
 

Abstract— This paper deals with a simple indoor game, where 

the player has to pass a ball through a ring fixed on a variable 

pan-tilt platform. The motivation of the research is to learn the 

gaming actions of an experienced player by a robot arm for 

subsequent training to younger children (trainee) by the robot. 

The robot learns the gaming actions of the player at different 

game states, determined by pan-tilt orientations of the ring and 

its radial distance with respect to the player. The actions of the 

experienced player/expert are defined by six parameters: three 

junction-coordinates in the right arm of the player and the 3-

dimensional speed of the ball in a given throw. Reinforcement 

learning is employed here to adapt a state-action probability 

matrix of a probabilistic learning automation based on the 

reward (or penalty) scores of the player due to the success (or 

failure) in passing the ball through a given ring. A hybrid brain-

computer interface (BCI) is used to detect the failures in the 

gaming action of the player by natural arousal of Error-related 

Potential (ErrP) signal following motor execution, indicated by 

motor imageries. In absence (presence) of ErrP after a motor 

imagination, the system considers a success (failure) in the 

player’s trials, and thus adapts the probabilities in the learning 

automata according to success/failure of individual game 

instances. After the convergence of the state-action probability 

matrix, the same is used for planning, where the action 

corresponding to the highest probability at a given state in the 

automaton is selected for execution. The robot can autonomously 

train the game to the children using the learning automaton with 

converged probability scores. Experiments undertaken confirm 

that the success rate of the robot arm in the motor execution 

phase is very high (above 90%) when the ring is placed at a 

moderate distance of 4 feet from the robot. 

 

Index Terms— Brain-Computer Interfaces, Reinforcement 

Learning, Gaming, Event-Related Potentials, Event- Related 

Desynchronization/Synchronization.  
 

I. INTRODUCTION 

Brain-Computer Interface (BCI) based gaming is gaining 

increasing popularity over the last one decade [1-4]. Most of 

the BCI-based games employ electroencephalography (EEG) 

for online detection of player’s motive, self-assessment about 

his performance [5], learning skill to improve performance 

[6], automatic training of external manipulators/robots by 

BCI-based learning strategies [7, 8], and the like. Existing 

BCI-gaming applications employ different EEG signals, such 

as Event Related De-synchronization/Event Related 

Synchronization (ERD/ERS) [9, 10], P300 [11, 12], Steady- 

State Visual Evoked Potential (SSVEP) [13, 14], neuro/bio-

feedback [1] and hybrid paradigms [15] to address different 

problems in computer games. In recent times, the authors used 

left/right motor imagery to control cursors [16], paddles in 

pinball games [17] and robotic manipulators [8], to improve 

success-rate in game outcomes. In Chumerin et al. [18], the 

authors aimed at balancing a rod by distributing the player’s 

attention uniformly on two flickering boards to arouse SSVEP. 

In Martišius and Damaševičius [19], the authors used maze 

navigation using SSVEP. Another interesting application 

using SSVEP is automatic target-shooting [20]. Selecting a 

grid, containing an object of player’s interest among a set of 

grids, using P300, also known as Donchin-Farwell protocol, is 

popularly used in many virtual games [21, 22]. Early BCI was 

restricted to multi-trial analysis. However, for real-time 

gaming applications, single-trial EEG BCI is emphasized [9-

15] over its multi-trial counterparts. 

Different metrics of performance analysis of BCI-based 

gaming applications are prevalent in the literature [1-8]. Two 

well-known metrics that deserve special mention include 

classification accuracy and success rate. Classification 

accuracy here refers to the accuracy of the pattern classifiers 

employed for classification of brain signals to control the 

gaming actions. Success-rate in connection with BCI-games 

indicates the number of successes in the winning action among 

all possible gaming actions. In addition, in maze-type BCI 

gaming, one parameter, called ‘Mission Time Ratio’, which is 

the relative time to reach the goal in a maze [23], is often 

utilized to measure performance of the system. There are also 

traces of using difficulty/fun/goal appreciation/motivation of 

the game-players as performance measure of BCI-based 

games [24]. In this paper, we introduce precision that 

measures degree of user’s success in the game (for example, 

deviation of the ball from the target in a ball-throwing game) 

as an additional metric to examine the level of success of BCI-

incorporation in the game.  

Existing research on BCI-based gaming attempts to enhance 

subjective skill of patients suffering from neuro-motor 

disability [25], locked-in syndromes [26], attention deficit 

hyperactivity disorder (ADHD) [27], scope of recreation and 

training of healthy subjects with BCI aids also are reported in 

a recent work [35]. The last decade has seen significant 

progress in BCI-based rehabilitative robotics [28, 29]. The 

motivation of this paper is slightly different from the existing 

BCI-based gaming applications. Here, the gaming skill of an 

experienced player is acquired in the form of reward/penalty 

for each pair of gaming state and subjective action by the 

player. This is achieved by a novel probabilistic automaton-

based reinforcement learning. The learning score/probability 

of success for each state-action pair is subsequently 

transferred to a robot arm to copy the action for the highest 
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reward at a given gaming state. Thus, the robot arm can 

replace an experienced player in training the game to children. 

Such practice of training games to children would replace 

skilled game-experts, particularly when there is a scarcity of 

such experts. Besides, the boredom of human experts due to 

repeated training of children can be avoided by the proposed 

scheme. Questions may be raised whether the machine-

centered training is acceptable. The answer is in the 

affirmative, if the quality of training is at par with that offered 

by human trainers. The principle adopted to realize machine-

centered training includes two phases. In the first phase, the 

machine (here the robot arm) learns the steps/moves of the 

game from the experienced players; the knowledge earned 

thereby is stored in a knowledge-base in the form of a state-

action probability matrix (SAPM) for subsequent training of 

new game learners in the second phase. 

In the present context, we consider a simple hypothetical 

one-person game, where the player has to throw a ball into a 

distant box through a circular narrow hole, located on top of 

the box. While undertaking experiments, we considered a 

number of such boxes with adjustable pan and tilt angles. The 

player has to stand at a fixed position but can orient his 

physique in any way required to correctly throw the ball into 

the target hole. The success or failure in the throw is 

determined by the player himself and is recorded from the 

acquired brain signals of the player. Two EEG signals are 

required to convey the experienced player’s opinion about 

success/failure in a single throw. These signals are event 

related de-synchronization/synchronization (ERD/ERS) and 

Error-related Potential (ErrP). The ERD/ERS signal is 

available at the onset of motor planning/execution during the 

ball-throw task. In case the subject detects any error in his 

throw (i.e., the ball does not enter the box through the top 

hole), it triggers an ErrP signal, which can be measured from 

the central electrodes, which conveys the computer that the 

throw was erroneous. The success or failure in individual 

throws, thus detected by the player, is used to build up a new 

type of Probabilistic Automaton [34], to record the measure of 

successive winning score at each state-action indices of the 

table. Here, state refers to parameters of the box, such as the 

radial distance d of the box with respect to the player, and the 

pan (φ) and tilt (θ) angles of the circular ring mounted on the 

box. The action here stands for the parameters of the player, 

including the three junction coordinates: Je, Js, Jw respectively 

for elbow, shoulder and wrist of the used upper limb in 3-

dimension, and the speed ( v ) of release of the ball in 3-

dimension: ],,[ zyx vvv , computed from the gesture of the 

player during ball throws. For convenience of realization of 

the probabilistic automaton, the parameters included in the 

state and action space are quantized into non-overlapped 

intervals, such that union of the intervals for each parameter 

includes the entire feasible space of the same parameter. For 

example, if there exist k quantized non-overlapped intervals of 

)(),...,(),(: 21 xkxxx vqvqvqv  then )(
1

x

k

i
i vq =

 covers the 

feasible space of  .xv  

The experiments are performed with 10 experienced 

players, each participating in 36 sessions over 36 days (i.e., 

one session in a day), where each session includes 50 trials 

(each trial indicating a single throw) over a state-action space 

of 36 × 218. In each session, the pan-tilt orientations of the ring 

and its radial distance with respect to the player are kept fixed. 

The dimension of the state-action space is evaluated as 

follows.  Here, a state is defined by 3 parameters: i) distance 

of the box from the thrower (d), ii) tilt angle (θ ), and iii) pan 

angle (φ) of the box-top, where the above 3 parameters 

respectively have 4, 3 and 3 variants, which altogether yields 4 

× 3 × 3 = 36 states. The action space includes 3 junction 

coordinates of the right arm of the player and velocities in 3-

dimension. For each dimension of junction coordinate or 

velocity, we consider 2 distinct intervals. Thus for the 

position/velocity of one of the 3 junctions (shoulder, elbow 

and wrist), each represented in 3-dimension, we have 23 = 8 

possibility action-spaces. Consequently, considering the 

positions of 3 junctions, the possibility action-space is 8 × 8 × 

8 = (23)3 = 29. Further, considering variability of 3 

dimensional velocities of the 3 junctions, we have an 

additional 29 possibility action-space. Lastly, considering 

variations of both the junction positions and velocities, both in 

3-dimension we have a total possibility action-space of 29 × 29 

= 218.  We consider 2 intervals for each component (x-, y- and 

z-) of junction coordinates and velocities.  Finally, for 36 

state-spaces and 218 action-spaces, the total state-action space 

is 36 × 218. 

The SAPM is recorded for each player separately and the 

SAPMs of all the participants’ (here, 10 experienced players) 

response are averaged to teach the robot. After the adaption of 

SAPM for 10 experienced players over 36 sessions is over, we 

use the SAPM for game-planning by Jaco robot arm. In the 

planning stage, the robot is provided with a given state, and it 

selects the best action at that state. The best action is defined 

by the action with the highest probability in the selected state 

of the SAPM. The robot demonstrates the planned action to 

teach the game to children. Children too enjoy the game-

learning from the robot as it is free from human-interaction, 

which often includes rough voice and/or eyebrow-raising by 

the game-teacher. In fact, it is observed experimentally that 

the success-rate of game-learning by children from the robot is 

higher than the success-rate of learning from experienced 

teachers. 

    The paper is divided into five sections. Section II provides a 

thorough description of the proposed BCI based gaming 

scheme along with an algorithm for adaptation of the SAPM. 

It also covers the BCI signals used to control the game actions. 

In section III, we present EEG based feature extraction and 

classification along with other experimental details. 

Performance analysis is undertaken in section IV. Conclusions 

are listed in section V. 

II. PROPOSED SCHEME 

Training games to children by traditional human trainers is 

tedious on part of the trainers. Besides, learning-performance 

of the trainees is not free from the influence of the human 



 

3 

 

quality of the trainers. One approach to overcome the above 

two problems is to design and develop an environment for 

autonomous training of the children by robotic devices. This 

paper serves that purpose. Here, the authors attempt to train a 

robot arm to play a selected game by executing the right action 

at the right time. After the robot is trained, it can take the 

initiative to train game to the children.  

In the present context, we consider a non-traditional single 

agent game, where the player has to stand at fixed (radial) 

distance from a set of boxes with adjusted pan and tilt angles 

of the circular opening fixed on the top of each. The player has 

to throw a ball towards a selected target (box). For a given 

box, the radial distance of the centroid of the circular top 

opening from the player, and the pan and the tilt angles of the 

opening are pre-fixed. These parameters jointly represent a 

state of the game. The 3-dimensional coordinates of the joints 

(right shoulder, elbow and wrist) of the right arm of the player 

are captured by Microsoft Kinect machine [31] for the 

estimation of predicted speed of the ball in 3-dimension. The 

3-dimensional junction coordinates of the above mentioned 

joints at the time-point of release of the ball during ball-throws 

and 3-dimensional velocity of the ball jointly represent the 

action of the agent. 

We here adopt single agent Reinforcement Learning (RL) 

algorithm to save the rewards earned by the robot during the 

correct throws of the ball in the SAPM. The SAPM thus is 

indexed by states of the box and action of the agent 

respectively. During a correct throw of the ball, we use a 

reward-estimating function to determine the reward at a given 

state-action of the SAPM. Similarly, during failures in placing 

the ball inside the box, we estimate the penalty and place it at 

the right cell of the SAPM. It is interesting to note that the 

occurrence of reward/penalty is determined by the subject 

himself and is captured naturally using an EEG device. We 

here use two EEG signals: ERD/ERS (Event Related De-

synchronization/synchronization) and ErrP (Error Related 

Potential). ERD/ERS is captured from the parietal lobe and 

motor cortex (P3, P4, C3, C4 electrodes) and the ErrP is 

captured from the z-electrodes (Fz, Pz and Cz electrodes) 

placed on the scalp of the subject. Here, ERD/ERS is used to 

detect the onset of the motor execution by the subject, just 

before throwing the ball, while ErrP is used to detect the 

occurrence of errors. The error here is linked with failures to 

place the ball inside the box in a ball-throw by the subject 

(player). The ERD/ERS signal is regarded as the event onset 

of the ball throw process. After the ERD/ERS is detected, the 

system waits exactly 800 ms for an ErrP. If no ErrP is 

detected, a reward is attributed to the present throw. However, 

if ErrP is detected, it is counted for an occurrence of error in 

the ball throw, and a negative reward/penalty is attributed for 

the present throw. Thus, the ErrP signal is used to monitor the 

occurrence of error and assignment of a penalty at the selected 

state-action pair. In case no ERD/ERS is detected, subsequent 

ErrP is not analyzed. We record the reward/penalty scores in 

the SAPM and for subsequent training of novice players by a 

robot arm. 

     After the training of the robot arm is over, it utilizes the 

SAPM matrix to plan its action at a given state si. The 

planning is performed by selecting (most promising) action aj, 

with probability )|Pr( ij sa . After selecting the action, the robot 

enacts it based on parameters of the action (including proper 

orientation of the junctions of the robot, speed and direction of 

the ball). The motivation of optimal action selection at a given 

state lies in displaying the gestural action of the robot to help 

children imitating the best action at the selected state to 

successfully play the game. 

A. Proposed Reinforcement Learning Scheme 

Reinforcement learning (RL) refers to learning by 

reward/penalty. It’s a slow and lifelong learning process. In 

natural RL, we plan any action based on partial learning of our 

environment. However, in the present scheme, we undertake 

action planning at a state after convergence of the RL 

algorithm. The difference between natural and the present RL-

based planning is apparent as here the state-action space is 

finite and small, whereas in natural RL, the state-action space 

is infinitely large, and so continues life-long for the agents. 

Let, 

},...,,{ 21 nsssS =  be a set of n states. 

},...,,{ 21 maaaA =  be a set of m actions. 

),( asr is a positive reward function at state sS and action 

aA. 

),( asp is a negative reward function (penalty) at state sS and 

action aA. 

R(s, a) is a cumulative reward at state sS and action aA. 

α is a positive constant lying in [0,1], called the learning rate. 

A small value of α (≈0.05) ensures slow learning without early 

convergence [32]. 

We adopt the following learning strategy.  

For s  S and a A 
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End-For; 

The positive reward function r(s, a) and the penalty function 

p(s, a) are fixed. For example, in the present application, we 

assign r(s, a) = + 0.01, and p(s, a) =  ̶ 0.01. The Sigmoid 

function in (2), restricts R(s, a) in [0, 1]. The occurrence of 

r(s,a) and p(s,a) are determined from the respective non-

occurrence and occurrence of the ErrP signal after 800 ms 

from the onset of the ERD/ERS. 

 

Probabilistic Learning for Adaptation of SAPM 

Input: Occurrence of Error at given State-Action Pairs 

Output: Updated SAPM of (n × m) dimension; 

 

Begin 

1. Initialization: Initialize probability )|Pr( ij sa  such that 

For each i 



 

4 

 

   1
Pr( | ) ,j ia s j

m
   so that Pr( | ) 1j i

j

a s


=
 

End For; 

 

2. Action Selection: Select an action ja  from the action set A 

at state is using Roulette wheel action selection strategy; 

 

3. Adaption in learning space: 

If selection of action ja at state is returns a success then 

increment Pr( | )j ia s by a small predefined number r(si, aj), 

where 1),(0  ji asr . 
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where F(.) is Sigmoid function defined above.

 

 

If due to the selection of ja at state is  there is a failure, then 

decrease Pr( | )j ia s  by a small constant 

penalty | ( , ) |i jp s a for ),( ji asp <0. 

)),()|(Pr()|Pr( jiijij aspsaFsa +  , for action  j 
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Continue through step 2 until Pr( | )j ia s  converges for all i, 

j. 

End 

B. Proposed Action Selection Strategy 

There exist several action selection strategies in RL [33]. 

Random action selection strategy is often used for its 

simplicity. However, random action selection does not ensure 

exploration of the entire action space at the selected state. One 

approach to overcome this problem is to adopt Roulette wheel 

selection strategy [32] to select action aj at state si. The 

Roulette wheel selection is realized by the following 2 steps. 

     Let ijc , be the cumulative probability sum of j probabilities 

in a sorted array of probabilities, arranged in ascending order. 

Let k be the index of the sorted array. In other words, 


=

=

j

k

ikij sac

1

, )|Pr(                                     (3) 

where .),|Pr()|Pr( 1 ksasa ikik  −  

Naturally, from m possible actions at 

state ,is ,1)|Pr(
1

, == 
=

m

k
ikim sac  we generate a random 

number r in [0, 1]. If cj,i<r<cj+1,I , then we select action  j. 

C. Proposed ERD/ERS and ErrP Based Learning  

Automatic detection of reward and penalty based on subject's 

own judgment is a novel contribution of the present work. 

Here, two brain signals, called ERD/ERS and ErrP signals are 

employed to determine the subject's opinion about his/her 

success in the current trial of the game. The ERD/ERS is 

associated with motor imagery and/or motor execution [8], 

whereas ErrP is used to represent subjective error when the 

subject observes a system/agent committing an error and/or 

when the subject commits an error himself [44]. The motor 

execution is performed by the subject at the time-point he 

releases the ball. The time-point at which ERD/ERS occurs is 

important, as the system may be programmed to wait for the 

next 800 ms for possible release of an ErrP signal. The error in 

the present circumstance indicates a failure in the ball throw, 

i.e., when the ball fails to reach the subject-defined target 

position. Thus, in every trial the BCI system looks for an ErrP 

signal, without noticing whether the ball reaches the target 

position. 

The ERD/ERS and ErrP based error detection is important 

in order to keep track of the ball position after the ball is 

thrown. In case, no ErrP is detected, a small positive 

incremental reward r(s, a) is attributed to the state s for the 

selected action a in the SAPM. However, if an ErrP occurs 

within 800 ms of the ERD/ERS, the SAPM is updated with a 

negative reward/penalty p(s, a) to the states for the selected 

action a. The SAPM thus obtained for all system state-actions 

is preserved. The process of SAPM computation is also 

repeated for all experimental players. Fig. 1 provides a 

schematic overview to EEG-based game learning. A timing 

protocol needs to be devised to mark the time points to 

identify the reward/penalty. This is done by the following two 

steps. When the subject executes a motor action, an ERD/ERS 

is released from the parietal lobe and motor cortex. The time 

point of release of ERD/ERS is marked on the time-line. Next, 

the BCI system looks for an ErrP within 800 ms from the 

marked point of ERD/ERS-release on the time-line to update 

the SAPM due to reward (no ErrP) or penalty (ErrP) in the 

gaming action. The magnitude of the reward or penalty is 

determined by a trial-error approach. A small positive 

reward/penalty takes large convergence time of SAPM, 

whereas a large value results in a pre-mature convergence. 

The choice of the incremental probabilistic reward/penalty 

thus is an important issue. 

D. The Proposed Reinforcement Learning based Planning 

After the learning phase in SAPM by the proposed algorithm 

introduced earlier is over, i.e., the probability estimates for the 

required action at each state has converged, the robot can 

autonomously generate its plan from the probability estimates. 

For example, if at state si, suppose the action aj has the highest 

probability of occurrence. Then the robot will select the action 

aj. Now, execution of the selected action requires configuring 

the robot arm to orient its axes in different angles, which are 

obtained by inverse kinematics [30]. In Jaco robot arm, the 

inverse kinematics problem is solved by calling selected 

library functions that offer the required angular movements of 

the individual links from the desired coordinate of the end-

effectors. 
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E. Imitating Expert Action by a Robot 

Execution of repetitive training by human experts, which 

generally is tiresome, often causes boredom to the trainers. 

Here a Jaco humanoid robot arm (Fig. 2 (b)) is trained to 

replace the human trainer. To imitate all possible actions of 

the human trainer, a large number of training instances are 

generated to train the robot arm before it is employed for 

training games to the children. Human arm kinematics in 

simplistic form can be approximated as 5 joint movements in 

fixed directions/orientations, as illustrated in Fig. 2 (a). We 

used the well-known Denavit-Hartenberg link configuration 

scheme [30] to describe the turning of individual links, when 

the person (experienced player/experimental subject) is 

engaged in the ‘ball throwing’ experiment. We define the 

turning of individual robotic links around their z-and/or x-axis 

by θ and α respectively. 

 

 
 

The overall coordinate transformation matrix, describing the 

rotations of all the links involved by prescribed angles is given 

by 
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 It is important to note that Jaco Robot arm possesses only 

one degree of freedom for the joint J2, representative of 

human shoulder, to tilt the robot arm, but it has no freedom to 

change the pan-angle. Naturally, to adopt changes in pan-

angle, the robot utilizes its waist joint J1 (Fig. 2(b)). In order 

to have similarity between the angular movements of the 

human and the robot arms, we use the coordinate systems: 

[x0–y0 –z0], [x2–y2 –z2], [x3–y3 –z3], [x4 –y4 –z4], [x5 –y5 –z5] 

for the human arm and [x0–y0 –z0], [x1 –y1 –z1], [x2 –y2 –z2], 

[x3 –y3 –z3], [x4–y4 –z4] for the robot arm. Although the above 

two coordinate systems have differences in the point of 

application of similar torques to orient the arm to a desired 

configuration, they suffice to realize human arm movements in 

the present gaming application using the Jaco robot arm. 

The Microsoft Kinect machine is employed to record 

movements of the body-junctions from the Red-Green-Blue 

(RGB) color images and the z-coordinate/the depth 

information from the infrared image. The x-, y- and z- 

coordinates are saved in the system memory and are used later 

for subsequent analysis. Fig. 1 provides a schematic diagram 

of one possible gesture of an experienced game player during 

ball-throwing and the corresponding gesture captured by a 

Microsoft Kinect machine. The captured gestures are later 

imitated by the robot trainer to train children to throw ball at 

the given position of the box. 

TABLE I 

 OVERVIEW OF THE EXPERIMENTAL STEPS UNDERTAKEN DURING 

TRAINING AND TEST PHASES 

 Training Phase       Test Phase for System Validation 

         Offline 

Steps 

      Feature extraction and 

classification for 
ERD/ERS and ErrP. 

None 

        Online 

Steps 

          EEG feature extraction 

and classification for 
SAPM Updating 

       Action Planning by Jaco Robot arm 

using SAPM. 
       Performance Analysis of Jaco in Test 

Phase. 

   Performance Analysis of Jaco in 
Training Children 

S = 

<d,,> 

Kinect 

Fig. 1 Reinforcement learning of gaming actions of an expert performer 
using an EEG system and Microsoft Kinect machine. The expert performer 

plays the game and his EEG signals are recorded. If an ErrP occurs within 

800 ms of the ERD/ERS, the SAPM is updated with penalty or else with a 
reward. 
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F. Capturing Body-Junction Coordinates of the Trainer for 

Realization by the robot 

The Kinect machine has been employed to capture the body-

junction coordinates (J) of the shoulder, elbow and wrist of the 

experienced player, during the phase of demonstration of the 

game by him. The captured movements of the junction 

coordinates are then realized by the robot arm to imitate the 

required arm movements to throw the ball to place it in the 

box located at a given local neighborhood of the robot arm. 

The Microsoft Kinect machine acquires the visual and infrared 

spectra of the experimental subject (here, the experienced 

player) to determine coordinates of the body-joints: right 

shoulder, elbow and wrist, while releasing the ball, and 

estimated velocity in 3-dimensions from the last two frames 

used. Here, the last 2 frames are with respect to ball throw, 

extracted from the objective movement recorded with the 

Kinect. 

III. EXPERIMENTS 

This section deals with experimental protocol, details of 

experiments undertaken, and main results obtained thereof. 

The experiments are broadly divided into two phases namely 

the training phase and the test phase (Table I). 

A. Training Phase 

The primary objective of the training phase is to update the 

SAPM such that it represents the best possible action of the 

robot at the given states. Since SAPM updating is based on the 

detection of ERD/ERS and ErrP, therefore it is essential to 

train two classifiers (offline) separately to detect the presence 

(or absence) of the specific signal in the desired time-window. 

Thus, the training phase constitutes two main steps: (a) offline 

analysis of the acquired EEG data to train the classifiers, and 

(b) online ERD/ERS and ErrP detection followed by SAPM 

updating.  

Offline classifier training instance generation: During the 

offline training phase, the experimental subject (here, the 

trainer) is presented with a stimulus, as given in Fig. 3 (a). 

Each subject underwent 36 sessions with sufficient relaxation 

time (here, one day) between successive sessions, where the 

subject has to throw a ball 50 times in a session through a ring 

mounted on a variable pan-tilt platform. Each session is 

dedicated for a specific combination of pan-tilt orientations of 

the ring and its radial distance with respect to the player. The 

stimulus includes a fixation cross for 1s, followed by motor 

planning and execution (MPE) session for 1s, and time of 

flight (TOF) of the ball and ErrP generation together for 

800ms and a rest interval of 1 minute. During those sessions, 

EEG data are acquired from the P3, P4, C3 and C4 electrodes 

for ERD/ERS detection, and Fz, Cz and Pz electrodes for ErrP 

detection. The EEG data acquired in the respective time-

windows is utilized to manually check the presence of 

ERD/ERS and/or ErrP signals. A few snapshots describing the 

experimental set-up during the offline training session are 

presented in Fig. 4.  

Success in the ball-throw here can be determined either by 

physical examination of the ball in the basket after its release 

(time-point of ERD/ERS release) or absence of ErrP signal in 

the right time-window. Here, the second option is attempted, 

primarily to utilize the trainer’s assessment on his own 

success/failure about his throw towards the pre-defined target 

box.  

     Since each of the 10 experimental subjects (human trainers) 

participates in 36 training sessions, comprising 50 trials, the 

total number of training instances available for each channel is 

10 × 36 × 50 = 18,000. Here, ERD/ERS signal is obtained for 

all the 18,000 instances. The no occurrence instances of 

ERD/ERS are obtained by considering the EEG data of 

baseline/rest period acquired from the same electrodes. On the 

other hand, the presence of ErrP signals is observed in 11,564 

training instances, and the rest of the 6436 instances are used 

as no ErrP trials. It is to be noted that the number of 

occurrence of errors is comparable across the experienced 

players. Experimentally, it was found that )%658(  of the 

throws of every experienced participant had errors.  

     The signals thus acquired are then processed through 3 

steps, including pre-processing, feature extraction (FE) and 
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classification (CF) with an ultimate aim to train the classifiers 

used for ERD/ERS and ErrP detections, as indicated in Fig. 

3(c). A brief description of each step is given in the 

subsequent sub-sections.  

    After acquisition of complete data sets for the 18000 

instances, the offline training and test are performed for the 2 

class classification between ERD/ERS and no ERD/ERS, and 

ErrP and no ErrP signals by employing a Support Vector 

Machine (SVM) with Gaussian and polynomial kernels 

respectively.  A 5-fold cross validation [47] is used to check 

the performance of the classifier with classification accuracy 

as the metric.     

Online SAPM Adaptation: Once the classifiers are well-

trained to detect the ERD/ERS and ErrP with the highest 

possible accuracy, the ball-throwing experiment, narrated 

above, is repeated once again with an additional step of SAPM 

adaptation. The stimulus used for the online training phase is 

given in Fig 3(b). It includes 6 tasks for execution over four 

distinct time-windows. The first time-window is reserved for a 

fixation cross of 1s duration to make the trainer alert. The 

second window includes MPE for ball throwing, thereby 

resulting in the generation of ERD/ERS signal. The third time-

window includes engaging the subject to observe the motion 

of the flying ball for possible occurrence of error, causing 

liberation of an ErrP, all within a time-interval of 800 ms as 

shown in Fig. 3(b).  The fourth window of 650 ms is reserved 

for ErrP detection and SAPM updating, while the subject 

simply is having a rest state.  

       Pre-processing, FE and CF of ERD/ERS are undertaken 

just after the ball is set in motion. The detection of the ‘ball in 

motion’ is carried out by analyzing the color images captured 

by the camera of the Kinect. An audio feedback regarding the 

ERD/ERS and ErrP detection is provided to the subject during 

the online training session. 

     During the online training phase, EEG feature extraction 

and classification for ERD/ERS and ErrP detection are 

performed online. For ERD/ERS detection, the data acquired 

during the 1s slot, allocated to MPE and ERD/ERS generation 

session, is used for subsequent feature extraction and 

classification (FE + CF). The FE + CF for ERD/ERS detection 

is done in parallel with the TOF of the ball, as indicated in Fig. 

3(b). The EEG data acquired during entire the time-slot of 800 

ms, allocated for TOF and ErrP generation, is then processed 

through the necessary steps (FE + CF) in the next 650 ms 

time-window to detect ErrP The presence or absence of ErrP 

is then utilized to update the SAPM in the same time-span. 

B. Test Phase 

Fixation cross 

 (+) 

Time of 
flight (TOF) 

Check for the 
occurrence of ErrP 

Motor planning & 
execution (MPE) REST + MPE TOF 

Check for the 
occurrence of ErrP 

1s 1s 800 ms 1 min 1s 1s 800 ms 

(a) 

Fig. 3(a) Stimulus presentation for offline training, (b) Stimulus used for online training, and (c) Block diagram for the detection of ERD/ERS or ErrP  

Fixation cross 

 (+) Time of flight (TOF) 

ErrP detection (ED), while 
subject in rest state 

MPE for ball 
throwing 

1s 1s 800 ms 

ERD/ERS detection SAPM update (U), 
subject in rest state 

650 ms 

Check for the 
occurrence of error 

(b) 

Pre-processing 
Feature 

Extraction (FE) 
Classification 

(CF) 

Raw EEG 

signal 

Presence or absence 

of ERD/ERS (or 
ErrP) 

(c) 

Trial 1 Trial 50 

Time of flight and checking 

for occurrence of error Rest Ball throw Fixation Cross (+) 

                    Fig. 4 Snapshots of experimental set-up during offline training session 
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In the test phase, action planning by Jaco robot arm is 

performed by employing the updated SAPM. Also, in the test 

phase, the performance of children trained by Jaco is 

evaluated and compared to the performance of children trained 

by human trainers. Fig. 5 shows the imitating action of the 

robot by a child. 

C. EEG Electrodes and Signal Acquisition 

Electrodes are placed on the scalp of each subject according to 

the standard 10-20 electrode placement scheme [34]. For the 

detection of ERD/ERS, 4 electrodes: C3, C4 in the motor 

cortex and P3, P4 in the parietal lobe are selected. To detect 

the ErrP signals, data is acquired from the three electrodes: 

Cz, Pz and Fz. Therefore, altogether 7 EEG electrodes are 

used to acquire the data. Data acquisition was performed using 

the Nihon Kohden device at a sampling rate of 200 Hz. Two 

databases [49] acquired from 2 different groups of experts, 

one from South 24-pargana district, and the other from South 

Kolkata, West Bengal, India are prepared to undertake the 

experiment. Each database contains the ERD/ERS and ErrP 

signals of 10 subjects (experts/trainers), where each subject 

undergoes altogether 36 sessions and 50 throws/trials per 

session as explained in the previous subsections. Both the 

databases are prepared in Artificial Intelligence Laboratory of 

Jadavpur University. However, we consider only one database 

(South 24-parganas database) as reference in the rest of the 

paper. 

D. Pre-processing 

The pre-processing includes Common Average Referencing 

(CAR). The CAR operator subtracts the average of the 

instantaneous EEG signal values acquired from all the used 

channels. It has the merit to reduce the effect of artifacts on 

filtered signals. We also employed a Chebyshev band pass 

filter of order 5 to ensure sharp cutoff at undesired frequency-

bands. Frequency roll-offs are also reduced due to introduction 

of Chebyshev band-pass filter. The cut-off frequency of the 

filter was 8-30Hz (such that beta band could be included in 

analysis). The signal was not down-sampled. Eye-blink 

artifacts were removed using independent component analysis 

[48]. 

E. Feature Extraction 

During feature extraction, we select the wavelet coefficient 

(WC) with dB4 as the mother wavelet. We consider the 

percentage of energy of the fourth and the fifth detail wavelet 

coefficient, following [29]. We also compute the 7th order 

Adaptive Autoregressive (AAR) parameters during feature 

extraction. For ERD/ERS detection, the dimension of WC 

obtained from 4 electrodes (P3, P4, C3, C4) for a single trial is 

114 (coefficients) × 4 = 456, and the dimension of AAR from 

the said 4 electrodes is 7 × 4 = 28. For ErrP detection, the 

dimension of WC obtained from 3 electrodes (Pz, Cz, Fz) for a 

single trial is 114 × 3 = 342, and that for AAR is 7 × 3 = 21. 

Each type of feature is tested separately to find out the best 

performing feature-classifier pair. 

F. Classification 

For the present application we need 2 classifiers, one to 

classify motor execution and the other to classify error-related 

potential. We selected the following off-the-shelf classifiers:  

TABLE II 
COMPARATIVE PERFORMANCE OF OFF-THE SHELF CLASSIFIERS FOR ERD/ERS CLASSIFICATION 

 

Classifier 
    Average Classification Accuracy for ERD/ERS     Average Classification Accuracy for ErrP 

WC AAR WC AAR 

LDA 78.98 79.09 78.55 87.56 

QDA 86.99 89.91 89.77 83.81 

Feed-Forward BPNN 79.78 81.68 76.92 73.14 

    Cascade-Forward BPNN 81.20 85.30 87.88 76.19 

Naïve Bayes 85.66 89.66 77.81 89.99 

SVM* 96.15 95.22 89.99 96.78 

Fig.5 A child imitating robotic action while learning the game from the pre-trained robot arm 
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 TABLE III 
OPTIMAL SELECTION OF KSVM PARAMETERS FOR BOTH (A) ERD/ERS AND (B) ERRP CLASSIFICATION 

(a) 

      SVM Classifier 
ERD/ERS DETECTION 

AAR Parameters Wavelet Coefficients 

RBF Kernel 

 

c 
σ 

0.01 0.75 1.00 2.0 

0.5 71.65 83.56 80.22 77.65 

1 76.45 95.22 88.44 86.44 

5 66.55 78.11 73.33 69.11 

 

c 
σ 

0.01 0.75 1.00 2.0 

0.5 78.95 96.15 85.12 87.15 

1 86.45 90.22 88.44 71.44 

5 61.55 68.11 89.33 80.11 

Polynomial Kernel 

 

c 
d 

      1        2       3        4 

0.5 73.65 81.56 70.21 79.45 

1 71.41 75.22 78.44 76.14 

5 69.55 71.12 71.33 93.11 

 

c 
d 

1 2 3 4 

0.5 78.90 86.98 87.14 76.98 

1 70.95 93.57 81.82 79.65 

5 91.56 70.22 88.44 77.44 

(b) 

      SVM Classifier 

ERRP  DETECTION 

AAR Parameters              Wavelet Coefficients                     

RBF Kernel 

 

c 

 

σ 

0.01 0.75 1.00 2.0 

0.5 82.67 90.18 78.97 87.99 

1 78.97 67.88 78.99 87.65 

5 67.57 89.66 56.86 78.90 

 

c 

 

σ 

0.01 0.75 1.00 2.0 

0.5 45.87 78.87 68.98 89.99 

1 67.98 89.06 78.99 78.99 

5 89.80 78.95 67.87 87.66 

    Polynomial Kernel 

 

c 

 

d 

1 2 3 4 

0.5 87..65 81.56 70.89 69.95 

1 76.89 75.22 96.78 89.18 

5 78.85 87.19 76.39 67.88 

 

c 

 

d 

1 2 3 4 

0.5 89.79 87.98 78.89 78.98 

1 70.95 87.67 87.76 79.65 

5 89.15 71.23 88.44 79.49 

 

Linear Discriminant Analysis (LDA) [35], Quadratic 

Discriminant Analysis (QDA)[36], Feed-forward and 

Cascade-Forward Back-Propagation Neural Net 

(BPNN)[37],Naïve Bayes Classifier [39], Kernelized Support 

Vector machine (KSVM) [38] with linear, polynomial and 

Radial basis Function (RBF) kernel to examine the classifier 

performance for the present data set. The comparative 

performance of different classifiers for ERD/ERS and ErrP 

classification is given in Table II using the average of the 

classification accuracies obtained from the 5 fold cross-

validation results. We also varied the parameters (c, σ, d) of 

the KSVM algorithms to select the optimal parameters of the 

selected KSVM for both for the ERD/ERS and ErrP 

classification. This is given in Table III (a) and (b) above. It is 

apparent that the performance of a classifier depends greatly 

on the choice of features [45]. Therefore it is necessary to 

select the right feature-classifier pair for ERD/ERS and ErrP 

classification. The results of this study are given in Table II 

and III. It is apparent from the tables that wavelet coefficient 

and KSVM with Gaussian Kernel together yields the best 

performance for ERD/ERS classification, while AAR 

parameters and KSVM with polynomial kernel together has 

the highest classification accuracy for the ErrP classification, 

given specific values of kernel parameters. Thus, the KSVM 

with Gaussian Kernel is chosen as the classifier for the online 

detection of the ERD/ERS, and the KSVM with polynomial 

kernel function for the online detection of ErrP. Furthermore, 

sensitivity and specificity [46] analysis of the best performing 

classifier-feature pair is performed and the results are given in 

Table IV, for both the ErrP and ERD/ERS classification. 

TABLE IV 

ANALYSIS OF BEST PERFORMING FEATURE-CLASSIFIER PAIR FOR ERRP AND 

ERD/ERS DETECTION 
 

 

 

 

 

 

IV. PERFORMANCE ANALYSIS 

This section deals with the evaluation of experimental results. 

The first part analyzes the convergence of the proposed RL 

scheme. The second part deals with the performance analysis 

of Jaco robot arm in imitating actions of the expert and the last 

part deals with analyzing the performance of children in 

learning the game from humans versus Jaco. 

   Sensitivity   Specificity 

ErrP 0.89 0.97 

  ERD/ERS 0.96 0.85 
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A. Performance Analysis of SAPM Updating by 

Reinforcement Learning 

It is apparent that the probability of selecting a state-action 

pair is increased when an ErrP is absent following 800 ms of 

occurrence of an ERD/ERS. The proposed work on 

probabilistic reinforcement learning (PRL), is compared with 

two variants of Double Q-Learning namely, DQL1 [40] and 

DQL2 [41], Rainbow Algorithm [42], and Deep 

Reinforcement Learning (DRL) [43]. Fig. 6 provides a plot of 

probability of winning action selection versus 

iteration/learning epoch. It is observed from Fig. 6 that the 

proposed RL algorithm converges faster than the above 

mentioned algorithms, and thus justifies its importance over 

the existing techniques in the present application. 

B. Performance Analysis of SAPM Updating by 

Reinforcement Learning 

After updating the SAPM, the action corresponding to the 

highest probability for a given state is selected. In order to 

verify that correct updating of actions has been performed, we 

test the performance of Jaco robot in the ball throwing game. 

The Jaco robot is allowed to perform the ball-throwing task 

for 50 times in each of the 36 experimental test sessions. Each 

time the configuration of the box is supplied, a state 

corresponding to the box position is selected as the row index. 

In the selected row, a column containing the highest reward is 

used to obtain the column index, which indicates the action to 

be performed by the Jaco robot. The robot is able to imitate 

the action represented by the human trainer, by utilizing the 

Denavit-Hartenberg scheme for robot-kinematics, as explained 

in section II E. Subjective Kinect data, representing the body 

junction coordinates used in the ball-throw task along with 

velocity of the junctions are transferred to a humanoid Jaco 

robot arm for testing the performance of the subject. The 

performance is measured using the success in the robot’s aim 

in reaching the target position. We measure the radial distance 

between the fixed target point and the current location of the 

ball in 2-dimension (ignoring the z-dimension) to measure the 

separating distance between the centroid of the ball and the 

target position. Table V provides the measured radial distance 

between the ball-centroid and the target position in 2D for a 

given state. Considering 9 possible combinations of pan-tilt 

orientation of the target ring for a given radial distance and 50 

ball throws for each combination, altogether the robot has to 

perform 450 throws for different distances. It is apparent from 

the Table that in about 78% cases, the ball was placed inside 

the box. Additionally, it is apparent from Table VI that the ball 

is placed within small vicinity (6 inches) around the target 

position in 81% cases. This ensures that the Jaco robot arm 

could accurately configure its structure to mimic the human 

subject. The results in Table V are also plotted in Fig. 7, 

showing the approximated performance of the Jaco robot arm 

in placing the ball within a radial distance (RD) of ,6  8   and 

01   from the box. Here, the experiment is carried out for 4 

different distances of the box from the thrower: ,4  ,5  6  

and ,7  3 different ranges of tilt angle: [0  10), [10 20), [20 30) 

and 3 different ranges of pan angle: [-15 0), [0 15) and [15 

30).  

C. Performance of Jaco in Training Children 

20 right-handed children aged 8-10 years having normal or 

corrected vision, were asked to play the ball throwing game. 

Here, we arranged 36 training sessions for each child where 

each session consists of 50 trials/throws. In each experimental 

trial, two distinct phases of training are conducted. In the first 

phase, the Jaco robot arm selects the best action from the 

SAPM table and enacts the gesture to throw the ball to reach 

the target. In the latter phase, a human trainer does the same 

thing as Jaco did in the last phase. The children in either case 

have to mimic the trainer. Thus, a score-sheet like the one in 

Table VI is prepared. It is apparent from the Table that 

children’s success to place the ball within 6   of the target is 

higher by approximately (3 – 4)% when they are trained by the 

robot rather than by the human subject. 

      Further, children were asked to rate the motivation 

difficulty and fun on a scale of 1 to 3 for both the human and 

robot trainers. It was seen that learning from the Jaco robot 

was found slightly more difficult by the children. However, 

the fun and motivation of learning from a robot was higher 

and hence the children trained by robots experienced higher 

success (Table VII). The percentage of children who rated 

robot/human trainer experience for the three levels of 

fun/motivation/difficulty is given in Table VII. 
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TABLE V 
PERCENTAGE OF BALL THROWS REACHED INTO TARGET FOR JACO ROBOT ARM 

 

       TABLE VI 

PERCENTAGE OF SUCCESS (TO PLACE THE BALL WITHIN 6  OF TARGET) OF 

CHILDREN TRAINED BY ROBOT VERSUS HUMAN TRAINER 

 

TABLE VII 

PERCENTAGE OF CHILDREN WHO RATED THE EXPERIENCE OF LEARNING FROM 

A ROBOT FROM LOW (1) TO HIGH (3) IN TERMS OF 

MOTIVATION/FUN/DIFFICULTY 

 Human Trainer Robot Trainer 

     Rating        1        2        3           1         2           3 

    Motivation 18.86 60.13 21.01 15.03 13.96 71.01 

      Difficulty 51.97 31.01 17.07 30.98 51.03 17.99 

      Fun 49.33 30.12 20.55 4.05 8.8 87.15 

V. CONCLUSIONS 

The paper proposes a novel approach to train children 

autonomous ball-throwing towards a given target with the help 

of a pre-trained robotic manipulator. The most important 

aspect of the paper is to develop automatic learning skill of the 

robot from the acquired junction coordinates of the expert 

during ball throwing experiments.  A learning automaton is 

used to acquire parameters of the successful ball-throws for 

given position and orientation of the goals. After the 

automaton converges, the acquired learning skill is transferred 

to a robot arm for throwing balls to a given bin at a fixed 

distance with adjusted pan and tilt angles of the top surface. 

This is undertaken in the planning phase of the robot arm.  

      Experiments undertaken reveal that the robotic 

manipulator offers better success rate with reference to human 

trainers, when the performance is measured at the children 

end. The ERD/ERS and ErrP classifier performance was also 

analyzed to test their consistency using specificity and 

sensitivity analysis. The analysis reveals a reasonably good 

classifier performance. 
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