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Abstract

We propose a discrete Darboux–Lax scheme for deriving auto-Bäcklund transformations and con-
structing solutions to quad-graph equations that do not necessarily possess the 3D consistency property.
As an illustrative example we use the Adler–Yamilov type system which is related to the nonlinear
Schrödinger (NLS) equation [21]. In particular, we construct an auto-Bäcklund transformation for this
discrete system, its superposition principle, and we employ them in the construction of the one- and
two-soliton solutions of the Adler–Yamilov system.
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1 Introduction

It has become understood over the past few decades that integrable systems of partial difference equa-
tions (P∆Es) are interesting in their own right, see for instance [17] and references therein. On the one
hand, they may model various natural phenomena, as well as processes in industry and the IT sector. On
the other hand, they have many interesting algebro-geometric properties [7, 17], and are related to many
important equations of Mathematical Physics such as the Yang–Baxter equation and the tetrahedron
equation [2, 10, 18, 28]. Moreover, they can be derived from the discretisation of nonlinear partial differ-
ential equations (PDEs). One such approach is provided by the Darboux transformations of integrable
nonlinear PDEs of evolution type [21, 33]; namely, the resulting relations from the permutability of two
Darboux transformations can be interpreted as a P∆E.

In this paper, we focus on a special class of P∆Es, the so-called quad-graph equations, or systems
thereof. Quad-graph systems are equations of P∆Es defined on an elementary quadrilateral of the two-
dimensional lattice. In particular, they are systems of the form

Q(f00, f10, f01, f11;α, β) = 0, (1)
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where Q is a function of its arguments fij, i, j = 0, 1, and may also depend on parameters α and β.
Schematically, equation (2) can be represented on the square, where f00, f10, f01 and f11 are placed on
vertices of the square and the parameters α, β are placed on the edges as in Figure ??. Equation (2)
can be thought as a partial difference equation (P∆E) by identifying f with a function of two discrete
variables n,m ∈ Z, and fij with its shifts in the n and m direction, i.e. fij = f(n+ i,m+ j).

f f10

f01 f11

α

β

Figure 1: Quad–graph equation.

Quad-graph equations have attracted the interest of many researchers in the field of discrete integrable
systems, see [17] for a review. This led to the development of methods for solving them, e.g. [3, 15, 17,
26, 29], classifying them, e.g. [4, 8, 31], analysing their integrability properties, e.g. [24, 30, 23, 32],
and relating them to the theory of Yang–Baxter and tetrahedron maps, e.g. [13, 28]. Of particular
interest are the so-called 3D-consistent equations which can be extended to the three-dimensional lattice
in a consistent way. For such equations a Lax representation and a Bäcklund transformation can be
constructed in a systematic manner by employing the 3D consistency of the system [17].

In this paper, we propose a discrete Darboux–Lax scheme for deriving Bäcklund transformations and
constructing solutions for quad-graph equations which are not necessarily 3D consistent but have a Lax
representation. More precisely, we employ gauge-type transformations of the Lax pair and demonstrate
how they give rise to Bäcklund transformations for the discrete system. As an illustrative example we use
the Adler–Yamilov system [1] which was derived as a discretisation of the NLS equation via a Darboux
transformation in [21].

The paper is organised as follows. In the next section we provide all the necessary definitions for the
text to be self-contained. More specifically, after fixing our notation, we give the definitions of the integra-
bility of a system of P∆Es in the sense of the existence of a Lax pair, and of the Bäcklund transformation.
In Section 3 we present the discrete Darboux–Lax scheme for constructing Bäcklund transformations and
solving integrable P∆Es which do not necessarily possess the 3D consistency property. In Section 4 we
apply our results to the Adler–Yamilov system given in [21] and derive the one- and two-soliton solutions
by using the associated Bäcklund transformation and the corresponding Bianchi diagram. Finally, the
closing section contains a summary of the obtained results and a discussion on how they can be extended
and generalised.

2 Integrability of difference equations

Let us start this section by introducing our notation. In what follows we deal with systems of equations
which involve unknown functions depending on the two discrete variables n and m. The dependence of
a function f = f(n,m) on these variables will be denoted with indices in the following way.

fij = f(n+ i,m+ j), for all i, j ∈ Z

2



We also denote by S and T the shift operators in the n and m direction, respectively. Their action on a
function f is defined as

Sk(f00) = fk0, T ℓ(f00) = f0ℓ.

We denote vectors with bold face letters, e.g. f00 = (f
(1)
00 , f

(2)
00 , . . . f

(k)
00 ). For systems of equations we also

use bold letters. In particular, a system of quad-graph equations will be denoted by

Q(f00, f10, f01, f11) = 0. (2)

Finally, we denote matrices with roman uppercase letters. For instance L(f00, f10;α, λ) denotes a matrix
with elements depending on f00, f10, α and λ. The semicolon in the arguments of the matrix is used to
separate the fields (f00, f10) from the parameters α, λ. By λ we denote the spectral parameter throughout
the text.

With our notation, let L(f00, f10;λ) and M(f00, f01;λ) be two k × k invertible matrices which depend
on a function f and the spectral parameter λ.1 Let also Ψ = Ψ(n,m) be an auxiliary k × k matrix, and
consider the following overdetermined linear system.

S(Ψ) = L(f00, f10;λ)Ψ, T (Ψ) = M(f00, f01;λ)Ψ. (3)

For given f , this system has a nontrivial solution Ψ provided that the two equations are consistent, i.e.
the compatibility condition T (S(Ψ)) = S (T (Ψ)) holds. The latter condition can be written explicitly as

L(f01, f11;λ)M(f00, f01;λ) = M(f10, f11;λ)L(f00, f10;λ). (4)

If the above equation holds if and only if f satisfies (2), then we say that system of P∆Es (2) is integrable,
system (3) is a Lax pair for (2), and equation (4) is called a Lax representation for (2). Moreover, matrices
L(f00, f10;λ) and M(f00, f01;λ) are referred to as Lax matrices, and without loss of generality we assume
that they have constant determinants.

Another criterion of integrability is the 3D consistency property [27], the property of system (2) to be
embedded into the three-dimensional lattice in the following consistent way. By assuming that f depends
on an additional third discrete variable k, i.e. f = f(n,m, k), and γ is a parameter associated with this
lattice direction, we impose three copies of the system as follows.

Q(f000, f100, f010, f110;α, β) = 0, Q(f000, f100, f001, f101;α, γ) = 0, Q(f000, f001, f010, f011; γ, β) = 0. (5)

Starting with f000, f100, f010 and f001 as initial values, we can determine f110, f101 and f011 using these
three equations. Then there are three different ways to calculate f111, namely by considering the shift of
the first equation in (5) in the third direction, or the shift of the second equation in the second direction,
or the shift of the third equation in the first direction. We say that the system is 3D consistent if these
three different ways lead to exactly the same value f111.

We close this section by giving the definition of Bäcklund transformation for quad-graph equations.
Such transformations are related to the notion of integrability as it will become evident in the next section
where we explore their connection to Lax pairs via the Darboux–Lax scheme.

Definition 2.1. Let Q[f ] := Q(f00, f10, f01, f11) = 0 and P[g] := P(g00,g10,g01,g11) = 0 be two systems
of quad-graph equations. Let also

B(f00, f10, f01,g00,g10,g01; ε) = 0 (6)

1Matrices L, M may also depend on parameters but, as they do not play any role in our discussion in this and the
following section, we suppress this dependence.
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be a system of P∆Es. If system B = 0 can be integrated for g provided that f is a solution of Q[f ] = 0,
and the resulting g(n,m) is a solution to P[g] = 0, and vice versa, then system (6) is called a (hetero-)
Bäcklund transformation for equations Q[f ] = 0 and P[g] = 0. If Q[a] = P[a], then (6) is called an
auto-Bäcklund transformation for equation Q[f ] = 0.

3 Discrete Darboux–Lax scheme

It is well known that for quad-graph systems which possess the 3D consistency property a Lax represen-
tation can be derived algorithmically [25, 6, 9, 17] and a Bäcklund transformation can be constructed
systematically [3, 17]. However, there do exist quad-graph systems which have a Lax pair but do not
possess the 3D consistency property. For this kind of systems we propose here a scheme for constructing
Darboux and Bäcklund transformations. It should be emphasized here that this scheme works for any
system of difference equations irrespectively of their 3D consistency.

For the integrable quad-graph system

Q(f00, f10, f01, f11) = 0 ⇐⇒ L(f01, f11;λ)M(f00, f01;λ) = M(f10, f11;λ)L(f00, f10;λ), (7)

we define the discrete Darboux transformation as follows.

Definition 3.1. A discrete Darboux transformation for the integrable P∆E (7) is a gauge-like, spectral
parameter-dependent transformation that leaves Lax matrices L and M covariant. That is, a transforma-
tion which involves an invertible matrix B such that

L(f00, f10;λ) 7−→ L(f̃00, f̃10;λ) = S(B)L(f00, f10;λ)B
−1, (8a)

M(f00, f01;λ) 7−→ M(f̃00, f̃01;λ) = T (B)M(f00, f01;λ)B
−1. (8b)

A consequence of the above definition is the following proposition.

Proposition 3.2. The Darboux transformation maps fundamental solutions of the linear system

S(Ψ) = L(f00, f10;λ)Ψ, T (Ψ) = M(f00, f01;λ)Ψ, (9)

to fundamental solutions of the linear system

S(Ψ̃) = L(f̃00, f̃10;λ)Ψ̃, T (Ψ̃) = M(f̃00, f̃01;λ)Ψ̃, (10)

via the relation Ψ̃ = BΨ.

Proof. Let Ψ = Ψ(n,m) be a fundamental solution of the linear problem (9). We set Ψ̃ = BΨ and then
we shift in the n direction to find that

S(Ψ̃) = S(B)S(Ψ)
(9)
= S(B)L(f00, f10;λ)Ψ

(8a)
= L(f̃00, f̃10;λ)BΨ = L(f̃00, f̃10;λ)Ψ̃.

Similarly, starting with Ψ̃ = BΨ we shift in the m direction and employ (9) and (8b) to find that
T (Ψ̃) = M(f̃00, f̃01;λ)Ψ̃. Moreover, the solution Ψ̃ is fundamental, since Ψ is fundamental and det(Ψ̃) =
detBdetΨ 6= 0.

Using the above definition of the discrete Darboux transformation and corresponding Darboux matrix,
we propose the following approach for the construction of a Darboux matrix and Bäcklund transformation,
as well as for the derivation of the superposition principle for the Bäcklund transformation.
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• We start by assuming an initial form for matrix B. The simplest assumption we can make is that
matrix B depends linearly on the spectral parameter, i.e.

B = λB(1) + B(0), (11)

where matrices B(1) and B(0) do not depend on λ.

• We determine the elements of these two matrices by employing equations (8) written as

L(f̃ , f̃10;λ)B = S(B)L(f , f10;λ), M(f̃ , f̃01;λ)B = T (B)M(f , f01;λ). (12)

In our calculations we also have to take into account that det(B) is a constant, an obvious conse-
quence of (12) and our assumption that the Lax matrices have constant determinants.

• The derived Darboux matrix will depend in general on the ‘old’ and the ‘new’ fields f and f̃ , as well
as the spectral parameter λ, and a parameter ε. It may also depend on some auxilliary function, a
potential, g(n,m). That is,

B = λB(1)(f00, f̃00, g; ε) + B(0)(f00, f̃00, g; ε).

• In the construction of the Darboux matrix (11) there will be some algebraic relations that define
the Darboux matrix elements, as well as some difference equations for its elements. These difference
equations will be of the form

B(n)(f00, f10, f̃00, f̃10, g; ε) = 0, B(m)(f00, f01, f̃00, f̃01, g; ε) = 0, (13)

and constitute the n- and the m-part, respectively, of an auto-Bäcklund transformation that relates
the ‘old’ and the ‘new’ fields. In what follows, we will denote this transformation simply with
B(f , f̃ , g; ε) = 0.

• The Bianchi commuting diagram, aka superposition principle, for the auto-Bäcklund transformation
(13) follows from the permutation of four Darboux matrices according to the diagram in Figure 2.

f

f̃

˜̂
f = ˆ̃

f

f̂

B(f , f̃ , g1; ε1, λ)

B(f , f̂ , g2; ε2, λ)

B(f̃ ,ˆ̃f , g12; ε2, λ)

B(f̂ ,
˜̂
f , g21; ε1, λ)

Figure 2: Bianchi commuting diagram. It should be noted that g12 6= g21.

More precisely, starting with a solution f of (7) we can construct two new solutions f̃ and f̂ using the
Bäcklund transformations B(f , f̃ , g1; ε1) = 0 and B(f , f̂ , g2; ε2) = 0, respectively. Then, we can use
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the Bäcklund transformation with initial solution f̃ , a new potential g12 and parameter ε2 to derive

a new solution ˆ̃
f , i.e. B(f̃ ,ˆ̃f , g12; ε2) = 0. In the same fashion, we can start with f̂ , a new potential

g21 and parameter ε1 to derive solution
˜̂
f , i.e. B(f̂ ,

˜̂
f , g21; ε1) = 0. By requiring

˜̂
f =

ˆ̃
f , according to

Figure 2, we can construct this solution algebraically and it follows from the commutativity of the
corresponding Darboux matrices,

B(f̃ ,
ˆ̃
f , g12; ε2, λ)B(f , f̃ , g1; ε1, λ) = B(f̂ ,

˜̂
f , g21; ε1, λ)B(f , f̂ , g2; ε2, λ). (14)

4 The Adler–Yamilov system

From the discussion in the previous section it is already obvious that multidimensional consistency is not
essential for this method of derivation of Bäcklund transformations. In this section, we demonstrate the
application of our scheme using as an illustrative example the Adler–Yamilov system [1] related to the
nonlinear Schrödinger equation [21].

The Adler–Yamilov system can be written as

p10 − p01 −
α− β

1 + p00q11
p00 = 0, q10 − q01 +

α− β

1 + p00q11
q11 = 0, (15)

where α, β are complex parameters. Moreover, using matrix

L(f, g; a, λ) = λL(1) + L(2)(f, g; a) = λ

(

1 0
0 0

)

+

(

a+ fg f
g 1

)

,

a Lax pair for (15) can be written as

S(Ψ) = L(p00, q10;α, λ)Ψ =

(

λ

(

1 0
0 0

)

+

(

α+ p00q10 p00
q10 1

))

Ψ, (16a)

T (Ψ) = L(p00, q01;β, λ)Ψ =

(

λ

(

1 0
0 0

)

+

(

β + p00q01 p00
q01 1

))

Ψ. (16b)

4.1 The discrete Darboux–Lax scheme for the Adler–Yamilov system

We start with our choice (11) for the initial form of the Darboux matrix B,

B = λB(1) + B(0) = λ

(

f
(1)
00 f

(2)
00

f
(3)
00 f

(4)
00

)

+

(

g
(1)
00 g

(2)
00

g
(3)
00 g

(4)
00

)

, (17)

and the determining equations (12), which now become

(

λL(1) + L(2)(p̃00, q̃10;α)
)(

λB(1) + B(0)
)

=
(

λS
(

B(1)
)

+ S
(

B(0)
))(

λL(1) + L(2)(p00, q10;α)
)

, (18a)
(

λL(1) + L(2)(p̃00, q̃01;β)
)(

λB(1) + B(0)
)

=
(

λT
(

B(1)
)

+ T
(

B(0)
))(

λL(1) + L(2)(p00, q01;β)
)

. (18b)

Since all the matrices involved in (18) are independent of λ, we collect the coefficients of the different
powers of the spectral parameter. The λ2 terms yield equations

L(1)B(1) = S
(

B(1)
)

L(1), L(1)B(1) = T
(

B(1)
)

L(1),
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which lead to
f
(1)
00 = c1 ∈ R, f

(2)
00 = f

(3)
00 = 0. (19)

The λ terms in relations (18) are

L(1)B(0) + L(2)(p̃00, q̃10;α)B
(1) = S

(

B(1)
)

L(2)(p00, q10;α) + S
(

B(0)
)

L(1),

L(1)B(0) + L(2)(p̃00, q̃01;β)B
(1) = T

(

B(1)
)

L(2)(p00, q01;β) + T
(

B(0)
)

L(1),

which in view of (19) imply

f
(4)
00 = c2 ∈ R, g

(2)
00 = c1p00 − c2p̃00, g

(3)
00 = c1q̃00 − c2q00, (20)

(S − 1)
(

g
(1)
00

)

= c1 (p̃00q̃10 − p00q10) , (T − 1)
(

g
(1)
00

)

= c1 (p̃00q̃01 − p00q01) . (21)

The λ independent terms,

L(2)(p̃00, q̃10;α)B
(0) = S

(

B(0)
)

L(2)(p00, q10;α), L(2)(p̃00, q̃01;β)B
(0) = T

(

B(0)
)

L(2)(p00, q01;β), (22)

determine g
(4)
00 and provide us with the corresponding auto-Bäcklund transformation. Specifically, the

(2, 2)-elements of the above relations yield

(S − 1)
(

g
(4)
00

)

= c2 (p00q10 − p̃00q̃10) , (T − 1)
(

g
(4)
00

)

= c2 (p00q01 − p̃00q̃01) . (23)

The remaining entries of (22) in view of (21) and (23) become

c1 (p10 + p00(α+ p00q10))− c2 (p̃10 + p̃00(α+ p̃00q̃10)) = g
(4)
00 p̃00 − g

(1)
00 p00, (24a)

c1 (p01 + p00(β + p00q01))− c2 (p̃01 + p̃00(β + p̃00q̃01)) = g
(4)
00 p̃00 − g

(1)
00 p00, (24b)

q̃10 =
c1q̃00 − c2(q00 − αq10)− g

(4)
00 q10

c1(α+ p00q10)− c2p̃00q10 − g
(1)
00

, q̃01 =
c1q̃00 − c2(q00 − βq01)− g

(4)
00 q01

c1(β + p00q01)− c2p̃00q01 − g
(1)
00

, (24c)

which play the role of the Bäcklund transformation.
Finally we require the determinant of the Darboux matrix B, which in view of (19) and (20) can be

written as det (B) = c1c2λ
2+
(

c2g
(1)
00 + c1g

(4)
00

)

λ+g
(1)
00 g

(4)
00 −(c1p00 − c2p̃00) (c1q̃00 − c2q00), to be constant.

This requirement implies the relations

c2g
(1)
00 + c1g

(4)
00 = κ, g

(1)
00 g

(4)
00 − (c1p00 − c2p̃00) (c1q̃00 − c2q00) = ε, κ, ε ∈ R. (25)

It should be noted that the first relation in (25) may also be viewed as a consequence of (21) and (23).
Summarizing, so far we have shown that the Darboux matrix B has the form

B = λB(1) + B(0) = λ

(

c1 0
0 c2

)

+

(

g
(1)
00 c1p00 − c2p̃00

c1q̃00 − c2q00 g
(4)
00

)

, (26)

where potentials g(1) and g(4) are determined by (21), (23) and (25), and the Bäcklund transformation
is given by (24).

We consider now two cases: (i) c1 = 0 and c2 6= 0, and (ii) c1 6= 0 and c2 = 0.
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First case: c1 = 0 and c2 6= 0

If c1 = 0 and c2 6= 0, then we can choose c2 = 1 without loss of generality. Then equations (21) imply

that g
(1)
00 is a constant and we choose g

(1)
00 = 1.2 Moreover, the second relation in (25) implies

g
(4)
00 = p̃00q00 + ε, ε ∈ R. (27)

With these choices, the Darboux matrix becomes

B(q00, p̃00; ε) = λ

(

0 0
0 1

)

+

(

1 −p̃00
−q00 ε+ p̃00q00

)

, (28)

and relations (24) become

p̃10 = p00 +
α− ε

1 + p̃00q10
p̃00, q̃10 = q00 −

α− ε

1 + p̃00q10
q10, (29a)

p̃01 = p00 +
β − ε

1 + p̃00q01
p̃00, q̃01 = q00 −

β − ε

1 + p̃00q01
q01. (29b)

In view of the above choices and system (29), relations (23) hold identically.
System (29) is an auto-Bäcklund transformation for the Adler–Yamilov system (15). Indeed, if we

shift equations (29a) in the m direction, and equations (29b) in the n direction, respectively, then it can
be readily verified that the two expressions for p̃11 and the two expressions for q̃11 coincide modulo the
Adler–Yamilov system (15). Conversely, we rearrange the above system for p00, q10 and q01,

q10 =
q00 − q̃10

α− ε− p̃00(q00 − q̃10)
, p00 = p̃10 − p̃00 (α− ε− p̃00(q00 − q̃10)) , (30a)

q01 =
q00 − q̃01

β − ε− p̃00(q00 − q̃01)
, p00 = p̃01 − p̃00 (β − ε− p̃00(q00 − q̃01)) . (30b)

If we shift the first equation in (30a) in the m direction and the first equation in (30b) in the n direction,
then the resulting expressions for q11 coincide provided that p̃ and q̃ satisfy system (15). Moreover,
subtracting the two expressions for p00 in (30) we end up with

p̃10 − p̃01 − p̃00 (p̃00(q̃10 − q̃01) + α− β) = 0,

which holds on solutions of (15).
Finally, according to Figure 2 and relation (14), the superposition principle for the auto-Bäcklund

transformation (29) follows from

B(q̃00, ˆ̃p00; ε2)B(q00, p̃00; ε1) = B(q̂00, ˜̂p00; ε1)B(q00, p̂00; ε2),

and can be written as

ˆ̃p00 = −
p̃00 − p̂00

ε1 − ε2 + (p̃00 − p̂00)q00
, q̃00 − q̂00 = (ε1 − ε2 + (p̃00 − p̂00)q00) q00. (31)

2It means we choose κ = 1 in the first relation of (25).
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Second case: c1 6= 0 and c2 = 0

If c2 = 0 and c1 6= 0, we choose c1 = 1, relations (23) imply that g
(4)
00 = 1, and the determinant of B

implies that g
(1)
00 = p00q̃00 + ε. In view of these choices, we arrive at a Darboux matrix which can be

written in terms of matrix (28) as

C(p00, q̃00; ε) = (λ+ ε) (B(q̃00, p00; ε))
−1 , (32)

whereas relations (24) yield actually system (30) with the roles of new and old fields interchanged, i.e.
system (30) accompanied by the interchange (p, q) ↔ (p̃, q̃). Thus in this case we end up with the inverse
of the Darboux and Bäcklund transformations we derived previously.

4.2 Derivation of soliton solutions

We employ the auto-Bäcklund transformation (29) and its superposition principle (31) in the derivation
of soliton solutions of the Adler–Yamilov system (15).

Figure 3: The one soliton solution of the Adler–Yamilov system and the potential 1/g00. In both cases
α = 8, β = 4, ε = 1 and c = −2.

More precisely, we start with the solution3

p00 = 0, q00 = α−nβ−m. (33)

With this seed solution, the first equation in (29a) and the first one in (29b) become

p̃10 =
α− ε

1 + p̃00α−n−1β−m
p̃00, p̃01 =

β − ε

1 + p̃00α−nβ−m−1
p̃00. (34)

We can linearise these Ricatti equations by setting p̃00 = αnβm/g00,

(α− ε)g10 = αg00 + 1, (β − ε)g01 = βg00 + 1.

3This solution can be constructed starting with the zero solution p00 = q00 = 0 and using the second transformation we
discussed in subsection 4.1 with ε = 0.
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The general solution of this linear system is

g00 =
αn

(α− ε)n
βm

(β − ε)m
c−

1

ε
, (35)

where c ∈ R is the arbitrary constant of integration, and thus

p̃00 =
εαnβm(α− ε)n(β − ε)m

c εαnβm − (α− ε)n(β − ε)m
. (36a)

Using the seed solution (33) and the updated potential (36a), we can use either the equation for q̃10 in
(29a) or the equation for q̃01 in (29b) to determine q̃00. Both ways lead to

q̃00 =
c ε2

c εαnβm − (α− ε)n(β − ε)m
. (36b)

This two-parameter family of solutions yields the one-soliton solution of (15): even though both functions
in (36) diverge, their product represents a soliton. This interpretation is motivated by the relation of the
Adler–Yamilov system to the nonlinear Schrödinger equation [21], and it is evident from the plot of the
product |p̃00q̃00|. We also plot the potential 1/g00 which is a kink. See Figure 3.

500 1000 1500

0.5

1.0

1.5

2.0

Figure 4: The two-soliton solution of the Adler–Yamilov system: solution (38) with α = 8, β = 4, ε1 = 1,
c1 = −2, ε2 = 3 and c2 = 8. It should be noted that this solution requires the combination of a non-
singular solution, i.e. the pair (p̃, q̃) which corresponds to the one-soliton solution (36), and a singular
one which is (p̂, q̂).

Having constructed the two-parameter family of solutions (36), we may use it along with the super-
position principle (31) to determine a third solution and in particular the two-soliton solution of system
(15). Starting with the same seed solution, the two solutions (p̃00, q̃00) and (p̂00, q̂00) involved in (31)
follow from (36) by replacing parameters (ε, c) with (ε1, c1) and (ε2, c2), respectively. In order to make
the presentation more comprehensible, let us introduce the shorthand notation

δ0 := αnβm, δ1 := (α− ε1)
n(β − ε1)

m, δ2 := (α− ε2)
n(β − ε2)

m.
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In terms of this notation, the seed solution is p00 = 0, q00 = 1/δ0, and the two solutions we described
can be written as

p̃00 =
ε1 δ0δ1

c1 ε1 δ0 − δ1
, q̃00 =

c1 ε
2
1

c1 ε1 δ0 − δ1
, and p̂00 =

ε2 δ0δ2
c2 ε2 δ0 − δ2

, q̂00 =
c2 ε

2
2

c2 ε2 δ0 − δ2
, (37)

respectively. With these formulae at our disposal, the first relation in (31) yields

ˆ̃p00 =
ε1ε2δ0 (c1δ2 − c2δ1) + (ε1 − ε2)δ1δ2
c1c2ε1ε2(ε1 − ε2)δ0 − c1ε21δ2 + c2ε22δ1

. (38a)

To find ˆ̃q00 we work in the same way we derived (36b) and according to the Bianchi diagram. More
precisely, we can use the second equation either in (29a) or in (29b) with q̃ replaced by ˆ̃q, (p, q) replaced
by (p̃, q̃) given in (37), and parameter ε replaced by ε2 (alternatively, we can replace (p, q) with (p̂, q̂)
given in (37), and parameter ε with ε1), to find

ˆ̃q00 =
c1c2ε

2
1ε

2
2(ε1 − ε2)

c1c2ε1ε2(ε1 − ε2)δ0 − c1ε21δ2 + c2ε22δ1
. (38b)

This four-parameter family of solutions yields the two-soliton solution of (15) in the same way we inter-
preted (36) as the one-soliton solution of the Adler–Yamilov system. See the plots of the product | ˆ̃p00 ˆ̃q00|
in Figure 4.

5 Conclusions

In this paper we proposed a new method for deriving Bäcklund transformations and constructing solutions
for nonlinear integrable P∆Es which admit Lax representation but do not necessarily possess the 3D
consistency property. Specifically, in our approach we consider Darboux transformations which leave the
given Lax pair covariant, and by construction lead to Bäcklund transformations for the corresponding
discrete system. The permutability of four Darboux matrices according to the Bianchi diagram in Figure 2
leads to the nonlinear superposition principle of the related Bäcklund transformation. Moreover, the latter
transformation and its superposition principle can be used in the construction of interesting solutions to
P∆Es starting from some simple ones. As an illustrative example we used the Adler–Yamilov system
(15). For this system we constructed Darboux and corresponding Bäcklund transformations. With the
use of transformation (29) and its superposition principle (31) we constructed the one- and two-soliton
solutions starting with the seed solution p00 = 0, q00 = α−nβ−m.

In the illustrative example we considered in Section 4, the Lax representation (7) involves matrices
L and M which have the same form, see (16). The natural question arises as to whether our method
can be employed to the case of integrable P∆Es with Lax representation (7) where matrices L and M
do not have the same form. The answer to this question is positive, the corresponding transformations
may involve auxiliary functions (potentials), and this derivation is similar to the generic construction we
presented in subsection 4.1, see Darboux matrix (26) and relations (21), (23), (24)and (25).

Moreover our considerations can be extended to the generalized symmetries of the discrete system.
Generalized symmetries are (integrable) differential-difference equations involving shifts in one lattice
direction and are compatible with the P∆E. Their Lax pair is semi-discrete and its discrete part coincides
with the one of the two equations of the fully discrete Lax pair (3), see for instance [14]. This relation
allows us to extend the Darboux and Bäcklund transformations for the P∆E to corresponding ones for the
differential-difference equations and employ the Bäcklund transformation and its superposition principle
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in the construction of solutions for the symmetries. We will demonstrate this method and its extensions
in our future work in details using the Hirota KdV equation as an illustrative example, as well as systems
appeared in [5, 12, 24].

In fact our results can be used and extended in various ways.

1. Apply our method to construct solutions to all the NLS type equations derived in [21].

In [21] we classified Darboux transformations related to NLS type equations and constructed inte-
grable discretisations of the latter, namely integrable systems of nonlinear P∆Es. By employing the
discrete Darboux–Lax scheme we proposed in Section 3, one could derive Bäcklund transformations
and construct soliton solutions to these nonlinear P∆Es.

2. Study the solutions of the associated PDEs.

The Adler–Yamilov system (15) constitutes a discretisation of the NLS equation via its Darboux
transformation [21]. In this paper, we constructed soliton solutions to this system, so one could
consider the continuum limits of these solutions to construct solutions to the NLS equation. This
procedure could be applied to other NLS type equations which appeared in [21].

3. Study the corresponding Yang–Baxter maps.

In [20, 22] matrix refactorisation problems of Darboux matrices for integrable PDEs were considered
in order to derive solutions to the Yang–Baxter equation and the entwining Yang–Baxter equation.
Since the generator of Yang–Baxter maps is a matrix refactorisation problem (14) it makes sense
to understand how Bäcklund transformations for P∆Es are related to Yang–Baxter maps. In our
future work, we plan to show that Yang–Baxter and entwining Yang–Baxter maps are superpositions
of Bäcklund transformations of P∆Es.

4. Extend the results to the case of discrete systems on a 3D lattice.

One can extend the results employed in this paper to the case of 3D lattice integrable systems. It is
expected that the superposition of Bäcklund transformations related to these systems are solutions
to the tetrahedron equation.

5. Extend the results to the case of Grassmann algebras.

Grassmann extensions of Darboux transformations were employed in the construction of noncom-
mutative versions of discrete systems, see for instance [16, 33] . However it was realised in [19]
that quad-graph systems may lose their 3D consistency property in the Grassmann extension. The
method we presented here could be generalised and employed in the construction of Bäcklund
transformations and the derivation of solutions to Grassmann extended quad-graph systems which
appeared in the literature.

6. Find rogue wave solutions for the Adler–Yamilov system.

It would be interesting to try to construct such solutions the derivation of which requires the use
of a Darboux transformation, see e.g. [11]. However, one must find an appropriate seed solution.
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