y3

0 ∂B1

∂y1

∂B1

∂y2

∂B1

∂y3

0 ∂B2

∂y1

∂B2

∂y2

∂B2

∂y3

0 ∂B3

∂y1

∂B3

∂y2

∂B3

∂y3


∣∣∣∣∣∣∣∣∣∣

(t1,0)

+

(
0
∂C

∂y1

∂C

∂y2

∂C

∂y3

)∣∣∣∣∣
y=0

.

The same can be done for G2, G3 and G4, which have the right side of the first line as
(2t2 0 1 0), (2t3 0 0 1) and (2t4 0 0 0) respectively. Now ∂Fi

∂si
(0,x0) ≡ 0 because Fi has an A1

singularity at (0,x0). Also, ∂Fi

∂x1
= −2x1 + 2Xu,i(si),

∂Fi

∂x2
= 2x2 − 2Yu,i(si). The substitution

ti = 0 can be made since only the 0-jets are required.
Taking all the Gi together gives the system:

1 0 0
0 1 0
0 0 1
0 0 0

 =


∂F1

∂u
∂F1

∂x1

∂F1

∂x2
∂F2

∂u
∂F2

∂x1

∂F2

∂x2
∂F3

∂u
∂F3

∂x1

∂F3

∂x2
∂F4

∂u
∂F4

∂x1

∂F4

∂x2


∣∣∣∣∣∣∣∣∣
(A(ti,0),x0)

× JB +


JC
JC
JC
JC

(2)

where, for conciseness, JB and JC denote the matrices

JB =


∂B1

∂y1

∂B1

∂y2

∂B1

∂y3
∂B2

∂y1

∂B2

∂y2

∂B2

∂y3
∂B3

∂y1

∂B3

∂y2

∂B3

∂y3


∣∣∣∣∣∣∣
y=0

, JC =
(

∂C
∂y1

∂C
∂y2

∂C
∂y3

)∣∣∣
y=0

.

Subtracting the bottom row from the other rows in equation (2) gives
1 0 0
0 1 0
0 0 1
0 0 0

 =


∂F1

∂u − ∂F4

∂u
∂F1

∂x1
− ∂F4

∂x1

∂F1

∂x2
− ∂F4

∂x2
∂F2

∂u − ∂F4

∂u
∂F2

∂x1
− ∂F4

∂x1

∂F2

∂x2
− ∂F4

∂x2
∂F3

∂u − ∂F4

∂u
∂F3

∂x1
− ∂F4

∂x1

∂F3

∂x2
− ∂F4

∂x2
∂F4

∂u
∂F4

∂x1

∂F4

∂x2


∣∣∣∣∣∣∣∣

(A(ti,0),x0)

× JB +


0
0
0
JC

 .

Substituting ∂Fi

∂x1
and ∂Fi

∂x2
and ignoring the last row yields the following system:

I3 =

 ∂F1

∂u − ∂F4

∂u X1 −X4 −Y1 + Y4
∂F2

∂u − ∂F4

∂u X2 −X4 −Y2 + Y4
∂F3

∂u − ∂F4

∂u X3 −X4 −Y3 + Y4

×


∂B1

∂y1

∂B1

∂y2

∂B1

∂y3
∂B2

∂y1

∂B2

∂y2

∂B2

∂y3
∂B3

∂y1

∂B3

∂y2

∂B3

∂y3


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Figure 2. Left: Given three points on a circle, a fourth point necessarily lies
outside the triangle formed by the other three. Right: Given three points on a
pseudo-circle, a fourth point can either lie inside (resulting in singularity A4

1(a)),
or outside the triangle formed by the other three (resulting in the singularity
A4

1(b)).

where I3 represents the (3× 3) identity matrix.
The derivatives of B1 can now be evaluated. Since the product of the two matrices is the

identity, they must be inverse to each other. Now, the inverse of the first matrix can be used to
calculate the required entries of the second matrix. So,

∂B1

∂y1
= βdet

(
X2 −X4 −Y2 + Y4

X3 −X4 −Y3 + Y4

)
,

where β = 1 if γ is spacelike and β = 2 if γ is timelike.
Multiplying the second column by −1 gives

∂B1

∂y1
= −βdet

(
X2 −X4 Y2 − Y4

X3 −X4 Y3 − Y4

)
.

Similarly,
∂B1

∂y2
= −βdet

(
X1 −X4 Y1 − Y4

X3 −X4 Y3 − Y4

)
,

∂B1

∂y3
= −βdet

(
X1 −X4 Y1 − Y4

X2 −X4 Y2 − Y4

)
.

Let q1 = γ2 − γ3, q2 = γ3 − γ4, q3 = γ4 − γ1 and q4 = γ1 − γ2. Now, ∂B1

∂y1
= −βdet

(
q1
q2

)
,

∂B1

∂y2
= βdet

(
q2
q3

)
, ∂B1

∂y3
= −βdet

(
q3
q4

)
, and ∂B1

∂y1
+ ∂B1

∂y2
+ ∂B1

∂y3
= −βdet

(
q3
q4

)
.

Now det(qi, qj) > 0 if and only if the anticlockwise (Euclidean) angle from qi to qj is less than
π. It then follows that ∂B1

∂y1

∂B1

∂y2

∂B1

∂y3

(
∂B1

∂y1
+ ∂B1

∂y2
+ ∂B1

∂y3

)
> 0 if and only if no point pi is inside

the triangle formed by the other three pj . This condition fails if and only if there are an even
number of points on each branch and the resulting singularity is of type A4

1(b). On the other
hand, if one of the branches contains only one point, and the other branch contains three, then
the triangle formed by the point on the first branch and the ‘outer’ two points of the branch of
three will necessarily contain the fourth point (see figure 2) and the singularity will be of type
A4

1(a).
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Figure 3. Left: The BBS for A4
1. Right: The regions determining the different

types for A4
1.

Figure 4. Left: The BBS for A2
2. Right: The regions determining the different

types for A2
2.

5. The A2
2 singularity

Consider the following standard multi-versal unfolding of an A2
1A2 singularity given by

G : R(2) × R3 → R

where R(2) denotes the parameters t1, t2 and R3 denotes the unfolding parameters a = (a1, a2, a3)
and the multi-versal unfolding is given by the two unfoldings:

G1(t1,a) = t31 + a1t1 + a2,

G2(t2,a) = t32 + a3t2.

5.1. The bad planes. The one-dimensional strata adjacent to A2
2 are

A1A2 : {(a1, a2, a3) = (−3t21, 2t
3
1, 0) ∪ (0,−2t32,−3t22)}

A2
1/A

2
1 : {(a1, a2, a3) = (−3t22, 0,−3t22)}.

The limiting tangent vectors to these one-dimensional strata are given by (1, 0, 0), (0, 1, 0) and
(1, 1, 0) so the bad planes are given b a1 = 0, a3 = 0 and a1 + a3 = 0.

Similarly to the previous case, the following proposition can be deduced.
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Proposition 5.1. If a1a2 is negative the point (a1 : a2 : a3) lies in the unshaded region of
Figure 4 (right) and the corresponding full bifurcation set has type A2

2(a). If however a1a3 is
positive, then the point lies in the shaded region and the corresponding full bifurcation set is of
type A2

2(b).

The Minkowski distance function on the two curve segments near the A2
2 points consists of

the two germs
F1(t1, u, x) = ⟨γ1(t1, u)− x, γ1(t1, u)− x⟩

F2(t2, u, x) = ⟨γ2(t2, u)− x, γ2(t2, u)− x⟩.
To reduce to G1 and G2, as in the A4

1 case, using (1) and applying the chain rule gives the
system: 

1 0 0
0 1 0
0 0 1
0 0 0

 =


∂2F1

∂t1∂u
∂2F1

∂t1∂x1

∂2F1

∂t1∂x2
∂F1

∂u
∂F1

∂x1

∂F1

∂x2
∂2F2

∂t2∂u
∂2F2

∂t2∂x1

∂2F2

∂t2∂x2
∂F2

∂u
∂F2

∂x1

∂F2

∂x2


∣∣∣∣∣∣∣∣∣
(A(ti,0),x0)

× JB +


0
JC
0
JC

 .

Subtracting the bottom row from the second and then ignoring the bottom yields 1 0 0
0 1 0
0 0 1

 =

 ∂2F1

∂t1∂u
∂2F1

∂t1∂x1

∂2F1

∂t1∂x2
∂F1

∂u − ∂F2

∂u
∂F1

∂x1
− ∂F2

∂x1

∂F1

∂x2
− ∂F2

∂x2
∂2F2

∂t2∂u
∂2F2

∂t2∂x1

∂2F2

∂t2∂x2


∣∣∣∣∣∣∣
(A(ti,0),x0)

× JB.

We can write Ai(ti, 0) = αiti + higher terms where

αi = (−κ/κi)
1
3

and here κ is the Minkowski curvature of γ at the two points of contact and κ′
i is the derivative

of Minkowski curvature with respect to arclength on γ.
Differentiating F1 (for example, though the same applies for F2) gives

1

2

∂F1(A1(t1, u), x)

∂t1
= α1⟨(γ1(t1, u)− x), T1⟩

and differentiating this with respect to x gives(
1

2

∂2F1(A1(t1, u), x)

∂t1∂x1
,
1

2

∂2F1(A1(t1, u), x)

∂t1∂x2

)
= α1(X

′
1,−Y ′

1).

For the middle row we have(
1

2

∂Fi(Ai(ti, u), x)

∂x1
,
1

2

∂Fi(Ai(ti, u), x)

∂x2

)
= ⟨(γ1(t, u)− x), (−1,−1)⟩.

Since F1 has an A2 singularity, (γ(t, u)−x) can be written as 1
κM

NM and substituting this yields(
1

2

∂Fi(Ai(ti, u), x)

∂x1
,
1

2

∂Fi(Ai(ti, u), x)

∂x2

)
= 2

1

κM
(Y ′

i ,−X ′
1).

Substituting these derivatives into the matrix equation gives: 1 0 0
0 1 0
0 0 1

 =

 ∗ 2α1X
′
1 −2α1Y

′
1

∗ 2
κ (Y

′
1 − Y ′

2)
2
κ (X

′
2 −X ′

1)
∗ 2α2X

′
2 −2α2Y

′
2

∣∣∣∣∣∣
(A(ti,0),x0)

× JB.
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Evaluating the cofactors gives

∂B1

∂a1
=

4

κ
α2(⟨T1, T2⟩ ± 1) and

∂B1

∂a3
=

4

κ
α1(⟨T1, T2⟩ ± 1),

where the sign of ± is the same for both derivatives and depends on whether the curves are
spacelike or timelike.

The type of transition that occurs depends on the sign of ∂B1

∂a1

∂B1

∂a3
. Now

∂B1

∂a1

∂B1

∂a3
=

8

κ2
M

α1α2(⟨T1, T2⟩ ± 1)2

so the sign, and hence the transition type, depends on whether κ′
1κ

′
2 is positive or negative.

Proposition 5.2. In the multi-versal A2
2 situation, assume in addition to κ′

i ̸= 0, that κ′
1+κ′

2 ̸= 0
(κ′

i = the derivative of curvature on γ0 with respect to arclength at the two contact points).Then
the A2

2(a) or “moth transition" occurs when κ′
1κ

′
2 > 0 and the A2

2(b) or “nib transition” occurs
when κ′

1κ
′
2 < 0.

6. The A2
1A2 singularity

Consider the following standard multi-versal unfolding of an A2
1A2 singularity given by

G : R(3) × R3 → R

where R(3) denotes the parameters t1, t2, t3 and R3 denotes the unfolding parameters
a = (a1, a2, a3) and the multi-versal unfolding is given by the two unfoldings:

G1(t1,a) = t31 + a1t1,

G2(t2,a) = t22 + a2,

G3(t3,a) = t23 + a3.

6.1. The big bifurcation set. At an A2
1A2 point the B2 set consists of three parts: The first

is given as the solution of G1 = G2 and G′
1 = G′

2 = 0 and is a semi-cubic cylinder with the
parametrisation (−3t21, 2t

3
1, a3). The second is given as the solution of G1 = G3 and G′

1 = G′
3 = 0

and is a semi-cubic cylinder with the parametrisation (−3t21, a2, 2t
3
1). The third component is a

smooth surface which is the solution set of G2 = G3 and G′
2 = G′

3 = 0 and can be parametrised
as (a1, a2, a2). The B1 component given by G′

1 = G′′
1 = 0 is the smooth surface (0, a2, a3). See

Figure 5 (Left).

6.2. The bad planes. The one-dimensional strata adjacent to A2
1A2 are

A1A2 : {(a1, a2, a3) = (0, a2, 0) ∪ (0, 0, a3)}
A3

1 : {(a1, a2, a3) = (−3t21,−2t31,−2t31)}
A2

1/A
2
1 : {(a1, a2, a3) = (3t21, 2t

3
1,−2t31)}.

The limiting tangent vectors to these one-dimensional strata are given by (0, 1, 0), (0, 0, 1)
and (1, 0, 0) so the bad planes are given by a2 = 0, a3 = 0 and a1 = 0.

Proposition 6.1. If a1a3 is positive the point (a1 : a2 : a3) lies in the shaded region of Figure 5
(right) and the corresponding full bifurcation set has type A1A3(a). If however a1a3 is negative,
then the point lies in the unshaded region and the corresponding full bifurcation set is of type
A1A3(b).



372 GRAHAM REEVE

Figure 5. Left: The set B2 for A2
1A2. The B1 set (not shown) is the plane

that contains both cuspidal edges of B2. Right: The regions determining the
different types for A2

1A2.

Applying the chain rule to (1) in this case gives the system:
1 0 0
0 0 0
0 1 0
0 0 1

 =


∂2F1

∂t1∂u
∂2F1

∂t1∂x1

∂2F1

∂t1∂x2
∂F1

∂u
∂F1

∂x1

∂F1

∂x2
∂F2

∂u
∂F2

∂x1

∂F2

∂x2
∂F3

∂u
∂F3

∂x1

∂F3

∂x2


∣∣∣∣∣∣∣∣∣
(A(ti,0),x0)

× JB +


0
JC
JC
JC

 .

Subtracting the second row from the third and fourth rows gives:
1 0 0
0 0 0
0 1 0
0 0 1

 =


∂2F1

∂t1∂u
∂2F1

∂t1∂v1

∂2F1

∂t1∂v2
∂F1

∂u
∂F1

∂x1

∂F1

∂x2
∂F2

∂u − ∂F1

∂u
∂F2

∂x1
− ∂F1

∂v1
∂F2

∂x2
− ∂F1

∂x2
∂F3

∂u − ∂F3

∂u
∂F3

∂x1
− ∂F1

∂x1

∂F3

∂x2
− ∂F1

∂x2


∣∣∣∣∣∣∣∣∣∣

(A(ti,0),x0)

× JB +


0
JC
0
0

 .

Ignoring the second row and substituting the derivatives gives 1 0 0
0 1 0
0 0 1

 =

 ∗ 2α1X
′
1 −2α1Y

′
1

∗ 2
κ (Y

′
2 − Y ′

1)
2
κ (X

′
1 −X ′

2)
∗ 2

κ (Y
′
3 − Y ′

1)
2
κ (X

′
1 −X ′

3)

∣∣∣∣∣∣
(A(ti,0),x0)

× JB.

Since the bifurcation type depends on whether ∂B1

∂a2

∂B1

∂a3
is positive or negative, evaluating

these terms using the cofactors of the matrix gives

∂B1

∂a2

∂B1

∂a3
=

16α2
1

κ2
(X ′2

1 − Y ′2
1 −X ′

1X
′
2 + Y ′

1Y
′
2)(X

′
1X

′
3 −X ′2

1 + Y ′2
1 − Y ′

1Y
′
3)

and denoting by Ti the unit tangent vectors to γ at γi, this becomes

= −16α2
1

κ2
(⟨T1, T1⟩ − ⟨T1, T2⟩)(⟨T1, T1⟩ − ⟨T1, T3⟩).

= −16α2
1

κ2
((−1)β+1 − ⟨T1, T2⟩)((−1)β+1 − ⟨T1, T3⟩).(3)

If the curves corresponding to the A2
1A2 point are spacelike, then the pseudo-circle is of type

S1
1(c, r) (radius r and centred at c) and can be parametrised as S1

1(θ) = c+r(cosh(θ),± sinh(θ)),
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where the ± allows for the covering of both branches. The unit tangent vectors at γi are then
given by Ti = (sinh(θi),± cosh(θi)). If both γ1 and γi (i = 2 or 3) lie on the same branch, then

⟨T1, Ti⟩ = − sinh(θ1) sinh(θi) + cosh(θ1) cosh(θi) = cosh(θ1 − θi)

so is greater than 1. If however γ1 and γi lie on opposite branches then

⟨T1, Ti⟩ = − sinh(θ1) sinh(θi)− cosh(θ1) cosh(θi) = − cosh(θ1 + θi)

so is less than −1. Since the curves γi are locally spacelike, β = 1 and the expression (3) is
positive if γ2 and γ3, that is the two A1 points, lie on the same branch and negative if they lie
on opposite branches. It can be shown that the same result holds if the points are timelike. It
follows that the point is of type A2

1A2 if of type (a) if the two A1 points lie on the same branch,
and of type (b) if they lie on opposite branches of the pseudo-circle.

7. The A1A3 singularity

Consider the following standard multi-versal unfolding of an A1A3 singularity given by

G : R(2) × R3 → R
where R(2) denotes the parameters t1, t2 and R3 denotes the unfolding parameters a = (a1, a2, a3)
and the multi-versal unfolding is given by the two unfoldings:

G1(t1,a) = t41 + a1t
2
1 + a2t1 + a3,

G2(t2,a) = t22.

7.1. The big bifurcation set. At an A1A3 point the B2 set itself consists of two parts: The
first is given as the solution to both G1 = G2 and G′

1 = G′
2 = 0 and is the swallowtail surface

parametrised by (a1,−4t31−2a1t1, 3t
4
1+2t21a1). The second component occurs locally near the A3

point and is given by G1(t1) = G1(−t1) and G1(t1)
′ = G1(−t1)

′ = 0. This second component is
the half plane (−2t21, 0, y3). The B1 component given by G′

1 = G′′
1 = 0 is the semi-cubic cylinder

(−6t21, 8t
3
1, a3), (see Figure 6 (left)).

7.2. The bad planes. The adjacent singularities of codimension 1 are as follows:

A3 : {(a1, a2, a3) = (0, 0, a3)}
A1A2 : {(a1, a2, a3) = (−6t21, 8t

3
1,−3t41)}

A3
1 : {(a1, a2, a3) = (−2t21, 0, t

4
1)}

A2
1/A

2
1 : {(a1, a2, a3) = (a1, 0, 0)}.

The limiting tangent vectors to these one-dimensional strata are given by (1, 0, 0), and (0, 0, 1)
so the bad planes are given by a1 = 0 and a3 = 0.

Proposition 7.1. If a1a3 is positive the point (a1 : a2 : a3) lies in the shaded region of Figure 6
(right) and the corresponding full bifurcation set has type A1A3(a). If however a1a3 is negative,
then the point lies in the unshaded region and the corresponding full bifurcation set is of type
A1A3(b).

Applying the chain rule to 1 gives the system:
1 0 0
0 1 0
0 0 1
0 0 0

 =


∂3F1

∂2t1∂u
∂3F1

∂2t1∂x1

∂3F1

∂2t1∂x2
∂2F1

∂t1∂u
∂2F1

∂t1∂x1

∂2F1

∂t1∂x2
∂F1

∂u
∂F1

∂x1

∂F1

∂x2
∂F2

∂u
∂F2

∂x1

∂F2

∂x2


∣∣∣∣∣∣∣∣∣
(A(ti,0),x0)

× JB +


0
0
JC
JC

 .
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Figure 6. Left: The BBS for A1A3. Right: The regions determining the
different types for A1A3.

Subtracting the last row from the third, and then ignoring the last gives: 1 0 0
0 1 0
0 0 1

 =

 ∂3F1

∂2t1∂u
∂3F1

∂2t1∂x1

∂3F1

∂2t1∂x2
∂2F1

∂t1∂u
∂2F1

∂t1∂x1

∂2F1

∂t1∂x2
∂F1

∂u − ∂F2

∂u
∂F1

∂x1
− ∂F2

∂x1

∂F1

∂x2
− ∂F2

∂x2


∣∣∣∣∣∣∣
(A(ti,0),x0)

× JB

Now,
∂Fi

∂x1
= 2Xi − 2x1,

∂Fi

∂x2
= −2Yi + 2x2

and γi − x = (X − x1, Y − x2) =
1
κN where N = (−1)β(Y ′

1 , X
′
1). Hence, ∂Fi

∂x1
= 2Y1(−1)β and

∂Fi

∂x2
= −2X ′

1(−1β). Substituting these derivatives into the matrix equation gives: 1 0 0
0 1 0
0 0 1

 =

 ∗ 2α2
1X

′′
1 + 4α2X

′
1 −2α2

1Y
′′
1 − 4α2Y

′
1

∗ 2α1X
′
1 −2α1Y

′
1

∗ 2
κ (−1)β(Y ′

1 − Y ′
2)

2
κ (−1)β(X ′

2 −X ′
1)

∣∣∣∣∣∣
(A(ti,0),x0)

× JB.

Recall that the type of bifurcation depends upon whether ∂B1

∂a1

∂B1

∂a3
is positive or negative.

∂B1

∂a1
= det

∣∣∣∣ 2α1X
′
1 −2α1Y

′
1

2
κ (−1)β(Y ′

1 − Y ′
2)

2
κ (−1)β(X ′

2 −X ′
1)

∣∣∣∣
= 2α1X

′
1

2

κ
(X ′

2 −X ′
1) + 2α1Y

′
1

2

κ
(Y ′

1 − Y ′
2)

=
4α1

κ
(−X ′2

1 + Y ′2
1 +X ′

1X
′
2 − Y ′

1Y
′
2)

=
4α1

κ
(⟨T1, T1⟩ − ⟨T1, T2⟩).

and ∂B1

∂a3
= −(2α2

1X
′′
1 +4α2X

′
1)2α1Y

′
1+2α1X

′
1(2α

2
1Y

′′
1 +4α2Y

′
1) = 4α3

1(X
′
1Y

′′
1 −X ′′

1 Y
′
1) = 4α3

1κ.

∂B1

∂a1

∂B1

∂a3
= 16α4

1(−1)β(⟨T1, T1⟩ − ⟨T1, T2⟩).

So if γ1 and γ2 are both spacelike, this gives 16α4
1(1− ⟨T1, T2⟩) which is negative if γ1 and γ2

lie on the same branch and positive if they lie on opposite branches (see Section 6). On the other
hand, if they are both timelike this gives −16α4

1(−1−⟨T1, T2⟩). Parametrising the pseudo-circle
of type H1(c,−r) as

H1(θ) = c+ r(± sinh(θ), cosh(θ)),
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Figure 7. The BBS for A4.

the unit tangent vector is given by T = (± cosh(θ), sinh(θ)). Now if γ1 and γ2 lie on the same
branch ⟨T1, T2⟩ = − cosh(θ1) cosh(θ2)+ sinh(θ1) sinh(θ2) = − cosh(θ1 − θ2) which is less than -1.
However if γ1 and γ2 lie on opposite branches

⟨T1, T2⟩ = cosh(θ1) cosh(θ2) + sinh(θ1) sinh(θ2) = cosh(θ1 + θ2)

which is greater than 1. Hence the expression −16α4
1(−1− ⟨T1, T2⟩) is negative if γ1 and γ2 lie

on the same branch and positive if they lie on opposite branches (the same conditions as for
spacelike). It follows that the type is A1A3(a) if both contact points lie on opposite branches
and type A1A3(b) occur on the same branch of the pseudo-circle.

8. The A4 singularity

Consider the following standard versal unfolding of an A4 singularity given by

G : R× R3 → R

where R denotes the parameters t and R3 denotes the unfolding parameters a = (a1, a2, a3) and
the versal unfolding is given by

G(t,a) = t5 + a1t
3 + a2t

2 + a3t.

8.1. The big bifurcation set. The bifurcation set B1 of the standard A4 singularity G is
the swallowtail surface which can be parametrised by (a1,−10t3 − 3a1t), and its bifurcation
set B2 is another swallowtail, which sits inside the swallowtail B1 and can be parametrised by
(−3s2 − 4st − 3t2, 2s3 + 8s2t + 8st2 + 2t3,−4s3t − 7s2t2 − 4st3). See Figure 7. The adjacent
1-dimensional strata are found to be

A3 : {(a1, a2, a3) = (−10t2, 20t3,−15t4)}
A1A2 : {(a1, a2, a3) = (−60t2,−80t3, 960t4)}

A2/A2 : {(a1, a2, a3) = (−10

3
t2, 0, 5t4)}

A2
1/A

2
1 : {(a1, a2, a3) = (−4t2, 0,

16

5
t4)}.

The limiting tangent vectors to these one-dimensional strata are all given by (1, 0, 0), so the
only bad planes is given by a1 = 0. Examining representations from both components show that
only one transition type exists for A4.
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