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Abstract: 

Background and Aims: While low-density lipoprotein cholesterol (LDL-C) is a good predictor of 

atherosclerotic cardiovascular disease, apolipoprotein B (ApoB) is superior when the two markers are 

discordant. We aimed to determine the impact of adiposity, diet and inflammation upon ApoB and 

LDL-C discordance.  

Methods and Results: Machine learning (ML) and structural equation models (SEMs) were applied 

to the National Health and Nutrition Examination Survey to investigate cardiometabolic and dietary 

factors when LDL-C and ApoB are concordant/discordant. Mendelian randomisation (MR) 

determined whether adiposity and inflammation exposures were causal of elevated/decreased LDL-C 

and/or ApoB. ML showed body mass index (BMI), dietary saturated fatty acids (SFA), dietary fibre, 

serum C-reactive protein (CRP) and uric acid were the most strongly associated variables (R2 = 0.70) 

in those with low LDL-C and high ApoB. SEMs revealed that fibre (b = -0.42, p = 0.001) and SFA (b 

= 0.28, p = 0.014) had a significant association with our outcome (joined effect of ApoB and LDL-C). 

BMI (b = 0.65, p = 0.001), fibre (b = -0.24, p = 0.014) and SFA (b = 0.26, p = 0.032) had significant 

associations with CRP. MR analysis showed genetically higher body fat percentage had a significant 

causal effect on ApoB (Inverse variance weighted (IVW) = Beta: 0.172, p = 0.0001) but not LDL-C 

(IVW = Beta: -0.006, p = 0.845).  

Conclusion: Our data show increased discordance between ApoB and LDL-C is associated with 

cardiometabolic, clinical and dietary abnormalities and that body fat percentage is causal of elevated 

ApoB. 
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1. Introduction: 

Low-density lipoprotein cholesterol (LDL-C) is a good predictor of atherosclerotic 

cardiovascular disease ASCVD, and the main target for pharmacological therapy [1]. However, there 

remains a residual cardiovascular risk, even after controlling for LDL-C in patients with metabolic 

syndrome and inflammation [1-5]. A common feature of all atherogenic lipoproteins is that they carry 

one molecule of apolipoprotein B (ApoB); an attribute which allows the molecule to be used as a 

measure of the amount of these particles [6]. Compared to LDL-C, elevated ApoB is a superior 

predictor of ASCVD risk when there is discordance between the two markers [7].  

Recent studies have investigated ApoB with Mendelian randomisation (MR), which is a 

powerful method of inferring causality within an observational epidemiological context by using 

genetic variants as natural experiments [8, 9]. Moreover, MR benefits from being less susceptible to 

confounding and reverse causation [9]. When applying MR, ApoB containing particles are the main 

causal trait responsible for the aetiology of ASCVD [8, 10].  

Discordantly high ApoB compared to LDL-C predominates in pro-inflammatory states, such 

as obesity and metabolic syndrome [11, 12]. Of note, pharmacotherapy for inflammation shows 

conflicting outcomes, due to different targeted pathways [13-15]. Combined with the degree of 

discordance between LDL-C and ApoB, this suggests that lowering LDL-C and inflammation are not 

always appropriate for addressing ASCVD, unless there is a concomitant reduction in ApoB. While 

weight loss studies show ApoB to be more closely related to improvements in adiposity [16], the 

causal links between body fat and ApoB have not been elucidated. Furthermore, there are no studies 

regarding the influence of lifestyle factors upon the degree of discordance of LDL-C with ApoB, 

despite nutritional factors strongly modulating lipoproteins and ASCVD risk [17-20]. 

Despite considerable evidence demonstrating the role of nutrition in ASCVD risk, 

contemporary analytical approaches can be applied to yield novel insights. For example, machine 

learning (ML) has recently gained attention due to its ability to elucidate unique relationships within 

large datasets [21]. In part, this is due to traditional regression techniques failing to coherently explain 

relationships between predictors and outcomes as these datasets often contain complex non-linear data 

with many predictors [22]. Methods to establish the magnitude of associations found within the data, 
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such as structural equation models (SEMs), which assess complex and multivariable relationships that 

benefit from multicollinearity, and the ability to elucidate complex networks, have recently been 

incorporated into cardiometabolic research [23, 24].  

The current study employed two novel approaches to investigate the effects of obesity, 

inflammation, and dietary factors on ApoB and LDL-C and their discordance. First, MR was 

employed to investigate whether adiposity and sub-clinical inflammation exposures were causally 

linked to LDL-C and/or ApoB. Second, categories of LDL-C/ApoB discordance were created to 

determine the influence of adiposity, inflammation and diet data from the large-scale US National 

Health and Nutrition Examination Survey (NHANES). Specifically, ML and SEMs were combined to 

highlight unique predictors of interest and their magnitude of contribution. 

 

2. Methods: 

2.1 Study population:  

This was a cross-sectional study (summarised in Figure 1) using data derived from the US 

National Health and Nutrition Examination Survey (NHANES). The National Center for Health 

Statistics (NCHS) Research Ethics Review Board approved the underlying protocol. Written informed 

consent was obtained from all participants and the study complied with the 1975 Declaration of 

Helsinki for medical research involving human subjects. The current study was based on the analysis 

of data for two 2-year NHANES survey cycles between 2005 and 2012, restricted to participants aged 

≥ 18 years. Details on NHANES Laboratory/Medical Technologists Procedures and Anthropometry 

Procedures are described elsewhere [25]. A blood sample was drawn from the participant’ antecubital 

vein. Details on laboratory-test details are available in the NHANES Laboratory/Medical 

Technologists Procedures Manual [25].  

Details on recording dietary intake have been previously described [26]. Briefly, dietary 

intake was assessed via 24 h recall obtained by a trained interviewer, with the use of a computer-

assisted dietary interview system with standardised probes using the United States Department of 

Agriculture Automated Multiple-Pass Method (AMPM) [26]. The AMPM is designed to enhance 

complete and accurate data collection while reducing respondent burden [26, 27]. The United States 
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Department of Agriculture (USDA) Food and Nutrient Database for Dietary Studies was used to 

determine the nutrient content of food during the NHANES survey [28].  

 

2.2 Statistical analysis:  

High/low levels of LDL-C and ApoB were defined by cut-off values of 160 mg/dL and 130 

mg/dL respectively [2], which resulted in four concordant/discordant categories. Further analyses 

were conducted according to the guidelines of the Centers for Disease Control and Prevention for 

analysis of the NHANES dataset, accounting for masked variance and using their suggested weighting 

methodology [29]. Continuous and categorical demographic variables were compared across the four 

groups using analysis of variance (ANOVA) and Chi-square tests respectively.  

 

2.3 Machine Learning: 

We used ML to assess which features [(body mass index (BMI), waist circumference (WC), 

fasting blood glucose (FBG), plasma insulin, homeostatic model assessment of insulin resistance 

(HOMA-IR), glycated haemoglobin (HbA1c), alanine aminotransferase, aspartate aminotransferase, 

gamma glutamyl transferase, total fat, monounsaturated fatty acids (MUFA), polyunsaturated fatty 

acids (PUFA), saturated fatty acids (SFA), protein, carbohydrate, fibre, total sugar, serum uric acid 

(SUA), serum C-reactive protein (CRP) and total bilirubin)] influence LDL-C and ApoB discordance. 

We hypothesised that each independent factor may have a variable effect on the level of LDL-C and 

ApoB. Therefore, we implemented our model for each of the four groups separately to reveal 

predictors of our outcome (i.e. a joint effect of both ApoB and LDL-C was produced by dimension 

reduction method, principal component analysis, will be referred to herein as their ‘joined effect’). A 

random forest (RF) model was applied with cross validation. This method fits many classification 

trees to a data set, then combines the predictions from all trees to present a final predictive model that 

ranks variables by their predictive power. However, this model does not provide mechanistic insight 

and may mask variable interaction and nonlinearity. For the evaluation of our models we have used R2 

and Q2 (an estimate of the predictive ability of the model calculated by cross-validation). A negative 

Q2 means the model is not at all predictive.  
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2.4 Structural equation modeling (SEM): 

We used structural equation modeling (SEM) to test the overall model fit and relationships 

between sets of variables which were selected from machine learning to understand the underlying 

relationship of the combined LDL-C/ApoB joined effect category (for each group separately). SEMs 

are able to test the fit of the defined model based on the observed covariance between the variables. 

We fitted our model under a maximum likelihood framework using covariance matrices [30]. All 

continuous variables were standardised by rank-normal transformed (mean 0, SD 1) by age and sex 

(and by medication history). Relative model fit was assessed using the comparative fit index (CFI) 

and the Tucker–Lewis index (TLI), with values ranging from 0 (no fit) to 1 (perfect fit); a model with 

a ‘good’ fit typically requires both indices to exceed 0.95. Absolute fit was assessed using the root 

mean square error of approximation (RMSEA). This ranges from 0 to 1, with 0 indicating a perfect fit 

[30]. A poorly fitting model is typically defined by RMSEA > 0.06 [31]. CFI, TLI and RMSEA were 

not used to formally determine adequacy of fit, as their use in this context is controversial and there is 

limited consensus on appropriate cut-off values because each index is affected differently by degrees 

of freedom, model complexity and sample size; however, it is standard practice to report these along 

with the χ2. To overcome this, we formally tested the model fit by comparing the χ2 of the tested 

model with χ2 values obtained from variable-randomised null models with identical structures (in 

other words, the variables were randomly assigned to other nodes in the same structural equation 

model definition) and applied to the respective covariance matrix used for the tested model. This 

process was iterated 10,000 times and we reported the mean of χ2 values for the real model and null 

model. A two-sided p < 0.05 was used to characterise significant results.  Statistical analysis for the 

SEMS was performed in the ‘Lavaan’ package for the R environment for statistical computing v 3.5.1 

(R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/).  

 

2.5 Mendelian randomisation:  

We employed MR to determine whether the relationships in our SEM are causal. We have 

chosen body fat percentage and CRP as they were affecting the outcome in most of the models. 
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Furthermore, we had data to run the MR for the body fat percentage and CRP. Both are modifiable 

risk factors which can be used for clinical advice and to inform future randomised control trials 

targeting the modification of both LDL-C and ApoB. We had single nucleotide polymorphism (SNP) 

instruments for both body fat percentage and CRP.  

 

2.5.1 Genetic predictors: 

Genetic associations for body fat percentage and CRP were obtained from UK Biobank data and 

other genome-wide association studies (GWAS). More details can be found elsewhere [32, 33]. 

Genetic associations with fasting ApoB (quantified by nuclear magnetic resonance) were obtained 

from the largest available extensively genotyped study (among 24,925 adults). Again, more details 

can be found elsewhere [34]. We retrieved summary data for the association between SNPs and 

circulating fasting LDL-C from the Global Lipid Genetics Consortium (GLGC) (188,577 adult 

samples of European ancestry). They included rigorous quality control, imputation to the 1000 

Genomes Project panel and adjustments for age and population structure. Persons of European 

ancestry from 47 studies genotyped with different genome-wide association study arrays (n = 94,595) 

or on the Metabochip array (n = 93,982) with imputation to the 1000 Genomes Project reference were 

studied. In most included studies, blood lipid concentrations had been measured after > 8 hours of 

fasting. Participants on lipid lowering medications were excluded. Traits were adjusted for age, age-

squared, sex and principal components, as well as quantile-normalized within each cohort. For genetic 

association analysis by linear regression, lipid levels were inverse normal-transformed and cohort-

wise results combined in fixed effect meta-analysis. 

 If a SNP was unavailable for the outcome GWAS summary statistics, we identified proxy SNPs 

with a minimum linkage disequilibrium (LD) R2 = 0.8. To minimize bias in effect estimates induced 

by correlation between SNPs, we restricted our genetic instrument to independent SNPs not in linkage 

disequilibrium (p = 0.0001). We refer to a set of SNPs that proxy serum Lead as “genetic 

instruments.”  

 

2.5.2 Mendelian Randomisation Statistics:  
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We combined the effect of instruments using the inverse variance weighted (IVW) method. 

Heterogeneity was assessed using Q value for IVW. To address the potential effect of pleiotropic 

variants on the final effect estimate, we performed sensitivity analysis including weighted median 

(WM) and MR-Egger. Sensitivity analysis was conducted using the leave-one-out method to identify 

instruments that might drive the MR results. The WM estimate provides correct estimates if SNPs 

accounting for ≥ 50% of the weight are valid instruments. Inverse variance is used to weight the 

variants and bootstrapping is applied to estimate the CIs [35]. MR-Egger can make estimates even 

under the assumption that all SNPs are invalid instruments, as long as the assumption of instrument 

strength independent of direct effect (InSIDE) is satisfied [35]; however, the InSIDE assumption 

cannot be easily verified. Average directional pleiotropy across genetic variants was assessed from the 

p value of the intercept term from MR-Egger [35]. Causal estimates in MR-Egger are less precise than 

those obtained by using IVW MR [36]. Analysis using MR-Egger has a lower false-positive rate, but 

a higher false-negative rate, than IVW i.e., it has a lower statistical power [36]. 

Heterogeneity between individual genetic variant estimates was assessed using the Q′ 

heterogeneity statistic [37]. The Q′ statistic uses modified 2nd order weights that are a derivation of a 

Taylor series expansion, considering the uncertainty in both numerator and denominator of the 

instrumental variable ratio [37]. 

 

2.5.3 Sensitivity analysis:   

As sensitivity analysis, we used MR-Egger and MR pleiotropy residual sum and outlier (MR-

PRESSO) test [38]. MR-Egger and MR-PRESSO may provide correct estimates as long as the 

instrument strength independent of direct effect assumption is satisfied [38]. MR-Egger can be 

imprecise, particularly if the associations for SNPs on exposure are similar, or the number of genetic 

instruments is low [38]. A non-null MR-Egger intercept suggests that the IVW estimate is invalid. 

MR-Egger does not explicitly identify outliers. MR-PRESSO detects, and if necessary, corrects for 

potentially pleiotropic outliers [38]. The MR-PRESSO framework detects effect estimates that are 

outliers and removes them from the analysis by regressing the variant-outcome associations on 

variant-exposure associations. A global heterogeneity test is then implemented to compare the 
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observed distance between residual sums of squares of all variants to the regression line with the 

distance expected under the null hypothesis of no pleiotropy [39]. Furthermore, MR-Robust Adjusted 

Profile Score (RAPS) was applied, which can correct for pleiotropy using robust adjusted profile 

scores. We considered causal estimates that agreed in direction and magnitude across MR methods, 

passed nominal significance in IVW MR, and did not show evidence of bias from horizontal 

pleiotropy using heterogeneity tests. Statistical analysis was for MR performed in the 

‘TwoSampleMR’ package for the R environment for statistical computing v 3.5.1 (R Foundation for 

Statistical Computing, Vienna, Austria. https://www.R-project.org/).  

 

3. Results: 

3.1 Demographics and Clinical Characteristics: 

Table 1 shows the demographic and clinical characteristics of the study population based on 

LDL-C and ApoB concordant/discordant categories. Group 1 (Low LDL-C, Low ApoB) had the 

highest population (n=12,384), followed by group 4 (n=885), group 2 (n=711) and group 3 (n=285). 

Of the participants 48.7% were male. The mean age was 47.6 years overall, 47.8 years in men and 

47.3 years in women (p = 0.098). Overall mean body mass index (BMI) and waist circumference 

(WC) were 28.7 kg/m2 and 99 cm respectively. Descriptive variables categorised by high/low LDL-C 

and ApoB are shown in Table 1. Significant differences were apparent for all continuous and 

categorical demographic variables across the four groups (all p < 0.001). For instance, subjects in the 

third group (Low LDL-C, High ApoB) had significantly higher levels of adiposity, BMI (30.9 ± 0.9 

kg/m2) and WC (106 ± 2 cm) compared to the other groups (both p < 0.001). With regard to insulin 

and glucose parameters, fasting blood glucose (FBG) (118 ± 10 mg/dL), insulin (16.77 ± 1.68 

μU/mL) and HOMA-IR (5.21 ± 0.86), the third group (Low LDL-C, High ApoB) had the highest 

cardio-metabolic risk profile when compared to the other groups (all p < 0.001, Table 1). 

 

3.2 Machine Learning: 

Our analysis revealed that BMI, FBG, dietary fat and serum uric acid were the most strongly 

associated variables (R2 = 0.64) in the first group (Low LDL-C, Low ApoB). For the second group 
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(High LDL-C, Low ApoB) WC, FBG, gamma glutamyl transferase, dietary SFA, dietary PUFA, 

dietary fibre, total serum bilirubin and serum CRP were the most strongly associated predictors (R2 = 

0.72) for our outcome (joined effect of ApoB and LDL-C). With respect to the third group (Low 

LDL-C, High ApoB), BMI, dietary SFA, dietary fibre, serum CRP and serum uric acid revealed the 

strongest relationships (R2 = 0.70). Finally, within the last group (High LDL-C, High ApoB) BMI, 

dietary fat, dietary carbohydrate, total serum bilirubin and serum uric acid were the most important 

associated variables (R2 = 0.61).  

 

3.3 Structural Equation Models: 

To determine the effect magnitude for each of the predictors resulting from our ML analysis 

of the four LDL-C and ApoB concordant/discordant categories we implemented a structural equation 

model (SEM) for each group (Supplemental Tables S1 to S4). 

The SEM applied to the first group (Low LDL-C, Low ApoB) showed that SUA was the only 

variable which had an interdependent significant association (b = -0.15, p = 0.043) with our outcome 

(joined effect of ApoB and LDL-C). Additionally, both SUA (b = -0.28, p = 0.001) and BMI (b = 

0.18, p = 0.012) had a significant association with FBG (Supplemental Table S1). Regarding the 

second group (High LDL-C, Low ApoB), our SEM showed that CRP (b = 0.96, p = 0.001) and fibre 

intake (b = -0.21, p = 0.042) both had a significant independent association with our outcome. 

Furthermore, fibre intake (b = -0.31, p = 0.025), SFA intake (b = 0.56, p = 0.001) and WC (b = 0.96, p 

= 0.001) had a significant relationship with CRP (Supplemental Table S2). The SEM revealed that 

fibre intake (b = -0.42, p = 0.001) and SFA intake (b = 0.28, p = 0.014) had a significant association 

with our outcome in the third group (Low LDL-C, High ApoB). The effect estimates are presented in 

Figure 2. Furthermore, BMI (b = 0.65, p = 0.001), fibre intake (b = -0.24, p = 0.014) and SFA intake 

(b = 0.26, p = 0.032) also had a significant association with CRP (Supplemental Table S3). With 

respect to the fourth group (High LDL-C, High ApoB), our SEM revealed that SUA (b = 0.23, p = 

0.001) and BMI (b = 0.26, p = 0.001) both had a significant relationship with our outcome. 

Furthermore, BMI was also significantly associated with bilirubin (b = -0.19, p = 0.001) and SUA (b 
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= 0.55, p = 0.001) (Supplemental Table S4). All the models demonstrated a good fit (Chi-square: 

14.1, CFI: 0.995, RMSEA: 0.050, TLI: 0.958).  

 

3.4 Mendelian Randomisation: 

The instruments have F-statistics ranging from 326 to 425, making significant bias from the 

use of weak instruments unlikely. The results, expressed as beta-coefficients per 1 standard deviation 

(SD) increase in outcomes, are presented in Table 2.  

Genetically higher body fat percentage had a significant effect on ApoB (IVW = Beta: 0.172, 

p = 0.0001, Table 2, Supplemental Figure S1) but not LDL-C levels (IVW = Beta: -0.006, p = 

0.845, Table 2, Supplemental Figure S2). Higher CRP levels had no significant effect on ApoB 

(IVW = Beta: 0.032, p = 0.502, Table 2, Supplemental Figure S3) or LDL-C levels (IVW = Beta: -

0.046, p = 0.247, Table 2, Supplemental Figure S4). 

Heterogeneity results and pleiotropy bias are also shown in Table 2. Estimation is based on 

both MR Egger and IVW indicted chance of heterogeneity for all of our predictions (all IVW p < 

0.0023, all MR Egger p < 0.0020). We performed MR-PRESSO (to detect outlier SNPs and estimate 

corrected effects) which revealed the effect of body fat percentage on ApoB (Beta: 0.190, p = 0.0003, 

Table 2) and LDL-C (Beta: -0.001, p = 0.971, Table 2) and the further impact of CRP on ApoB 

(Beta: -0.023, p = 0.392, Table 2) and LDL-C (Beta: -0.019, p= 0.347, Table 2). The horizontal 

pleiotropy test, with very negligible Egger regression intercept, also indicated a low likelihood of 

pleiotropy for all our estimations (all p > 0.111). The results of the MR-RAPS were identical with the 

IVW estimates, highlighting again a low likelihood of pleiotropy. The results of the leave-one-out 

method demonstrated that the links were not driven by single SNPs.  

 

4. Discussion: 

In this study, we aimed to investigate the role of cardiometabolic and dietary factors in 

relation to LDL-C/ApoB discordance. We found that those belonging to the third group (Low LDL-C, 

High ApoB) had the worst profile of cardiometabolic risk markers when compared to the other 

groups. Our novel approach with ML and SEM revealed for the first time that predictors of the 
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combined measure of LDL-C and ApoB are different for each group. These differences were 

implicated by markers of inflammation, adiposity, and dietary intake of fibre and SFA of varying 

magnitudes and significance within each group. Indeed, the use of ML followed by SEM revealed a 

significant relationship of fibre and SFA intake within the Low LDL-C/High ApoB group, whereas 

the High LDL-C/Low ApoB group showed both CRP and fibre intake had a significant independent 

association with joined effect of ApoB and LDL-C.  

Analysis using MR revealed that body fat percentage was causal of ApoB but not LDL-C and 

the inflammatory marker, CRP, had no causal relationship with neither ApoB nor LDL-C. This is the 

first study where a causal role between adiposity and ApoB has been demonstrated. Relationships 

found by others regarding body fat, BMI, WC and other measures of adiposity with ApoB, together 

with convincing mechanistic evidence, further support our findings [16, 40, 41]. It has long been 

established that adiposity, especially visceral adipose tissue and insulin resistance, lead to excess 

secretion of fatty acids (FA) via the suppression of hormone sensitive lipase [42]. This causes FA to 

accumulate in the liver, resulting in the synthesis of ApoB100 and large VLDL [42]. Furthermore, the 

clearance of ApoB in obesity is compromised due to the underproduction of lipoprotein lipase, 

leading to impaired hydrolysis of VLDL and increased plasma residence time [43].  

With regards to LDL-C and ApoB discordance, the present study revealed distinct categories 

based upon the levels of these markers which reflect the heterogeneous variance found in the 

population. These discordant categories represented substantially less than the ~20% prevalence cited 

by other studies; however, previous research has employed different ApoB and LDL-C cut-offs, or 

analysed at risk populations (e.g. T2D, metabolic syndrome) [44-46]. We applied cut offs of 130 

mg/dL and 160 mg/dL for ApoB and LDL-C respectively, levels agreed upon by expert consensus [2], 

in an otherwise healthy population from the NHANES database. Despite these more stringent cut offs, 

discordance between LDL-C and ApoB remained and differences between the four groups were 

revealed which aligned with those previously reported [47]. Supporting our finding of the causal role 

of body fat percentage on ApoB, we demonstrated significant differences with BMI and WC between 

groups (Table 1). Indeed, BMI reaching obesity was observed in the high ApoB groups, and levels 

were practically identical between these two groups. However, WC was highest in Group 3 (Low 
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LDL-C, High ApoB), suggesting higher visceral obesity and supporting previous literature as the 

group with the most disrupted metabolism, and therefore highest cardiometabolic risk [48, 49]. Other 

markers in Group 3 which corroborate this include higher insulin resistance, systolic blood pressure, 

lower HDL-C, and higher triglycerides.  

It is known that CRP and SUA are intimately associated with inflammatory processes, which 

are predictive of ASCVD risk [50, 51]. This inflammation is thought to partly result from LDL 

particles stimulating endothelial cells which increase the production of CRP, which in turn stimulates 

the release of lectin-like oxidized LDL receptor 1 from macrophages [52]. This further increases the 

uptake of LDL, creating a vicious cycle [52]. Furthermore, SUA has also been shown to directly 

regulate proinflammatory pathways in vascular smooth muscle cells, further contributing towards the 

nefarious progression of ASCVD [53]. Our results are in agreement with significant relationships 

revealed between both CRP and SUA and ApoB/LDL-C within Groups 2 and 4 (High LDL-C, Low 

ApoB and High LDL-C, High ApoB respectively). Moreover, a negative association between SUA in 

Group 1 (Low LDL-C, Low ApoB) was also shown, further emphasising the potential prognostic 

value of these markers in ASCVD.  

The influence of dietary factors showed small but significant differences for total fat, SFA, 

PUFA, and MUFA, but these were not clinically significant and were largely within recommended 

guidelines (Table 1) [54]. Only total carbohydrate and total sugar intake were significantly higher in 

Group 3 (Low LDL-C, High ApoB). This is supported by literature showing carbohydrate, especially 

refined carbohydrate, increases plasma TG and small dense LDL, lowers HDL-C, and negatively 

impacts markers of glucose metabolism and inflammation [55]. The significantly lower LDL-C/ApoB 

and higher TG/HDL-C ratios in this group is suggestive of a ‘Pattern B profile’, which is predominant 

in insulin resistance and low-grade inflammatory states and correlated with SUA [56]. Krauss et al. 

[55] and others have shown a consistent improvement of this pattern with a lower carbohydrate 

approach [57, 58]. Larger scale studies, such as the PURE study, have also demonstrated that a lower 

carbohydrate diet results in a more favourable overall blood lipid profile compared to that of a high 

carbohydrate and low-fat diet [59]. However, one of the main criticisms of this strategy is an overall 

increase in LDL-C and debate continues regarding the promotion of such diets [60, 61]. The few 
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lower carbohydrate studies that investigated atherogenic lipoproteins (including ApoB) show a high 

degree of variance, with or without weight loss, suggesting dietary factors such as saturated fat might 

influence ApoB [57, 62]. Findings from Furtado et al. demonstrate this by showing that dietary 

patterns which are high in saturated fat are associated with higher levels of ApoB than those which 

emphasise carbohydrates, unsaturated fat or protein [63]. This was partially supported by our data, 

showing a weak but significant correlation with SFA and ApoB/LDL-C in Group 3 (Low LDL-C, 

High ApoB) but not in Group 4 (High LDL-C, High ApoB). Indeed, Group 4 had significantly lower 

total and SFA intake, incongruent with the diet-heart hypothesis [64], suggesting other factors such as 

various SNPs may contribute [65].  

Despite the differences between groups being small and all groups consuming less than 

recommendations, there was a highly significant and moderate negative correlation with dietary fibre 

and ApoB and LDL-C in Group 3 (Low LDL-C, High ApoB). Furthermore, the high intake of overall 

carbohydrate and low intake of fibre in this group may suggest that intake may be comprised 

predominantly of refined carbohydrate. These findings are in alignment with limited human 

randomised controlled trials, which have shown that in individuals with dyslipidaemia the 

consumption of soluble fibre results in decreased levels of ApoB via the reduced reabsorption of bile 

acids and increased excretion of cholesterol [16].  

 

4.1 Limitations: 

Our study has some limitations. Firstly, while we consider using consensus cut-off points for 

LDL-C and ApoB, other studies use median values which may reveal further differences between 

groups. Second, MR should ideally be performed in different ethnicities to ensure validity of the 

findings. Third, it would have been preferential to have GWAS data for the discordant groups, but this 

was not possible as no database exists which contains this data. Fourth, the authors did not have 

clinical endpoint data available for the participants, such as CVD event or mortality, as the NHANES 

database does not contain a large enough sample. Fifth, although the predictive value of the ratio of 

ApoB to anti-atherogenic apolipoprotein A1 (ApoA1) and its strong relationship with body fat 

distribution is well-documented, NHANES did not measure ApoA1 making its ratio with ApoB 
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impossible to calculate and utilise in our study [66]. Finally, there are inherent and well-documented 

limitations with 24-hour recall dietary assessment data, including recall bias which may lead to under 

and/or over reporting [67].  

 

4.2 Conclusions:  

In conclusion, our findings reveal several novel findings of significant importance for 

ASCVD risk that should guide future recommendations. First, we show a causal relationship between 

body fat percentage and ApoB suggesting weight management as a powerful strategy to reduce 

ASCVD risk. Second, we reveal that the subgroup pertaining to discordantly high ApoB in relation to 

LDL-C is associated with several cardiometabolic, clinical, and anthropometric abnormalities and 

poor dietary intake. Finally, our data supports the use of ApoB as a lifestyle therapeutic and target for 

recommendations rather than LDL-C per se, especially when the two measures are discordant.  
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Tables: 

Table 1. Demographic and clinical characteristics of the total population based on the LDL and 

ApoB categories. 

Characteristics Group 1 (Low 

LDL-C, Low 

ApoB) 

(n=12,384) 

Group 2 (High 

LDL, Low 

ApoB)(n=711) 

Group 3 (Low 

LDL-C, High 

ApoB)(n=285) 

Group 4 (High 

LDL-C, High 

ApoB)(n=885) 

p-value 

Age (Years) 48.8 ± 1.2 51.1 ± 1.9 55.6 ± 1.4 56.1 ± 1.6 <0.0001 

Sex (%) male 49.4 52.3 51.4 44.9 <0.0001 

female 50.6 47.7 49.6 55.1 

Anthropometric 

Parameters 

BMI (kg/m2) 28.3 ± 0.1 28.1 ± 0.5 30.9 ± 0.9 30.1 ± 0.6 <0.0001 

WC (cm) 97 ± 0 97 ± 1 106 ± 2 103 ± 1 <0.0001 

Insulin and 

Glucose  

Parameters 

Fasting blood glucose 

(mg/dL) 

101 ± 1 99 ± 2 118 ± 10 113 ± 4 <0.0001 

Plasma insulin 

(μU/mL) 

13.05 ± 0.26 11.21 ± 0.64 16.77 ± 1.68 13.13 ± 0.88 <0.0001 

HOMA-IR 3.42 ± 0.08 2.76 ± 0.16 5.21 ± 0.86 3.64 ± 0.28 <0.0001 

HbA1c (%) 5.67 ± 0.01 5.68 ± 0.08 6.18 ± 0.30 6.20 ± 0.13 <0.0001 

Liver Parameters Alanine 

aminotransferase 

(U/L) 

25 ± 1 27 ± 2 28 ± 2 30 ± 2 <0.0001 

Aspartate 

Aminotransferase 

(U/L) 

26 ± 1 27 ± 2 27 ± 2 27 ± 1 <0.0001 

Gamma glutamyl 

transferase (U/L) 

28 ± 1 37 ± 6 44 ± 7 44 ± 5 <0.0001 

Macronutrients  Fat (g/day) 79 ± 1 75 ± 4 79 ± 6 69 ± 3 <0.0001 

MUFA (g/day) 29 ± 0 29 ± 2 31 ± 3 26 ± 1 <0.0001 

PUFA (g/day) 17 ± 0 15 ± 1 16 ± 1 15 ± 1 <0.0001 

SFA (g/day) 25 ± 0 25 ± 1 25 ± 2 22 ± 1 <0.0001 

Protein (g/day) 79 ± 1 78 ± 4 76 ± 6 70 ± 3 <0.0001 

Carbohydrate (g/day) 251 ± 3 238 ± 11 257 ± 14 223 ± 9 <0.0001 

Fibre (g/day) 16 ± 0 13 ± 1 14 ± 1 14 ± 1 <0.0001 

Total sugar (g/day) 114 ± 2 112 ± 7 126 ± 10 103 ± 6 <0.0001 

Energy (kcal/day) 2070 ± 21 1992 ± 88 2048 ± 116 1823 ± 69 <0.0001 

Serum uric acid (mg/dL)  5.5 ± 0.0 5.7 ± 0.1 6.0 ± 0.2 5.8 ± 0.1 <0.0001 

Serum CRP (mg/dL)  0.4 ± 0.0 0.3 ± 0.0 0.5 ± 0.1 0.5 ± 0.1 <0.0001 

Total bilirubin (mg/dL) 0.82 ± 0.00 0.82 ± 0.02 0.80 ± 0.04 0.78 ± 0.02 <0.0001 

SBP (mmHg) 122 ± 0 127 ± 2 132 ± 3 130 ± 2 <0.0001 

DBP (mmHg) 68 ± 0 70 ± 1 71 ± 2 73 ± 1 <0.0001 

Total cholesterol (mg/dL) 185 ± 1 251 ± 2 239 ± 3 281 ± 3 <0.0001 

HDL-C (mg/DL) 54 ± 0 56 ± 1 43 ± 2 51 ± 1 <0.0001 

LDL-C (mg/dL) 105 ± 1 170 ± 1 144 ± 3 192 ± 2 <0.0001 

ApoB (mg/dL) 87 ± 1 119 ± 1 138 ± 1 146 ± 1 <0.0001 
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Triglycerides (mg/dL) 116 ± 1 117 ± 5 233 ± 13 177 ± 5 <0.0001 

TG/HDL ratio 2 ± 0 2 ± 0 6 ± 0 4 ± 0 <0.0001 

LDL-C/ApoB ratio 1 ± 0 1 ± 0 1 ± 0 1 ± 0 <0.0001 

Non-HDL-C 131 ± 1 194 ± 1 197 ± 3 230 ± 2 <0.0001 

Value expressed as a mean and SEM or percent.   

Abbreviations: ApoB, apolipoprotein B; BMI, body mass index; CRP, C-reactive protein; DPB, diastolic blood pressure; HbA1c, glycated haemoglobin; 

HDL-C, high-density lipoprotein cholesterol; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance, LDL-C, low-density lipoprotein 

cholesterol, MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SBP, systolic blood pressure; SFA, saturated fatty acids; WC, waist 

circumference 
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Table 2. Results of the Mendelian Randomisation (MR) analysis for percentage body fat and CRP with LDL-C and ApoB. 
Exposures MR Heterogeneity Pleiotropy 

Method beta SE p Method Q P-value Intercep

t 

SE  p 

% of  

body 

fat 

LDL-

C 

MR Egger     -0.288 0.123 0.018 MR-Egger 378.971 2.453887e-13 0.004 0.001 0.161 

WM -0.057 0.042 0.183 
IVW -0.006 0.034 0.845 IVW 390.232 2.185660e-14 

RAPS 0.016 0.035 0.643 

MR-PRESSO -0.001 0.031 0.971 

ApoB MR Egger     0.223 0.197 0.256 MR-Egger 313.226 0.0020 -0.0007 0.003 0.799 

WM 0.221 0.074 0.002 

IVW 0.172 0.054 0.001 IVW 313.202 0.0023 

RAPS 0.203 0.054 0.0001 

MR-PRESSO 0.190 0.053 0.0003 

CRP LDL-

C 

MR Egger     -0.097 0.093 0.308 MR-Egger 429.232 3.633e-79 0.006 0.011 0.551 

WM -0.020 0.015 0.178 

IVW -0.046 0.040 0.247 IVW 437.226 3.249e-80 

RAPS -0.035 0.009 0.0001 

MR-PRESSO -0.019 0.019 0.347 

ApoB MR Egger     -0.108 0.096 0.270 MR-Egger 89.625 1.097e-10 0.018 0.012 0.111 

WM -0.046 0.028 0.111 

IVW 0.032 0.048 0.502 IVW 101.232 1.569e-12 

RAPS 0.008 0.041 0.827 

MR-PRESSO -0.023 0.026 0.392 

Abbreviations: ApoB, Apolipoprotein B; beta, beta-coefficients; CRP, C-reactive protein, IVW, Inverse variance weighted; LDL-C, Low-density 

lipoprotein cholesterol; MR, Mendelian randomisation; SE, standard error; WM, Weighted median 
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Figure Legends: 

Figure 1. Overview of study design outlining the principle methods used. 

Figure 2. Structural equation model (SEM) to determine the underlying mechanism of the joined effect of 

ApoB and LDL-C in Group 3 (i.e. High ApoB / Low LDL-C). The diagram illustrates the SEM created to 

determine the underlying mechanism of joined effect of ApoB and LDL-C. The squares represent manifest 

nodes and arrows indicate regression coefficients which point towards an outcome of regression 

(standardised beta value mentioned on each arrows only for significant associations). 
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HIGHLIGHTS 

- Elevated body fat percentage is causal of increased levels of apolipoprotein B.  

- Discordantly high apolipoprotein B is associated with a poor quality diet.  

- Our findings demonstrate the importance of weight management in patient care.   
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