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Abstract 
Brain-Computer Interface (BCI) machines are capable of obtaining brain activities by conducting 
Electroencephalogram tests. Developments on both BCI and Machine Learning allowed various researchers 
to develop and study various BCI control systems, mainly varying with the algorithm implementation.  

This research presents a performance analysis of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for 
BCI control systems for drone maneuverability. Eye gestures were used to generate the EEG data that were 
captured using the Emotiv INSIGHT Neuroheadset. The obtained data were transferred to the computing 
hardware using IEEE 802.15 wireless communication protocol (i.e. Bluetooth connectivity); the data are 
processed using the 5th order Butterworth Band-Pass filtering and heuristic filtering. The filtered dataset is 
then fed to the ANFIS and a Support Vector Machine (SVM) algorithm, the latter serving as the basis, for 
training and quadcopter control implementation.  

Three flight tests were done, hover test, flight command test, and the flight control test to obtain the 
performance of the control system in terms of accuracy. Results from the initial two tests showed that the 
ANFIS performed comparably with the SVM, and even about 2% better with an accuracy of 79%. The final 
test showed that the BCI control system had a maximum variance of 4% compared to the handheld remote 
controller, where the latter served as the basis. It was found that between Machine Learning algorithms, 
ANFIS is as capable as the SVM for BCI control systems. Further developments may focus on employing 
time-series EEG preprocessing techniques. 

Keywords: ANFIS, Brain Computer Interface, Quadcopter, SVM, Unmanned Aerial Vehicle, UAV 

Introduction  
Brain-Computer Interface (BCI) is a category of machines that performs ElectroEncephaloGram 
(EEG) analysis to extract information on the human brain’s activity. Developments in the said 
technology have made the ideas from old science-fiction movies, specifically controlling objects 
with one’s mind, a reality today. Paired also with developments in Artificial Intelligence (A.I.) has 
made the idea of controlling objects with one’s mind more accessible to most people, including 
researchers in the field of Robotics. 
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BCI-Robotic implementation is a growing field where numerous prototypes of different 
implementations were developed by various researchers. In the research [1], the proponents made 
a BCI-Robotic Arm prototype and controlled the robotic arm by moving it left and right. The 
researchers used raw EEG data obtained by the Emotiv EPOC (EPOC) Neuroheadset and the 
Linear Discriminant Analysis (LDA) as their classifying algorithm. The algorithm was tasked to 
classify the incoming EEG signal data into three categories, neutral, left, and right, which 
correspondingly moved the robotic arm. The study [2] took a different approach for the same 
implementation by using the concept of Steady-State Evoked Potential (SSVEP) as their EEG 
generation technique. The concept requires visual stimulations often in the form of flickering 
lights. The researchers used an LED panel with four colors, red, blue, green, and white; all 
flickering at different frequencies as their visual stimulus. The subject simply observes a single 
LED color and a distinct brainwave activity was generated for each color. They have also 
employed a combination of Power Spectral Density (PSD) as the feature extractor and 
Classification Tree Method, to classify the obtained data. This enabled the robotic arm to move 
around according to the defined action-color configuration. 

Researchers in [3] have implemented the BCI control system in maneuvering a 
quadcopter by also employing the SSVEP concept, but instead of following the techniques in [2], 
the researchers employed a combination of Butterworth Band-Pass filter to preprocess the 
obtained EEG data and Fast Fourier Transform (FFT) Spectral Analysis as the feature extractor 
and classifier. The study was able to control the quadcopter to execute the following commands: 
take-off, land, pitch forward, yaw clockwise. 

Variations in research implementations were observed to be mainly on the preprocessing 
techniques and the Machine Learning algorithm employed for classification. Neural Networks, 
particularly Convolutional Neural Network (CNN) and Artificial Neural Network (ANN), were 
found to be commonly used for EEG data classification as they can provide high accuracy results; 
however, the mentioned algorithms would take up much computational time when exposed with 
large datasets [4].  Another very popular algorithm that is employed is the Support Vector 
Machines (SVM). Its efficiency and effectiveness in generating accurate classifications made the 
algorithm popular for BCI implementations. However, inexperienced users would experience 
difficulty in developing an effective kernel for a particular use-case [5]. Additionally, the SVM 
algorithm would experience a drop in performance when managing large datasets as well. The 
study [6] highlighted that similar gestures generate similar EEG signals. Implying that the 
generated signals possessed a degree of overlapping or possessed similar features between 
classifications. The challenge, therefore, is to develop or utilize an algorithm that provides a 
balanced trade-off between accuracy and computational time, as well as to address the concern of 
similar EEG data features. 

Individuals who possess physical limitations may benefit from this system as it allows 
them to perform important day-to-day tasks or physically intensive tasks. Providing them 
opportunities to have a relatively better lifestyle. A potential application, explored by one of the 
studies, is a BCI-Control system for unmanned vehicle maneuvering, particularly quadcopters. 
This control system may replace traditional hand-held remote controllers, which may offer a more 
immersive experience with similar difficulty in control. Quadcopters offer several benefits, 



specifically in rescue operations, as it is capable of scanning dangerous environments, obtaining 
information which rescuers can use to aid in their operations [7]. This motivated the researcher to 
develop a BCI-Control system for quadcopter application. 

Generally, BCI control systems possess two main concerns, generating the EEG signal 
and processing the produced input signal. BCI-quadcopter control systems often rely on external 
stimuli, such as flashing lights, prompting the brain to produce usable EEG signals. This form of 
EEG signal generation would not be appropriate for individuals with a seizure history. As 
highlighted in the study [6], generated EEG signals would exhibit similar or overlapping 
characteristics for similar gestures. Thus, utilizing an appropriate algorithm would play a 
significant role in the implementation of the BCI-quadcopter control system.    

To address the raised challenges, this paper employs the Butterworth Band-pass filter to 
preprocess the obtained EEG data and the Adaptive Neuro-Fuzzy Inference System (ANFIS) as the 
classifier, to maneuver a quadcopter, or Unmanned Aerial Vehicle (UAV) while using face gestures 
to generate EEG signals. One of the critical concerns of processing EEG data is its similar 
characteristics across similar actions such as the closing of the left eye and the closing of the right 
eye. In the study [8] that compares the performance of SVM and ANFIS algorithm in EEG data 
classification, it was found that the ANFIS algorithm was able to perform comparably or better 
than the SVM with an accuracy of 90.13% while requiring a relatively small dataset, unlike the 
CNN and ANN algorithms. This study presents a control system, utilizing the mentioned technique 
and algorithm, for BCI-UAV implementation; and, provides a performance analysis of the whole 
system by conducting several test flights. Accuracy is the main metric used for the performance 
analysis, however, two contexts for accuracy are provided in this study. These are accuracy in 
terms of the number of correct executions, and accuracy in terms of flight distance. The former 
shows how well the algorithm performs in real-time operation, while the latter shows how well the 
UAV traverses the desired distance while using the proposed control system. The study also 
provides performance comparisons to gain perspective on the performance of the ANFIS 
algorithm. The primary objective for this study is to evaluate the viability of an ANFIS based 
control system for BCI-UAV implementation, which is the prerequisite for the study’s general 
goal of developing an intuitive and wearable controller for piloting the quadcopter; this 
implementation would possess a variety of potential applications in rescue/emergency operations, 
commercial operations, and leisure. 

Methodology 

Theoretical Approach 

Adaptive Neuro-Fuzzy Inference System 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed by Jyh-Shing Roger Jang 
in 1993; and, it combines the Fuzzy Inference System with the Adaptive Network, the latter which 
is being employed by Neural Networks, making this one type of Fuzzy Neural Network [4]. 



Figure 1. represents a general architecture of the Fuzzy Inference System. It is comprised 
of four main parts, Fuzzification, Defuzzification, the Knowledge Base, and the Decision-Making 
Unit. 

 

Figure 1. The adopted Fuzzy Inference System (FIS), adapted from [4]. 

The Fuzzification process simply translates the input crisp values to fuzzified input 
values, measuring the degree of belongingness in a particular classification, with the use of 
Membership Functions. There are several Membership Functions available, however, for this 
research, the Gaussian Membership Function is employed, shown in equation 1. Information such 
as the Membership Function is stored in the Database, under the Knowledge Base. 

𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�  =  𝑒𝑒
|| 𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗||

2𝜎𝜎        ( 1 ) 

The reverse of this process is called Defuzzification, where, using the same Membership 
Function, the output fuzzified values are translated back to crisp values. The Decision-Making 
Unit is where the fuzzified input values go through what is called Fuzzy Operators (e.g. Min and 
Max) and are then compared to specified criteria stored in the Rule Base. The ANFIS employs the 
Type 3 -Takagi-Sugeno Fuzzy If-Then rules. 

The Adaptive Network enables the “learning” in the training process of the algorithm. 
This allows the algorithm to adapt to errors by obtaining accuracy and loss rates and adjusting its 
parameters for each iteration until it satisfies a specified stopping criterion. The ANFIS employs a 
hybrid learning process. This suggests that the algorithm uses a function, often the Least Squares 
Estimate, for its forward pass; and, another function, often the Gradient Descent, for its backward 
pass in the learning process. This is presented in Table 1. 

Table 1. Hybrid Learning Process for ANFIS 
 Forward Pass Backward Pass 
Premise Parameters Fixed Gradient Descent 
Consequent Parameters Least Squares Estimate Fixed 
Signals Node Outputs Error Rates 

 



Figure 2. shows a general architecture of the ANFIS algorithm. It is composed of 5 
layers, where fuzzification occurs on the first layer. 

 

Figure 2. ANFIS Architecture, 2 Inputs and 1 Output, adapted from [4] 

Layers 2 and 3 are where parameters and normalized parameters are calculated. In 
application, it is common to merge both layers into one function. Equations 2 and 3 show how 
weights are calculated on these layers. 

𝑤𝑤𝑖𝑖 =  𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥)  × 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥), 𝑖𝑖 = 1,2           ( 2 ) 

𝑤𝑤𝚤𝚤��� =  𝑤𝑤𝑖𝑖
𝑤𝑤1+ 𝑤𝑤2

          ( 3 ) 

On the next layer, layer 4, consequent parameters are computed by getting the product 
between the normalized weight and the Rule Base function, f, shown in equations 4. 

𝑂𝑂𝑖𝑖4 =  𝑤𝑤�𝑖𝑖𝑓𝑓𝑖𝑖 =  𝑤𝑤�𝑖𝑖(𝑝𝑝𝑖𝑖𝑥𝑥 +  𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖 )       ( 4 ) 

 

The variables pi, qi, and ri represent the design parameters of the system. Finally, outputs 
from the fourth layer are collated, calculated, and defuzzified to give a single output, shown in 
equation 5. 

𝑂𝑂15 =  𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜 = ∑ 𝑤𝑤�𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 =  ∑ 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

           ( 5 ) 

The provided architecture assumes a system with two inputs and a single output with 2 
classifications, thus it follows two rules presented in equations 6 and 7.   



𝑅𝑅𝑜𝑜𝑜𝑜𝑒𝑒 1: 𝐼𝐼𝑓𝑓 (𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝐴𝐴1)𝑜𝑜𝑖𝑖𝑎𝑎 (𝑥𝑥2 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝐵𝐵1), 𝑜𝑜ℎ𝑒𝑒𝑖𝑖 (𝑦𝑦� = 𝑝𝑝1𝑥𝑥1 +  𝑞𝑞1𝑥𝑥2 +  𝑟𝑟1)  ( 6 ) 

𝑅𝑅𝑜𝑜𝑜𝑜𝑒𝑒 2: 𝐼𝐼𝑓𝑓 (𝑥𝑥1 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝐴𝐴2)𝑜𝑜𝑖𝑖𝑎𝑎 (𝑥𝑥2 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝐵𝐵2), 𝑜𝑜ℎ𝑒𝑒𝑖𝑖 (𝑦𝑦� = 𝑝𝑝2𝑥𝑥1 +  𝑞𝑞2𝑥𝑥2 +  𝑟𝑟2)  ( 7 ) 

The whole system can be expanded accordingly to fit the particular use-case of the 
researcher. This research expanded the algorithm to accept 10 input values, provide a single output, 
and possessing five rules.  

Brain Rhythms 

Brain activities are often represented in the form of brainwaves, with five brain rhythms mainly 
varying in frequencies [9]. The first wave is the Delta wave with a frequency range of 4 Hz or 
below, followed by Theta waves possessing a frequency range of 4 Hz to 7 Hz. Alpha and Beta 
waves follow after, with frequency ranges from 7 Hz to 13 Hz and 13 Hz to 30 Hz respectively. 
Finally, the Gamma waves are observed on frequencies 30 Hz or above. 

Each wave classification effectively describes a particular action; for example, lower 
frequencies, such as Delta and Theta, effectively show and describe sleep states and patterns, while 
the Alpha waves are often associated with a conscious and calm state. Higher frequencies such as 
Beta and Gamma often give out significant information when an individual is alert or physically 
moving. It is also worth noting that motor imagery is associated with higher brain wave frequency 

System Architecture 

The methodology sequence used in this research is presented in Figure 5. The system began with 
EEG data generation which was then acquired by the Emotiv INSIGHT Neuroheadset. The 
obtained signals were sent to OpenViBE software for processing; then, the processed data is fed 
to the algorithms to maneuver the quadcopter through the use of the Python Box function. 

 

 

Figure 3. The overall architecture of the proposed system. 



Generation of EEG Signals 

Face gestures, specifically Eye gestures, were used to generate EEG signals for this control system. 
This idea was presented in the study [10]. The mentioned study was able to obtain an accuracy rate 
of 80% for the utilization of left and right wink gestures for the opening and closing of the robotic 
gripper. This research further expands the concept by employing 5 eye gestures, presented in 
Figure 6. 

 

Figure 4. Overview of the facial expression (i.e., the Eye Gestures) for EEG Signal 
discrimination. 

An electrical resonance was generated along the frontal lobe of the brain when these 
gestures were performed, particularly recognizable on the Beta and Gamma waves, 13 Hz to 43 
Hz. This phenomenon was observed since the brain would generate electrical signals along the 
frontal lobe, responsible for motor functions of the body, to conduct facial movements. These 
signals were captured by the Emotiv INSIGHT Neuroheadset and translated into numerical values 
measured in millivolts (mV). 

 The Emotiv INSIGHT Neuroheadset 

The Emotiv INSIGHT, shown in Figure 7 (a), is a non-invasive BCI Machine equipped with five 
semi-dry polymer sensors that are positioned following the international 10-20 system for 
electrode placements, shown in Figure 7 (b). The neuroheadset was set to obtain two samples per 
epoch of brain activity, consequently obtaining two sets of reading at 7.8 ms interval across the 5 
sensors for 1 epoch. The obtained signal was communicated to OpenViBE software with the use 
of a Bluetooth Dongle connected to the computing hardware. 



 

Figure 5. (a) Emotiv INSIGHT Neuroheadset, adapted from [8]; (b) Sensor Layout for Emotiv 
INSIGHT 

OpenViBE 

The Open Virtual Brain Environment (OpenViBE) is an open-sourced software that enabled 
researchers to develop and test their own BCI machines. The software is capable of streaming and 
processing EEG data in real-time. It has multiple built-in functions called boxes which users can 
utilize.  

Four main box features were used in this research, first was the Acquisition Client Box, 
where the OpenViBE software interfaced and collected the data obtained by the Emotiv INSIGHT. 
The second was the Temporal Filter Box, where researchers applied a Butterworth Band-Pass 
Filter of the 5th Order with cut-off frequencies of 13 Hz and 43 Hz as the lower and higher cut-
off boundaries. The logic behind the selection of cut-off frequencies was mainly due to brainwave 
activities being evident along with the Beta and Gamma waves for motor functions. The use of 
Butterworth Band-Pass filter was found to be effective filtering tools especially in EEG data 
processing [8,11]. The third was the CSV File Writer box, where the filtered data was exported 
into a .csv file for further processing. On top of the Butterworth Band-Pass filter, heuristic filtering 
was also applied. This was achieved by locating the minima and maxima of the eye gesture event, 
serving as the key features of a particular eye gesture. The filtered dataset was used to train the 
machine learning algorithms which were programmed to maneuver the drone according to the face 
gesture. The machine learning algorithms were coded using python programming, which was 
accessible with the fourth box from OpenViBE called the Python Scripting Box. 

Testing set up and flights 

Using the DJI Tello Ryze quadcopter (Figure 8) a total of three test flights were performed; namely 
the hover test, the flight command test, and the flight control test, were conducted in this study. 
The hover test tasked the quadcopter to take-off and land when corresponding gestures were 
executed, neutral and smile. This particular test aimed to offer a preview of how well each 
algorithm performs on two classifications. This test was evaluated by taking note of the number 
of successful take-offs and landing sequences against the total number of trials.  



 

Figure 6. DJI Tello Ryze Quadcopter 

The objective of the flight command test was to have the quadcopter execute the roll and 
pitch commands according to the eye gesture. This test aimed to evaluate the algorithm’s 
performance on more classifications that offers a close representation of a complete system. A 
confusion matrix was used to evaluate the results of this experiment. 

Finally, the flight control test required the user to control the quadcopter similar to a 
traditional handheld remote controller. Instead of comparing the ANFIS to the SVM, the prior 
algorithm was compared to a handheld remote controller to offer a comparison between the 
proposed method and the current implementation. The researcher recorded and plotted the flight 
path of the quadcopter for both control systems and compared how well the control systems 
maneuvered the quadcopter along with the experimental setup. Figure 9 shows the experimental 
setup for the Flight Control Test, the red X represents visual markers as an indicator for the 
researcher to move to the next marker. 

 

Figure 7. Flight Control Test Experimental Setup 



Results and Discussion 

Hover Test 

Figure 10 showed the manner in how the experiment was conducted. Both algorithms were tasked 
to classify between 2 categories, neutral and smile, and maneuver the quadcopter to land and take-
off respectively. This sequence was repeated five times to complete a run.  

 

 

Figure 8. Hover Test 

Table 2 shows the number of successful attempts for each run. 

Table 2. Results of Hover Test 
Hover Test SVM Successful Attempts ANFIS Successful Attempts 

Run 1 5 / 5 4 / 5 

Run 2 3 / 5 3 / 5 

Run 3 2 / 5 3 / 5 

Total Correct 10 / 15 10 / 15 
 

As observed from the results, the ANFIS algorithm had 10 out of 15 successful attempts, 
or 66.67%. The SVM algorithm, on the other hand, performed similarly with 10 successful 
attempts as well. The difference was found in the performance of both algorithms for each run; the 
SVM algorithm had a maximum of three errors while the ANFIS algorithm obtained a maximum 
of 2 errors based on this data. Results from this test presented an idea that the ANFIS is comparable 
to the SVM, however, the Flight Command Test would provide a more substantial performance 
analysis of the ANFIS algorithm. 



Flight Command Test 

In this experiment, the researcher expanded the number of classifications from two to five, 
corresponding to the eye gestures in the Figure 6. Each classification moves the drone a defined 
distance forward, left, right, and backward then land. Figure 11 offers a visualization of this 
experiment.  

 

 

Figure 9. Flight Command Test 

 

A total of 30 were performed and results are recorded in a confusion matrix where the 
ground truth and algorithm classification results are reported (Tables 3 and 4). 

 

Table 3. Flight Command Test Results for SVM 
Flight Test 

(SVM) Neutral Forward Left Right Backward 
& Down 

Total 
Correct 

Neutral 26 2 1 1 0 26 
Forward 3 24 1 2 0 24 

Left 4 2 21 2 1 21 
Right 5 2 0 22 1 22 

Backward & Down 4 2 2 0 22 22 
Average Accuracy 88.67% 80.00% 70.00% 73.33% 73.33% 76.67% 



 

Table 4. Flight Command Test Results for ANFIS 
Flight Test 
(ANFIS) Neutral Forward Left Right Backward 

& Down 
Total 

Correct 
Neutral 25 1 2 1 1 25 
Forward 3 25 1 1 0 25 

Left 5 2 21 2 0 21 
Right 3 2 0 25 0 25 

Backward & Down 6 2 0 0 22 22 
Average Accuracy 83.33% 83.33% 70.00% 83.33% 73.33% 78.67% 

 

Results from both algorithms showed that ANFIS shyly performed better than the SVM, 
the former obtaining an accuracy rate of 78.67% while the latter obtained 76.67%, a difference of 
about 2%. The highest and lowest number of correct classifications for the SVM were 26 and 21 
respectively.  

The ANFIS algorithm on the other hand obtained 25 correct classifications as the highest 
count, and 21 as the lowest count. The researchers also noted that the ANFIS was able to predict 
25 correct classifications across different categories, whereas the SVM was able to obtain 26 
correct classifications once.  

While this test showed that the ANFIS can be somehow more consistent in its 
classifications compared to the SVM, it should also be noted that both algorithms generated more 
than 20 correct predictions. This validated that for BCI implementation, the ANFIS algorithm can 
indeed perform comparably with the SVM algorithm.  

It was also observed that most of the errors lie in the neutral classification. This was due 
to the nature of the pre-processing techniques employed in this study. Processing data as time 
series data may yield better performance for the implementation. 

Flight Control Test 

This experiment extended the previous test by controlling the quadcopter with the ANFIS 
implemented BCI-Control system as if it was a remote controller. Given that condition, the 
performance of the ANFIS algorithm was compared to the traditional handheld remote controller. 
Figure 12 offers a visualization of the quadcopter’s flight path comparing the theoretical, BCI-
UAV Control, and Handheld Controller. 



 

Figure 10. Flight Path Comparison 

 

It was observed that the BCI-UAV Control fell short of the theoretical setup while the 
Handheld Control overshot the targets set. Tables 5 more substantial information on how much 
the undershoot occurred on the BCI-UAV Control System. 

 

Table 5. Flight Control Test Results – BCI-UAV Control System 

Command Theoretical 
Y (in cm) 

Theoretical 
X (in cm) 

BCI (Y_Pos) 
(in cm) 

Var Y 
(in cm) 

BCI (X_Pos) 
(in cm) 

Var X 
(in cm) 

Take off 0.00 0.00 0.00 0.00 0.00 0.00 
Forward 290.00 0.00 280.68 9.32 0.02 0.02 
Right 290.00 310.00 280.70 9.30 296.89 13.11 
Backward 0.00 310.00 2.71 2.71 296.91 13.09 
Left 0.00 0.00 2.73 2.73 -1.44 1.44 
Average    4.81  5.53 

 

In table 5, the average variance in the BCI-UAV control system was 4.81 cm along the 
Y-Axis and 5.53 cm along the X-Axis with a maximum variance of 13.11 cm along the X-Axis. 
Comparing values between the Theoretical conditions and BCI results, confirmed that the latter 
would usually fall short of meeting the target. Table 6 on the other hand, showed that the Handheld 



control system obtained an average variance of 2.75 cm along the Y-Axis and 1.45 cm along the 
X-Axis. Comparing theoretical conditions and Handheld results shows that this control system 
goes beyond the set targets, unlike the BCI-UAV control system. 

 

Table 6 offers more details to the overshoot in the Handheld-UAV Control System. 

Table 6. Flight Control Test Results – Handheld-UAV Control System 

Command Theoretical 
Y (in cm) 

Theoretical 
X (in cm) 

Handheld 
(Y_Pos)  
(in cm) 

Var Y 
(in cm) 

Handheld 
(X_Pos) 
(in cm) 

Var X 
(in cm) 

Take off 0.00 0.00 0.00 0.00 0.00 0.00 
Forward 290.00 0.00 296.11 6.11 0.23 0.23 

Right 290.00 310.00 296.13 6.13 307.00 3.00 
Backward 0.00 310.00 -0.76 0.76 307.02 2.98 

Left 0.00 0.00 -0.74 0.74 -1.03 1.03 
Average    2.75  1.45 

 

Figure 13 presents a comparison of the distance traveled between BCI and Handheld 
control systems. The BCI control system traveled a distance 3-4% shorter than the Handheld 
control system with variances from 9.70 cm up to 18.91 cm, with the latter control system as the 
reference. 

 

Figure 11. Directional Travelled Distance (BCI vs Handheld) 

 

Generally, results from the BCI-UAV Control system lagged from the theoretical setup, 
while results from the Handheld Controller-UAV Control system exhibited a different behavior by 



overshooting the set targets. Comparing both control systems, a maximum variance of 4% or 18.91 
cm was observed. This is generally acceptable for single drone operation; however, this may not 
be acceptable for swarm implementations. Nonetheless, the BCI-UAV Control System exhibited 
satisfactory behavior in maneuvering the quadcopter along with the set target points, albeit falling 
short. This may be improved by employing different preprocessing techniques and a more efficient 
algorithm. 

Conclusions 
This research explored the viability of utilizing the ANFIS algorithm in BCI-Control 
implementations by maneuvering a quadcopter. Eye gestures were employed as the EEG signal 
generation technique and the Emotiv INSIGHT Neuroheadset was used to obtain and send the 
generated signals to the computing hardware through Bluetooth connectivity. The obtained data 
were processed using the Butterworth Band-Pass filter and Heuristic Filtering, and the 
preprocessed data were fed to the Machine Learning algorithms. A total of three experiments were 
conducted, the hover test, the flight command test, and the flight control test. In the first 2 
experiments, the performance of ANFIS was compared to the SVM, a well-known algorithm for 
BCI implementations. Results from the first two experiments showed that the ANFIS performed 
comparably with the SVM; the hover test showed similar performance between both algorithms 
and the flight command test showed that ANFIS performed 2% better than the SVM. In the last 
experiment, the BCI-UAV Control system employing the ANFIS algorithm was compared to a 
traditional handheld remote controller in maneuvering a drone. Results showed a 3-4% variance 
between BCI-UAV Control and Handheld Remote Control, where the latter served as the 
reference.  

The ANFIS algorithm was found to be capable and effective in BCI Control systems as 
it has performed comparably with the SVM. The algorithm was also able to perform comparably 
against a traditional method of maneuvering a quadcopter. However, most of the misclassifications 
as observed in the flight command tests were the neutral classification. This is mainly because the 
data was processed and utilized on a per-sample basis. This can be improved by processing the 
obtained EEG data further with time-series preprocessing techniques such as the Fast Fourier 
Transform (FFT). Nonetheless, the implemented BCI control system was still successful in 
maneuvering a quadcopter and the presented architecture may be used as a reference for other 
BCI-Robotic implementations. 
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