
 

 

Abstract— Brain-Computer Interfacing has currently added a 

new dimension in assistive robotics. Existing brain-computer 

interfaces designed for position control applications suffer from 

two fundamental limitations. First, most of the existing schemes 

employ open-loop control, and thus are unable to track the 

positional errors, resulting in failures in taking necessary online 

corrective actions. There are traces of one or fewer works dealing 

with closed-loop EEG-based position control. The existing closed-

loop brain-induced position control schemes employ a fixed order 

link selection rule, which often creates a bottleneck for time-

efficient control. Second, the existing brain-induced position 

controllers are designed to generate the position response like a 

traditional first-order system, resulting in a large steady-state 

error. This paper overcomes the above two limitations by keeping 

provisions for (Steady-State Visual Evoked Potential induced) 

link-selection in an arbitrary order as required for efficient 

control and also to generate a second-order response of the 

position-control system with gradually diminishing 

overshoots/undershoots to reduce steady-state errors. Besides the 

above, the third novelty is to utilize motor imagery and P300 

signals to design the hybrid brain-computer interfacing system 

for the said application with gradually diminishing error-margin 

by speed reversal at the zero-crossings of positional errors. 

Experiments undertaken reveal that the steady-state error is 

reduced to 0.2%. The paper also provides a thorough analysis of 

stability of the closed-loop system performance using Root Locus 

technique. 

 
Index Terms—BCI; EEG; SSVEP; Motor Imagery; P300,  

Jaco Robot Arm. 

I. INTRODUCTION 

Brain-Computer Interfacing (BCI) is gaining popularity for its 

increasing applications in assistive robotics and rehabilitation 

engineering. BCI technology captures the human motor-

intention to translate the thoughts into commands and actuates 

the robot to execute a mentally planned complex task. A BCI 

framework provides a non-muscular channel of 

communication with the outer world to enhance the quality of 

life of people suffering from brainstem stroke, neuro-muscular   
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disorder, and the like, with an aim to rehabilitate them to their 

normal lives.  

Hybrid BCI [1] is a widely used name in the BCI technology. 

Generally, it refers to multiple modalities of acquisition of 

brain activities, including functional Near Infrared 

Spectroscopy (fNIRS), functional Magnetic Resonance 

Imaging (fMRI), Electroencephalography (EEG), Electro-

Corticography (E-Cog), and the like. The second category of 

hybridization includes utilizing brain activity acquisition 

response in presence of other physiological modality, such as 

muscle activity acquisition by electromyography (EMG), eye-

movement acquisition by electro-occulography, and the like. 

In this paper, we, however, used the phrase ‘hybrid BCI’ to 

refer to utilizing multiple brain signals within a single 

modality of brain-activity acquisition, here EEG. Each brain 

signal, here, refers to one specific cognitive functionality of 

the brain, such as motor movement planning, responding to 

rare/infrequent (error) stimuli, and communicating subject’s 

choice (among alternatives) to the BCI system. It is, however, 

important to note that hybrid BCI may involve multiple EEG 

signals to decode a single cognitive activity of the brain [2] 

with an aim to improve the reliability in the detection of 

cognitive task undertaken. 

       EEG is preferred in BCI design for its non-invasiveness, 

faster temporal response, and low cost [3]. This paper employs 

EEG to capture the subject’s motor-intention. Existing works 

on mind-controlled external devices utilize a few selected 

brain signals, including Steady-State Visually Evoked 

Potential (SSVEP), P300, Motor Imagination (MI), Error- 

related Potential (ErrP) for position control of artificial human 

appendages/external manipulators [4-8]. For example, P300 

has successfully been used for goal/destination selection of a 

mobile robot/wheelchair [9-10]. SSVEP has been utilized for 

direction control of wheelchairs [11]. Motor imagery is used 

in most of the position control applications to actuate the 

external device based on right/left hand-motor imagination 

[12-13]. Lastly, ErrP is infrequently used to determine the 

occurrence of error, particularly when the manipulator crosses 

a fixed (predefined) target position [14]. 

SSVEP has been proved to be the most promising brain 

pattern in the BCI technology [15]. It is elicited from the 

visual cortex of the occipital lobe as a response to some visual 

stimulus that flickers continuously at a certain frequency in the 

range of [6, 30] Hz. The SSVEP constitutes signal rhythms at 

the target frequency and its harmonics [16], and thus is useful 
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in communicating the subject’s choice to the BCI system, 

when the options corresponding to the stimuli are flickered at 

selected frequencies.  

When a subject undertakes MI, a signal called Event-

Related De-synchronization (ERD) followed by Event-Related 

Synchronization (ERS) originates from the motor cortex as mu 

and beta rhythms. ERD refers to a relative decrease in the 

signal power in the - and the -bands during motor 

imagination in comparison to the resting state of the brain [17-

18]. On completion of the motor imagination task, the signal 

power of the -band increases until the power level matches 

the average value of the resting potential. The latter signal is 

referred to as ERS. 

Lastly, P300 is an important Event-Related Potential (ERP) 

that appears in the subject’s EEG recording when he focuses 

his attention to some significant but rare stimulus [19-20]. The 

subject must respond to the target stimulus in an either covert 

or overt manner in order for P300 to be evoked. This modality 

is characterized by a positive deflection in the EEG voltage 

waveform around 250 – 500 ms (on an average 300 ms) after 

the observation of the target stimulus. P300 can be recorded 

most prominently over the midline of the brain. This ERP is 

often used to monitor the subject’s attentiveness [21].  

In closed-loop position control applications, we often come 

across a feedback signal for automatic detection of zero 

positional error with respect to a desired step input of the 

angular position command. Both P300 [22] and ErrP [23] have 

been employed by previous authors to address the problem. 

The ErrP used in the present context, often referred to as 

observational ErrP, is elicited from the medial frontal region 

with a negative deflection of approximately 250 ms after the 

subject observes a machine (or a person) to commit errors. 

Here, committing errors refer to crossing the desired angular 

position/set-point of the position-control experiment. ErrP, in 

general, is a reliable feedback signal. However, its magnitude 

is diminished in subjects with spinal cord injury and 

schizophrenic disorders [24-25].  ErrP amplitude and latency 

also suffer from inter-subject and inter-trial variability [26-

27]. Lastly, ErrP is best elicited with discrete events [28]. Here 

the robot motion is continuous which makes the ErrP signal 

less suitable to be used as feedback marker. Because of the 

above limitations of ErrP, we prefer to use P300, which is 

released approximately 300ms from the onset of positional 

zero-crossing errors, experienced by the subject. 

In this paper, SSVEPs corresponding to different flickering 

frequencies have been used to randomly select a link of the 

robotic manipulator. Motions of the manipulator links are then 

activated by the subject’s motor imagination. When the 

selected link reaches the desired target position, P300 is 

elicited in the subject’s EEG. The P300 is used to freeze the 

current motion of the robotic link. Since elicitation and 

detection of P300 waveform requires a finite (non-zero) time, 

the robotic link crosses the target position by a small angle 

before its motion is stopped. The link is then moved in the 

reverse direction of the last motion, i.e., towards the target 

location. Throughout the motion of the link, we maintain a 

gradually diminishing speed. When the link reaches the target 

again, P300 appears once again and the above mentioned 

process in repeated. This cyclic operation continues as long as 

the speed of the link remains above a pre-defined threshold 

value. Evidently, this process can align the link with the target 

with a high degree of accuracy. The BCI framework 

developed here consists of 4 successive stages. First, the 

acquired EEG signals are pre-processed to make them free 

from noise and artifacts. Second, the relevant features are 

extracted from the pre-processed signals. Third, the classes of 

the experimental data points are determined by suitable pre-

trained classifiers. Finally, control commands are generated to 

actuate the manipulator to serve the desired requirement. 

The work presented in this paper is an extension of [14] by 

the following counts. First, it includes a provision for random 

ordered link-selection by SSVEP based BCI, instead of a fixed 

ordered link selection adopted in [14]. Second, the proposed 

hybrid BCI system takes into account of MI and P300 signals 

for position control of a robot arm, instead of hybridization of 

MI and ErrP.  Third, the paper provides a thorough analysis of 

stability using Root Locus technique. Above all, the proposed 

method reduces the steady-state error drastically (0.2%) in 

comparison to the one presented in [14], thus justifying its 

scope in high precision rehabilitative appliances. 

 The original contribution of the paper lies in the 

architectural design of the hybrid BCI-based closed-loop 

position control system with special emphasis on the modeling 

of the position controller from the response analysis of the 

control system. The model presumes an expected time-varying 

response of the position-controller like that of a stable second 

order dynamics due to impulsive occurrence of error input at 

time t=0, and thus determines the transfer function of the 

position controller in Laplace-domain. Given the transfer 

function of an armature controlled DC motor (for one link of 

the robot), a stability analysis of the closed-loop position 

control system, involving both the motor and the controller, is 

performed using Root-Locus analysis [45]. The analysis 

reveals an interesting observation that the stability margin of 

closed-loop system is determined by the initial choice of 

maximum speed of the robotic links. The proposed method of 

analytical formulation of controller is novel in BCI-based 

position-control system. Secondly, a simple but elegant feature 

selection algorithm is proposed to automatically select the best 

feature-set from a pool of features with an aim to minimize the 

distance between pairs of intra-class data points and maximize 

the distance between pairs of inter-class data points for the 

selected feature set. An evolutionary algorithm is used to 

handle the said optimization problem. 

The paper has 9 sections. Section II provides a general 

overview of the complete scheme. Section III deals with signal 

processing, feature extraction, and classification of used brain 

signals. Controller design and stability analysis are examined 

in section IV. Experimental details are presented in section V. 

Statistical analysis and Controller performance analysis are 

given in Sections VI and VII respectively. Comparison with 

similar works is undertaken in Section VIII. Finally, the 

concluding remarks are listed in section IX.  



 

II. SYSTEM OVERVIEW 

This section proposes a novel strategy to control the position 

of a robot’s end-effecter in 3D space. The robot arm used here 

has 6-degrees of freedom (DOF) with the maximum reach of 

580 mm in any arbitrary direction. The frame assignments for 

all the joints along with the directions of positive angular 

motions about the z-axes are shown in Fig.1.  

 
                   
                 Fig.1 Frame assignments of a 6-link Jaco Robot arm   

 

The current work uses only the first three links, L1, L2 and 

L3, of the robot arm. Fig. 2 illustrates the complete position 

control scheme. Three different brain signals, including 

SSVEP, ERD/ERS and P300 are employed here to control the 

position of the robot arm in its workspace. The key steps of 

the process are elaborated next. 

 

 
 

Fig. 2 Basic block diagram of the proposed position control scheme 

 

A. Link selection by SSVEP detection 

Existing research on BCI-controlled robotics utilizes a fixed 

order of link selection, i.e., the robot follows a fixed temporal 

sequence of link selection irrespective of the target position of 

the end-effecter [14]. In many real-world position-control 

applications, dynamic link selection based on the users’ choice 

is required to improve the speed and accuracy of the position-

control task. This paper aims at developing                                                                                                       

a dynamic order of link selection. One fundamental hindrance 

in dynamic link selection is lack of communication to the 

robot about the choice of the current link by BCI means. This 

has been overcome here by attaching Light Emitting Diodes 

(LEDs) to individual links, flickering at different frequencies. 

The subject needs to stare at one of the links carrying a LED, 

flickering at a fixed frequency, which in turn releases a special 

brain signal, called SSVEP. The SSVEP being frequency 

modulated at the flickering frequency, yields large amplitude 

at the flickering frequency of the specific LED, the subject 

pays attention to. The subjective interest of link-selection thus 

becomes apparent from the frequency spectra of the SSVEP.  

B. Motion activation by MI decoding 

Selection of a link by the subject indicates that the subject 

likes to activate the link for clockwise/counterclockwise 

turning using motor imagery signals. The ERD/ERS motor 

imagery signal has been used to direct the motion of the link 

in the desired direction. The ERD/ERS signal exhibits a de-

synchronization in the - and the -band power, followed by a  

synchronization in the -band power, and thus takes a ‘v’-like 

wave-shape.  Because of the contra-lateral connectivity 

between limbs and the brain, ERD/ERS is released by the left 

motor cortex for Right-hand motor imagery (RHMI) and by 

the right motor cortex for Left Hand Motor Imagery (LHMI). 

Suppose the subject wants to move the link clockwise by 

RHMI and counter-clockwise by LHMI. Thus it is preferred to 

detect LHMI (RHMI) from the right (left) brain lobe for 

efficient decoding of the motor imageries.  

   Decoding of ERD/ERS requires determining ground-truth 

and then identifying similar ERD/ERD traces from the 

experimental instances. One simple method to construct the 

ground truth is to take average of the available ERD/ERS 

traces from the experimental instances [29], where averaging 

is performed at the sample points over all instances. The 

averaged trace is defined as the ground truth ERD/ERS. The 

other ERD/ERS traces in the pool that satisfy the Gaussian 

characteristic at all the sample points are regarded as the 

positive instances for the true ERD/ERS class. The Gaussian 

criterion is given below for the sake of convenience. Let 

iAv be the average value of all ERD/ERS traces at the sample 

point i, and i  be the standard deviation of all the traces at 

sample point i . Then an unknown ERD/ERS trace is presumed 

to be close enough to the ground truth, if 

                          i ,3/  ii
j

i Avx                (1)                      

where, 
j

ix is amplitude of the j-th  ERD/ERS at the sample 

point .i  The true class of ERD/ERS thus can easily be 

obtained. To identify the training instances for the false class, 

the false negative ERD/ERS instances are considered, and the 

above steps of positive instances are repeated. 

   After the 2 classes of the ERD/ERS traces are generated, we 

need to extract certain ERD/ERS features, which together with 

the class label represent a sample training instance. Hzorth 

parameters, Adaptive Auto-Regressive parameters (AAR) and 

Discrete Wavelet co-efficient (DWT) are few useful features, 

which have received wide publicity in BCI research. Common 

Spatial Pattern (CSP) features have also shown promising 

performance in LHMI/RHMI classification tasks [37]. We 

would use CSP features for MI classification in this paper. 



 

C. Alignment with the target by P300 identification 

Once the MI signal is released by the subject’s brain, one 

selected link of the robot starts turning in clockwise/counter-

clockwise direction, and as a consequence, the end-

effecter/link at some time point t, counted from the onset of 

the ERD/ERS signal crosses the fixed (pre-defined) target 

position. This phenomenon that the end effecter crosses the 

target position acts as an infrequent stimulus to the subject, 

causing him/her to release P300 signal. In other words, release 

of P300 signal from the subject’s brain in the present context, 

is a clear indication that the end-effecter/link crossed the target 

position, and thus needs a corrective action. Here, the release 

of P300 is used as the corrective feedback to the BCI system 

to turn the robotic link in the reverse direction of its current 

movement direction with a gradual decay of its angular speed. 

The process is continued until the angular speed (or linear 

velocity) of the link goes below a user-defined threshold. The 

continued reduction in speed, and reversal of motion around 

the target-point, effectively results in a reduction in the peak 

overshoot and steady-state error. The pseudo-code for the 

proposed scheme of position control of a robotic arm is given 

below. The code is self-explanatory. 

 

Pseudo-code for the proposed position control scheme 

Begin 

Initialize:  Initialize angular speed   of each link= ,.0
te  

where   

0  is the initial angular speed, (>0) is the decay factor, and 

t=iteration; = lower limit of angular speed; 

Repeat 
 1. Use SSVEP decoding to select a link of the user’s choice; 

 2. Use MI decoding to find the direction of motion 

(clockwise/counter-clockwise) of the selected link with a pre-

selected angular velocity ω; 

    While>   do Begin 

 3. Continue moving the link until P300 is detected, implying 

that the selected link crossed the mentally-imagined target 

position;  

 5. After the link crosses mentally imagined target position, stop 

it temporarily, and reverse the motion of the link with 

magnitude of angular speed = ,. te    where  =the 

angular speed of the link just before zero-positional crossing;  

  End-While; 

 Until movement of all desired links are over; 

End.  

 

III. SSVEP, ERD/ERS AND P300 DECODING 

This section narrates the steps involved in processing the EEG 

signals with an ultimate aim to recognize the BCI signals: 

SSVEP, MI, and P300. The SSVEP signal originates from the 

visual cortex region of the occipital lobe. The electrodes O1 

and O2 of the international 10-20 electrode placement system 

being nearest to that brain region are used for the purpose of 

SSVEP decoding. The origin of the MI signals, on the other 

hand, is Parietal cortex and sensory-motor cortex regions. The 

electrodes located nearest to this region are C4, C3, Cz, P3, P4 

and Pz. So these 6 electrodes are employed for MI signal 

classification. Lastly, the P300 signal appears with relatively 

larger amplitude over the midline of the brain, thereby 

facilitating the use of Fz, Cz and Pz electrodes for its 

identification- Thus in this paper a total of 9 electrodes, 

including Fz, C3, C4, Cz, P3, P4, Pz, O1 and O2, is employed 

for EEG signal acquisition.  

A. Preprocessing 

After acquisition, the EEG trials are filtered spatially by 

means of Common Average Referencing (CAR) to remove the 

common-mode noise, including thermal noise, power line 

interference, undesired physiological signals etc., which 

appears uniformly across all the EEG electrodes [30]. Here, 

the sample-wise average of all the channels is subtracted from 

the signal samples of each channel at each time instant. 

Although there exists other sophisticated methods of noise and 

artifact removal, CAR has been chosen because of its low 

computational overhead in comparison to other existing 

filtering algorithms [31]. 

B. SSVEP Detection 

1) SSVEP preprocessing 

The spatially filtered EEG signals are passed through a BPF of 

passband 0.1-30 Hz, realized with a 6th order elliptical filter 

of 1dB passband ripple and 60dB stopband attenuation. The 

reason behind the choice of the elliptical filter is that it 

provides sharp roll-off characteristics and good attenuation of 

ripples in both the pass and the stop bands. 

2) Feature extraction 

For the purpose of SSVEP detection, power spectral density 

(PSD) estimates at the three flickering frequencies and two 

harmonics of each of those frequencies are used as the EEG 

signal features. In this paper, the Yule Walker method of Auto 

-Regressive (AR) spectral estimation has been employed, 

where the autoregressive model of the input signal is used to 

determine the PSD [32]. The AR based method is chosen over 

conventional periodogram method primarily because of its two 

significant advantages. First, for signal-to-noise ratio (SNR) 

greater than 0dB, this method provides better frequency 

resolution than the traditional periodogram methods. Second, 

this method is free from distortions due to side-lobe leakage 

effects which are inherent in the periodogram approach.  

        According to the Yule Walker method, the acquired EEG 

signal is described by an AR Model, where AR model 

parameters depend only on the previous output samples of the 

system. Therefore, acquired n point sequence of EEG signal 

( )y n can be described as a linear combination of previous 

output of the system with introduction of an error term ( )n , 

where },0{)( 2
ENn   represents a Gaussian noise with 

mean zero and variance 
2 .E  

For previous j samples, ( )y n can be represented as, 




 
j
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k nnyzkany
1

)()()()(                                         (2)  

y(n) indicates the nth sample of the input signal and )(ka  

denote the AR parameters where ],1[ jk  , and j  denotes the 

model order of the system. Here AR parameters are estimated 

using least mean square method (LMS).  Rewriting equation 

(2) yields,  



 

.

)(1

1

)(

)(
)(

1










j

k

kzka
n

ny
fH                                         (3)  

For estimating the power spectral density (PSD) of the original 

EEG signal, PSD of the white noise (error term) must be 

known, which is found to be its variance ( 2 ). Therefore, 

power spectral density estimate reduces to computation of (4) 

given below. 
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In the present context, three flickering frequencies (7Hz, 10Hz 

and 12Hz) are considered. Spectral power of each of the 3 

frequencies with their 2 harmonics is considered as feature 

vector. For each frequency, bandwidth of 0.5Hz below and 

above the stimulus frequency is taken with a resolution of 

0.1Hz. Each stimulus frequency with its two harmonics 

generates 33311  features for a single electrode. Total 

features generated in a single electrode for all the frequencies 

are 99333  . The study considers two electrodes for SSVEP 

detection, hence a total 198299   features are generated in a 

single epoch. We reduce the set of features into a small set 

using the following feature selection algorithm. 

 

3) Evolutionary Feature Selection 

The motivation of feature selection is to identify the smallest 

possible set of features, which should ideally be independent 

of each other, but are sufficient to characterize the classes of 

the given training instances. Such characterization is necessary 

for recognition of the classes from the selected 

features/attributes of the training instances. Existing literature 

on feature selection primarily aims at selecting features based 

on their linear independence [33]. An alternative method, 

perhaps, is to select features so as to maximize inter-class 

separating distances and minimize intra-class separating 

distances. This requires construction of objective functions, 

ensuring the above requirements, and a time-efficient search 

algorithm that identifies the smallest possible set of features 

that satisfy the objective functions jointly.  

  Let, kjif ,,  represent the feature i of the data point k lying in 

class Gj. Also consider the parameters: ljif ,,  and ,,, ljif   where 

the suffixes carry similar meaning as defined for  .,, kjif  

Suppose the training instances include M features for each 

data point, and s (<= M) denotes the number of selected 

features. Let Obj1 and Obj2 denote 2 objective functions, 

representing the respective measures of intra-class and inter-

class separating distances between pairs of data points. In case 

of Obj1, the distance is computed between kjif ,,  and ljif ,, for 

data points k and l both lying in class jG  for j in [1, R]. In 

case of Obj2, the distance is evaluated between kjif ,, and 

ljif ,,  lying in different classes jG  and jG  respectively. For 

the present application, we need to minimize Obj1 and 

maximize Obj2.   
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where 

,...},{, ljrGG
r

r                                                       (7)                                                           

and ||.|| denotes the Euclidean norm. 

 

For the sake of simplicity and convenience, the objective 

functions presented in (5) and (6) are combined to form a 

single objective function (8), the minimization of which would 

serve the purpose. 

 0,
2

1
3 


 
 Obj

Obj
Obj                                                         (8) 

Here, , a small positive number, is introduced in (8) to limit 

Obj3 to a finite value, particularly when Obj2 approaches 

zero. In the present circumstance, we select  as a very small 

positive number (10-6), so that it has no influence on Obj3
, as 

obj2>>   in (8), for such setting of . 

   Although there are several meta-heuristic algorithms to 

minimize (8), we select the well-known Particle Swarm 

Optimization (PSO) algorithm, primarily for its small code, 

small convergence time, small run-time complexity and most 

importantly the authors’ familiarity with it [34] over a decade. 

The parameters of the PSO algorithm used include swarm 

confidence=2.0, self-confidence=2 and inertial weight=0.729 

based on the authors' experience [34]. 

 

4) Classification 

A three-stage hierarchical linear support vector machine 

(LSVM) classifier has been employed for the purpose of 

SSVEP classification. Though any other standard pattern 

classifier could have served the purpose,  LSVM is selected 

for its high classification accuracy and low computational 

overhead [35]. Besides, LSVM requires smaller training time 

as compared to other classifiers like, naive Bayesian or multi-

layered Perceptron. Here SSVEP detection is performed in 

three distinct stages of binary classifications. In the first stage, 

the EEG trial is classified to check the presence of SSVEP in 

the selected time-window. On finding the presence of SSVEP, 

the second stage of classification is performed so as to 

determine if the trial corresponds to frequency f1. In the final 

stage, the non-f1 trials are further classified into the two 

classes corresponding to frequencies f2 and f3, respectively. 

C. ERD/ERS Detection 

1) MI preprocessing 

In this case, EEG trials filtered spatially by CAR, are again 

filtered by a BPF of passband 8-24 Hz. The BPF is designed 

by utilizing a 6th order elliptical filter of 1dB passband ripple 

and 60dB stopband attenuation. 

2) Feature extraction 

 

For MI detection, we extract Common Spatial Pattern (CSP) 

features. CSP is an optimized spatial filter, which aims at 



 

minimizing intra-class variance and maximizing inter-class 

variance of the filtered signals [36]. Let iX be 

a )( qp matrix representing band-pass filtered EEG data of 

class ,2 ,1  , ii  where p and q respectively denote the number 

of channels and time-slices used in a trial for data acquisition. 

Let 1C  and 2C be the spatial covariance matrices for class 1 

and 2 respectively, where 
T

XXC 111  and .222
T

XXC   

CSP attempts to determine the optimal spatial filter vector 

],[ iww   where iw  is the weight of the thi  channel, such 

that the ratio of variances of the spatially filtered signals 

1wX and 2wX , given by )(wJCSP  is optimized 

(maximized/minimized), where   
TT

CSP wXwXwXwXwJ )).((:)).(()( 2211  

               TTTT
wXXwwXXw )(:)( 2211  

               .: 21
TT wwCwwC                                                  (9) 

The optimization of (9) is solved by General Eigen Value 

Decomposition (GEVD) technique. In fact, the principal 

components corresponding to the largest and the smallest 

eigen values of 1
1

2 CCA


  act as the desired spatial filters 

corresponding to the maximum and the minimum variances. 

The Singular Value Decomposition (SVD) technique is 

employed next to obtain the CSP filter TUw  by representing 

the matrix ,  TUDUbyA where D is a diagonal matrix. The 

logarithm of the variance of CSP projections, i.e., )log( TwCw  

))log(var(wX for 21 X and XX  are then used as CSP features 

of 2 classes. 

  The classical CSP algorithm outlined above works 

exceptionally well when the acquired EEG signals have large 

signal to noise ratio. However, because of non-stationarity of 

the EEG, the same algorithm may not work well universally 

across all subjects [37]. Particularly, it suffers from high 

sensitivity to noise, over-fitting and in-sensitivity to spectral 

information of the used EEG samples [37].  The sensitivity to 

noise and over-fitting are eliminated by adding suitable 

regularizing constraints [38] in the CSP objective function (8). 

To utilize discriminating wave-shapes and/or spectral 

information of RHMI and LHMI, there are 3 alternatives: i) 

using CSP features along with temporal [39] and spectral 

features [40] of EEG for classification, ii) undertaking CSP in 

narrow sub-bands of the useful frequency spectrum for MI, 

and then selecting the best set of features from the CSP 

features in b sub-bands using a mutual information based 

feature section [41] hereafter called  Filter Bank CSP (FBCSP) 

and iii) considering both magnitude and phase of the EEG 

samples in the CSP formulation [42] to derive optimal CSP 

features. Here, we adopt both (ii) FBCSP and (iii) Magnitude-

Phase CSP (MPCSP) independently, and compare their 

relative performance with classical CSP in the experiment 

section. A brief outline to [42] is given in the Appendix. 

 

3) Classification 

This paper makes use of a 2-stage Radial Basis Function 

kernelized Support Vector Machine (RBF-SVM) classifier, 

where the first stage categorizes the feature vector of an EEG 

trial is into presence/absence of MI in the trial. The trials 

found to contain MI are classified in the second stage into 

LHMI and RHMI. 

D. Signal processing for P300 detection 

1) P300 Preprocessing 

The CAR-filtered P300 signal is passed through a BPF of 

passband 0.1-10 Hz. The filter is implemented with 6th order 

elliptical filter of 1dB pass-band ripple and 60dB stop-band 

attenuation. 

2) P300 Feature extraction 

Here, the adaptive autoregressive parameters (AAR) are 

utilized as the features of the EEG trials. The AAR model can 

efficiently represent the stochastic and non-stationary nature 

of EEG signals owing to the time-varying characteristics of 

the AAR coefficients [43] A jth order AAR model, AAR( j ), is 

represented by (1) where the AR parameters are evolved with 

time using a Recursive-Least-Squares (RLS) algorithm [44] 

with an update-coefficient set to a small number (=0.008) to 

facilitate only small changes in consecutive iterations.  

    For offline sessions, here, P300 trial is captured for the 

duration of 2s. Considering a sampling rate of 200Hz, a total 

of 400 data samples are collected during a single trial. Here, a 

6th order AAR model is considered, hence 6400=2400 AAR 

features are obtained. AAR features are averaged with a 

moving window of length= 60 features (50ms). So, the 

dimension of the feature vector for each electrode after 

window averaging is 40. Considering three electrodes, 

zzz PCF ,,  we thus have a total 120340   features.  

 

3) Feature selection 

The PSO-based feature selection algorithm introduced before 

is employed now to select the most discriminating features for 

2 classes, representing P300 present or absent in a given time-

window. 

4)  Classification  

The selected features are submitted to an LSVM classifier to 

recognize the presence or absence of P300 in the selected 

window. 

 

 

IV. THE CONTROLLER DESIGN 

A. Control Strategy 

Traditional BCI based position control paradigms realize 

open-loop control using MI. As a consequence, the 

performance of the position control system cannot offer 

desired performance. A closed-loop feedback control system 

realization using BCI means is a necessity to serve the desired 

performance in position control, such as steady-state error and 

peak overshoot. The proposed control strategy can reduce both 

the steady-state error and peak overshoot than the ones 

obtained in open-loop position control. The peak-overshoot is 

reduced by noticing the occurrence of the P300 signal, once 

the desired robotic link crosses the targeted position (target 

point in case of translational movement along a line, target 

angle in case of rotational movement on a plane, and target 

plane  in case of rotation of the link from one plane to the 



 

other), and then by reversing the motion of the link. The 

steady-state error here depends on the response time of the 

P300 signal  and the time required for the robotic motion. 

Since P300 signal is released approximately 300ms away from 

the onset of an oddball stimulus (here, crossing of the target 

position), the steady-state positional error due to P300 is 

negligible. The time delay due to motor activation time (or 

motor time constant) can be reduced by selecting high speed 

motor. 

     The steady-state error can be reduced by gradually 

reducing the speed of the motor exponentially with time t, and 

reversing motor speed each time the robotic link crosses the 

target position. One important aspect that needs special 

mention here is that like traditional control, here too the 

steady-state error can be reduced at the cost of increased 

settling time [45].   

     Let the i-th  link at time t  be at position )(tCPi  and iSP  be 

the visually fixed target position for the same link. Then error 

at time t  is defined as follows; 

)()( tCPSPte iii                                                             (10) 

    A typical P300 response is generated by the brain whenever 

)(tei crosses zero value, i.e., )(tei is slightly positive or 

negative. It is important to mention here that in classical 

control theory [43], the control signal ui(t) for the i-th link  is a 

function of error ).(te
i

 However, in BCI-based position 

control, we do not have absolute measure of the magnitude of 

error as the error is recognized visually by the brain from the 

zero-crossings of ),(te
i

and P300 can only ensure occurrence 

of zero-crossings without having any information about the 

magnitude of error. So, we need a different formulation of the 

controller. The control problem in the present context is 

formulated as follows.  

1) The controller should allow an exponential decrease in 

speed throughout the motion of the targeted link. 

2) For each zero-crossing of error, we switch off the link- 

motor and then turn its motion in the reverse direction with 

the same speed as it had just before zero-crossing. The 

exponential decrease in speed is continued between each 

successive pairs of zero crossings.  

3) Step 1 and 2 are continued until the speed goes below a 

user-defined threshold. Once the speed goes below the 

threshold, simply stop the motion of the robotic link. 

 

    The threshold is estimated by a series of previous 

experiments to determine the smallest speed for which the 

steady-state error is negligible for the given moment of inertia 

of the selected link. So, the threshold speed for each link 

should be different due to difference in link moment of inertia. 

    Let at time t=Ti the P300 signal appears, indicating one 

zero-crossing in (positional) error. We then allow an interval 

Ti+1-Ti, to generate a control action with an aim to reduce link 

speed by a factor of 
te 

for a real ,0  and reversing its 

motion. The reversal of motion is synthesized by a factor of 
i)1( for the i-th control iteration. Let )(tf

i
be the controller 

response for t in [Ti, Ti+1] where 
0

v is the start-up speed of the 

            
Fig 3.Variation of link velocity due to the occurrences of the P300 signal 

 

link at t=0, (much before the first zero-crossing), which 

usually is high. 
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In (11), )(tu is a unit step function, and so 1)(  iTtu for 

iTt  and ,0)(  iTtu elsewhere. 

Then for i= 0 to N zero-crossings of error ),(tei we model the 

controller response )(tf by (11). 
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Now, taking the Laplace transform of the equation (12), we 

obtain (13). 
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where TTT ii 1 .  

Now, by Pade’s approximation [46], (14) can be re-written as 
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The 0)( Ts
e


term in the above equation reduces to unity as 

0T is taken as zero and the rest of the terms form a Geometric 

progression whose common ratio is )( )( Tse  
. Now by 

considering up to 4th order terms (i.e., N=4) in the series, the 

approximate value of the sum of series appears as: 
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Now, again applying Pade Approximation, we obtain: 
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Considering a unit impulse as the error input at time point t=0, 

we obtain the transfer function )(1 sG  of the controller as 

.
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  Let )(2 sG be the transfer function of the plant, which is taken 

as standard transfer function of an armature controlled DC 

motor, used in the robot actuator. The open loop transfer 

function of the system is defined by ),()()( 21 sGsGsG                                                               

where )(2 sG takes the following form. 
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     (18) 

 

TABLE I. PARAMETERS OF THE ARMATURE CONTROLLED DC MOTOR 
 

Parameter Description Value 

KT Mechanical Gain 0.06 N-m/A 

KE Electrical Gain 0.06 V-s/rad 

Ra Armature Resistance 1.2 Ohm 

La Armature Inductance 0.020 H 

Jm Armature Inertia 6.2 x 10-4 N-m-s2/rad 

Bm Armature Viscous Friction 1 x 10-4 N-m-s/rad 

                                                                  

For simplifying the overall calculation, numerical values of 

the different parameters are assumed as  

,1sT  5.0 and K,0 v the controller DC gain. 

)(1 sG and  )(2 sG take the following form after substitution of 

the numerical values of the parameters. 

,
1

5.0
)(1 














s

s
KsG                                                            (19)           

sss
sG




232
201.00033.0

13.16
)(                                          (20) 

The root locus plot of )().( 21 sGsG  is shown in Fig. 4 to 

determine the stability of the closed-loop system from its 

open-loop transfer function.      

    To determine the optimal choice of the controller 

parameter ,  we measured the time-domain parameters of the 

overall system response due to step input, and noted that the 

time-domain performance of the closed-loop system yields 

minimum peak overshoot and optimal settling time for 

.5.0 This is studied in the controller performance 

analysis section.  

It is apparent from the plot, that system behavior is stable for a 

certain range of DC gain K. Stability margin of gain K for 

 =0.5, is found as .12.40  K So, the closed-loop system is 

stable for the initial motor speed setting .12.40  Kv  

 

Fig. 4 Root locus plot of the overall system transfer function G1(s).G2(s) 

V. EXPERIMENTS AND RESULTS 

This section presents the experimental protocol and the main 

results obtained, while conducting the experiments. 

Performance of the SSVEP, MI and P300 classifiers has been 

presented here in terms of four metrics viz. classification 

accuracy, true positive rate, false positive rate and 

computation time. 

A. The experimental framework 

Subjects: Ten volunteers were chosen for the experiment. 

Medical history of the volunteers shows no evidence of any 

critical illness or any other surgery undergone in the near past. 

Among 10 subjects, 6 are male and 4 are female and all of 

them are in the age group of 24-30. A consent form was duly 

signed by them stating their willingness to participate in the 

experiment. All other safety and ethical issues were 

maintained according to Helsinki Declaration of 1970, revised 

in 2000 [47]. 

The EEG system used: A 19 channel EEG device 

manufactured by Nihon-Kohden is used to acquire the EEG 

signal from the subjects. Electrodes  are placed according to 

the standard 10-20 electrode placement system, which uses A1 

and A2 as the reference electrodes and FPz as the common 

ground. A built-in notch filter of 50Hz frequency eliminates 

the power-line disturbances. The device acquires EEG signal 

at a sampling rate of 200Hz. 
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Fig.6. Stimulus description (header of the figure) with robotic actions in sequence (left to right of the first row followed by left to right of the second row) for  a 

specific control task (to grip the ball)

.  

 
 

Fig. 5.  Bold (blue) circles representing selected electrode positions in the 
international10-20 electrode placement array 

B. The Training session 

The training was offered in off-line mode with the help of a 

Power-Point (PPT) stimulator. The first slide includes a 

fixation cross to make the subject alert to the stimulator. The 

second slide includes a flickering source mounted on one link 

of a robot arm to help the subject reproduce the SSVEP at the 

source frequency. The simulator includes a 3 link robot arm, 

each with a provision for flickering at different frequencies, 

with an ultimate aim to select the link based on the frequency 

contained in the SSVEP produced by the subject. The subject 

is asked to gaze on the particular flickering source mounted on 

the robot link. Once the SSVEP is recognized, the 

corresponding link responsible for the SSVEP is highlighted 

with green color.  The third slide includes commanding the 

subject to produce Left/Right motor-imagery for 

clockwise/counter-clockwise rotation respectively of the link. 

The last slide contains a virtual scenario where a particular 

robot link crosses a fixed target. The subject on observing this 

is expected to yield a P300 signal. The above sequence of four 

slides is repeated for 60 times across one-week time. One 

typical instance of the training session, comprising stimulus 

presentation followed by robotic actions in response to the 

stimuli is given in Fig. 6.  

C. The Test session 

The basic difference between the training and the test session 

lies in the phenomena that the training is imparted in 

simulation mode, while the test session is performed online 

with the real robot. Although apparently, the difference is 

small, test session usually is more complex, as the subject 

himself has to plan the three steps of operations: link selection 

by SSVEP, MI to move the selected robot arm and P300 

generation on observing a positional error (i.e., the link 

crosses the target position), without having a reference on 

time-limits/intervals. Link selection protocol and link 

movement direction protocol are illustrated in Table II and 

Table III respectively. 

During the real-time testing session, each of the three brain 

signals are observed with a moving time window of 1s. Hence 

all the signals are captured throughout length of the window 

but an exception is followed in case of MI detection. MI signal 

is observed thorough the entire length of the window but only 

last 0.2s of the signal is taken into account [48].  

 
TABLE II. SSVEP-BASED LINK SELECTION PROTOCOL 

 
Link number Color of LED Frequency of flicker (Hz) 

Link 1 Red 7 

Link 2 Green 10 

Link 3 Amber 12 

 

TABLE III. MI-BASED MOTION ACTIVATION PROTOCOL 

 
Desired Link Movement Corresponding MI 

Clockwise rotation of any link RHMI 

Counter-clockwise rotation of any link LHMI 

D. Observed Waveforms/Traces 

The acquired P300, SSVEP and ERD/ERS traces for 5 distinct 

trials on a subject with their population average trace are given 



 

in Fig. 7, 8 and 9 respectively. In each case, the population 

average is obtained by taking the average of all available 

instances. It is evident from Fig. 7 that positive peaks of P300 

are generated around 250ms to 350ms, counted from the onset 

of the target stimuli (at the 0th second), whereas Fig. 8 refers to 

the SSVEP response corresponding to a frequency of 7Hz. It is 

interesting to note that band-power of SSVEP has shown a 

significant rise around 7Hz. In Fig. 9, the ERD plots show a 

sharp fall-off in magnitude at approximately 400 ms time-

point, and signal power is restored approximately around 550 

ms. Here ERD is quantified as a percentage change of power 

at each sample point relative to the average power in the 

reference interval [49].   

E. Validation of the decoders 

In this paper 3 different methodologies are proposed to decode 

the three different EEG signals: SSVEP, MI and P300. For the 

purpose of evaluating the performances of these decoders, 5 

well-known performance metrics have been employed which 

are Classification Accuracy (CA), True Positive Rate (TPR), 

False Positive Rate (FPR) and Computational Time (CT) and 

Cohen’s kappa ( ) co-efficient.  The formal definitions of 

these metrics are presented below for ready reference  

CA: It is that fraction of the total number of instances which 

are correctly identified by the decoder. 

TPR: It denotes the ratio between the correctly detected 

positive instances and the total number of positive instances. 

FPR: It refers to that fraction of the total number of negative 

instances which the decoders identify as positive ones. 

CT: It is the time taken by the trained decoder in order to 

generate the inference about the presence/absence of the 

concerned signal in a single trial EEG. 

Cohen’s kappa: It is the inter-rater reliability parameter for the 

categorical items and is a more robust parameter than percent 

classification accuracy. [50] 

For each subject, 7 instances are acquired of which 6 instances 

selected randomly are used for classifier training and the 

remaining one for classifier testing. 

E.1 Experiment 1: Validation of the MI decoder  

Table IV reports the performance evaluation results of the 

CSP based MI decoder which is required to identify the 

desired direction of link motion. It is apparent from the Table 

that MPCSP feature selection method along with Radial Basis 

Function (RBF) kernelized SVM (RBF-SVM) classifier 

outperformed its nearest competitor FBCSP feature selection + 

Linear Discriminant Analysis (LDA) classifier by a margin of 

1.3% in terms of classification accuracy. A higher inter rater 

reliability value ( =0.92) is obtained for 

MPCSP+RBF+SVM at the cost of increased training time. As 

the training session is performed offline, the relatively larger 

training time of MPCSP compared to FBCSP does not affect 

the real time performance of MPCSP-RBF-SVM classifier 

with its nearest competitor FBCSP-LDA. 

      Now considering Table V, the best CA was attained in 

case of fourth subject which is 99.2%. The average metric 

values obtained are: CA = 98.1%, TPR = 0.93, FPR = 0.04, 

CT = 0.422s and kappa=0.89. Here, the inter-subject variance 

of the results is represented as Coefficient of Variation (CV), 

which is measured as ratio of observed mean and observed 

variance. CV value for classification accuracies is found to be 

0.01 whereas CV value of kappa over the different subjects is 

found to be 003. 

 
TABLE IV: COMPARISON OF DIFFERENT CSP-BASED CLASSIFIERS 

 

Algorithm CA% Kappa Training Time (s) 

Classical CSP               
+ RBF-SVM 

94.1 0.89 0.4232 

FBCSP  + LDA 97.3 0.86 3.2658 

MPCSP+RBF-SVM 98.6 0.92 3.8249 

 

 
Fig. 7 P300 waveform for 5 subjects represented by dotted lines and the 
population average of the signals represented by red solid line after 

acquisition from Cz electrode, and filtering by 6th order elliptical filter in band 

0.1-10Hz 

 

Fig. 8 PSD plot of SSVEP at 7Hz frequency for 5 subjects represented by 
dotted lines and the average of the signals represented by black solid line after 

acquisition from channel O1  

 
Fig. 9: Percentage ERD plot of 5 subjects taken at C3 electrode for Right Arm 
motor imagery with population average represented by a solid black line after 

filtering in [8-11] Hz  

 



 

TABLE V: CLASSIFICATION RESULTS OF SSVEP, MI AND P300 (STANDARD DEVIATION IS GIVEN IN BRACKET UNDER CLASSIFICATION ACCURACY) 

 
  Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6  Sub 7 Sub 8 Sub 9 Sub 10 Avg 

 

 

SSVEP 

CA% 95.5 

(±0.42) 

96.2 

(±0.48) 

95.8 

(±0.32) 

96.8 

(±0.51) 

95.4 

(±0.35) 

95.9 

(±0.44) 

95.1 

(±0.53) 

96.1 

(±0.30) 

96.3 

(±0.49) 

95.8 

(±0.62) 

95.9 

TPR 0.94 0.94 0.91 0.93 0.92 0.92 0.90 0.93 0.94 0.92 0.92 

FPR 0.02 0.03 0.05 0.03 0.04 0.03 0.05 0.05 0.04 0.03 0.04 

Kappa 0.94 0.93 0.90 0.93 0.89 0.92 0.89 0.92 0.91 0.91 0.91 

Time(s) 0.095 0.091 0.096 0.102 0.086 0.092 0.084 0.093 0.083 0.094 0.091 

 

 

MI 

CA% 98.3 

(±0.38) 

98.6 

(±0.24) 

97.8 

(±0.43) 

99.2 

(±0.32) 

97.1 

(±0.39) 

98.4 

(±0.51) 

96.2 

(±0.28) 

98.5 

(±0.26) 

97.3 

(±0.31) 

98.7 

(±0.47) 

98.1 

TPR 0.96 0.94 0.93 0.94 0.93 0.92 0.95 0.93 0.92 0.93 0.93 

FPR 0.03 0.04 0.05 0.03 0.04 0.05 0.07 0.05 0.05 0.04 0.04 

Kappa 0.95 0.90 0.87 0.92 0.90 0.89 0.87 0.86 0.86 0.88 0.89 

Time(s) 0.462 0.392 0.459 0.421 0.398 0.396 0.402 0.453 0.429 0.411 0.422 

 

 

P300 

CA% 94.1 

(±0.51) 

92.6 

(±0.23) 

91.8 

(±0.28) 

94.3 

(±0.20) 

93.2 

(±0.31) 

93.7 

(±0.38) 

90.5 

(±0.32) 

93.4 

(±0.49) 

94.9 

(±0.36) 

92.4 

(±0.42) 

93.3 

TPR 0.88 0.89 0.93 0.93 0.90 0.89 0.91 0.94 0.92 0.90 0.90 

FPR 0.03 0.04 0.03 0.03 0.05 0.02 0.02 0.04 0.03 0.04 0.03 

Kappa 0.89 0.87 0.90 0.94 0.91 0.85 0.88 0.91 0.92 0.88 0.89 

Time(s) 0.121 0.110 0.106 0.109 0.098 0.105 0.113 0.102 0.118 0.107 0.108 

 

E.2 Experiment 2: Validation of the SSVEP decoder  

   It is seen from Table V that the SSVEP decoder offered 

average CA, TPR, FPR and CT of 95.9%, 0.92, 0.04 and 

0.091s respectively. The average kappa value obtained is 0.91. 

The best CA of 96.8% was obtained for the fourth subject and 

the best Kappa value is found to be 0.94 for the first subject. 

CV values of classification accuracy and Kappa values over 

the different subjects are found to be 0.005 and 0.018 

respectively. It is apparent that such values are significantly on 

the lower side. 

E.3 Experiment 3: Validation of the P300 decoder 

The average values of CA, TPR, FPR, kappa and CT of P300 

decoder obtained are 93.3%, 0.90, 0.03, 0.89 and 0.108s, 

respectively with the best CA of 94.9% obtained for the ninth 

subject. CV values of classification accuracy are noted to be 

0.01 and that of kappa is noted to be 0.02.  

VI. STATISTICAL VALIDATION  

ERD/ERS trials depicted in Fig. 9 are statistically validated 

with the criterion (1) mentioned in Section II. Sample points 

of the depicted trials are compared with the sample points of 

the population mean trial (Ground truth) to check if they 

conform to Gaussian criteria.  

    P300 trials represented in Fig 7 are statistically validated 

with the population mean latency obtained from all the trials 

of all the subjects participated in the study. The mean latency 

of P300 is found to be 360ms. The latency of six trials 

presented in Fig.7 is given in Table B.1 of Appendix 2. The 

particular time instant when the highest peak of the P300 

occurs is considered as the latency of the signal. Population 

mean latency is found to be 360 ms. One sample t-test [51] is 

used to statistically validate the trials with the population 

mean. The required null hypothesis is expressed as follows.  

 

,:0 XH   

where  is the population mean and X is the sample mean. 

 

 

 

A confidence level of 95% with degrees of freedom (df=5) are 

considered for obtaining p-value. Table VI provides the results 

of One-Sample T-Test on P300 trials. The p value obtained 

here clearly indicates that assumed null hypothesis is true. 

Hence, the represented samples belong to the same population.  

 
TABLE VI: RESULT OF ONE- SAMPLE T-TEST ON P300 TRIALS 

 

Sample 

Mean 

Population 

Mean 

SD 

Sample 

t-

stat 

p -

value 

(95%) 

Result 

367.33 360 14.66 1.22 0.2752 Not 
Significant 

 

    SSVEP trials presented in Fig.8 are also statistically 

validated using One sample t-test against the population mean 

amplitude revealed by power spectral density. Amplitude of 

the highest peak occurring in 6.5 -7.5 Hz frequency range is 

considered for comparison. The population mean amplitude is 

found to be 9.1dB. Peak amplitudes of the trials are given in 

Table B.2 in Appendix 2.The null hypothesis is considered as 

same as considered in previous case. The details of results are 

given below in Table VII. 
 

TABLE VII: RESULT OF T-TEST APPLIED ON SSVEP TRACES 

 

Sample 

Mean 

Population 

Mean 

SD 

Sample 

t-

stat 

p -

value 

(95%) 

Result 

9.28 9.2 1.30 0.13 0.89 Not 
Significant 

 

The p-value (two tailed, 95% confidence with df=4) obtained 

in this case is 0.89, which clearly indicates that depicted trials 

are not statistically different, and so the assumed null 

hypothesis proves to be true in this case. 

   Performance of the classifiers is validated using Friedman 

Statistical test [52]. Friedman test is a non-parametric 

statistical test. It ranks the classification algorithms for each 

dataset based on classification accuracy. Classifier with 

highest classification accuracy gets the lowest rank of 1.For 

the thi  dataset and thj   algorithm 
i
jr designates the 

relative rank of the classifier. Total rank of a classifier is 



 

evaluated by summing all the ranks it received for all the 

dataset. ,i
jR  the total rank of the thj   classifier is given in 

(21). 





N

i

i
jj rR

1

                                                        (21) 

where N denotes the number of datasets. For each subject, we 

consider a dataset. The test considers the null hypothesis, 

which assumes that performances of all the classifiers are 

equivalent, so their rank sum should be equal. Under the null 

hypothesis Friedman statistics is distributed as  with k-1 

degrees of freedom. Here k denotes the number of classifiers 

used in the study.  

     Table VIII provides the rank of the classifiers used for 

SSVEP, MI and P300 respectively. The Freidman statistic is 

calculated by 

)1(3)(
)1(
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1

22 


 


kNR
kNk

k

j

jF                   (22) 

 

where N= number of databases, and k = no. of competitive 

classifiers. Now using N=10, k=5 and ranks obtained from 

Table B.3, Table B.4 and Table B.5  (given in Appendix B), 

the value of 2
F is determined separately for each of three 

categories of signal and compared with the critical value of the 

chi-square obtained with 95% confidence level and 4 degrees 

of freedom. The 2
F values obtained along with the critical 

value are presented in Table VIII.  

    It is evident from the table that in each case value obtained 

from Friedman test exceeds the critical value, so the null 

hypothesis that all the classifiers are equivalent is discarded. 

Hence the performance of the classifiers is evaluated by their 

cumulative ranks. Classifier with smallest rank has the best 

performance.  
TABLE VIII: COMPARISON TABLE OF CHI-SQUARE VALUES 

 

Signal 

Category 
2
F  value 

obtained from 

test 

Value of 

2
95.0.4  

Obtained from chi-

square distribution 

Null 

hypothesis 

 

Accepted/ 

Rejected 

SSVEP 35.76  Rejected 

MI 38.56 9.48 Rejected 

P300 36.86  Rejected 

 

It is apparent that RBF-SVM classifier having lowest 

cumulative rank sum in each case, performs best in the study. 

VII. CONTROLLER PERFORMANCE ANALYSIS 

The performance evaluation of the proposed method of robot 

arm position control is done based on four popularly used 

metrics, i.e., steady-state error, peak overshoot, settling time 

and success rate. The formal definitions [14] of these metrics 

are given below for ready reference. 

1. Steady-state error (ess): It measures the difference between 

steady state position of the end effector of the robot and 

visually fixed position of the subject, in the limit as time goes 

to infinity. 

2. Peak overshoot (MP): It is a measure of the maximum 

positional shift in response with respect to the (desired) 

steady-state position of the end-effector. It is expressed as 

percentage of final value. It is the first maximum peak.  

100% 



ss

ssp

p
CP

CPCP
M                                                    (23) 

where, pCP  is the final response, and ssCP  is the steady-state 

response of the system for step input. 

3. Settling Time (ts): It is the time taken by the response to 

reach and stay within 2% of the steady-state value or the 

desired value. 

4. Success Rate (SR): It is defined as the ratio between number 

of successful attempts by the subject to the total number of 

attempts. A trial is considered as successful when subject is 

able to reach the target within the positional tolerance of 2%. 

Performance metrics given in Table IX, has been averaged 

over 10 subjects over 100 online sessions. A qualitative 

comparison is also included in the same table. Three different 

control strategies have been compared here. 

     First strategy uses only Motor Imagery, whereas the second 

strategy uses MI and P300 to move a particular arm and the 

third approach using SSVEP, MI and P300 jointly. 

  As observed from Table IX, the proposed scheme performs 

better than the scheme employing the motor imagery 

detectors. The results show how the inclusion of the P300 

based error detector has led to a drastic improvement in the 

results. The steady-state error has improved by 7.53% with the 

error being closer to zero for the proposed scheme. In 

addition, the settling time has also considerably been reduced 

from 31s to 24s as initial speed for the proposed scheme is 

relatively higher, and so first zero-crossing occurs much 

earlier. In MI+ErrP scheme initial speed of the links has 

moderate value to avoid peak overshoot. The success rate of 

the proposed scheme also is improved with respect to that of 

MI+ErrP. 
                        

         TABLE IX. RELATIVE PERFORMANCE ANALYSIS 
 

Performance 

metrics 

Only MI MI+ ErrP Proposed 

scheme 

ess (%) 7.73 2.1 0.20 

Mp (%) 5.4 4.9 4.2 

ts (s) 35 31 24 

SR (%) 48.3 85.6 90.2 

 

Another experimental study reveals that choice of  has an 

influence on the controller performance. In fact =0.5 yields 

optimal settling time of 24s and a near-optimal peak overshoot 

of 4.2%, which is 4.18 for =1.0 and also optimal steady-state 

error of 0.2%. In fact steady-state error does not decrease for  

  0.5. Result is presented in Table X. 
TABLE X. CLOSED LOOP RESPONSE OF THE SYSTEM WITH UNIT STEP INPUT  

 

Performance Metrics 

 
1.0  5.0  1  

Mp (%) 5.02 4.20 4.18 

ess 0.26 0.20 0.20 

ts in sec 27.5 24.0 22.0 

 
 



 

 
TABLE XI: COMPARISON WITH OTHER HYBRID BCI BASED POSITION CONTROL 

 

Study by Nature of work Hybridization Principles used Techniques used Performance 

 

 

Gao et al., 2017 [56]  

 

 

 
EEG based open loop Robot 

position control for writing 

words  

 

ERD based motor switching in 

the first phase, Testing of teeth 
clenching in the second phase by 

EMG, and finally SSVEP based 

movement direction control in the 
third phase. 

MI: BPF, Mu rhythm 

extraction and thresholding; 

Teeth clenching: DWT, 
energy value, and 

Thresholding. 

SSVEP: DWT, Canonical 
Correlation Analysis, and 

thresholding. 

 

 

Mean Decoding accuracy of 
writing task = 93% 

 
Zehn et al., 2017 

[58] 

Gaze-sensitive BCI for 
position control of a robot 

arm  

 
MI based motor switching and 

eye tracking 

  
CSP features + LDA 

classifier 

Classification accuracy= 

85%6.3%. 

Maximum positional error   

5o.  

 

 
 

Bhattacharya et al., 

2017 
[14] 

 

 
Closed-loop position 

control of a robot arm with 

a fixed order of link 
activation, irrespective of 

target position 

 

 
 

ERD/ERS based motor activation 

and ErrP based stopping followed 
by turning by a fixed offset  angle 

MI: BPF, Wavelet 

Coefficients, correlation 
based feature selection, 

Linear SVM based 

classification;  
ErrP: CAR-filtering, AAR 

parameter extraction, 

Linear SVM based 
classification  

 

 
 

Steady-State error=6.67%, 

Settling time = 31s 
Success rate= 85.62%. 

 

 

 

 
 

 

Chen et al., 2019 
[57] 

 

 

 
 

 

Hybrid BCI based 
Quadcopter Robot Control 

 

 
 

MI and EOG (electro-

occulogram) based hybridization 
for quad-copter navigation control 

MI: BPF, CSP feature 

extraction and SVM 
classification of LHMI and 

RHMI.  

EOG: Pre-processing, CSP 
filtering and hierarchical 

multi-class SVM 

classification. 
Combining EOG and EEG 

classes intelligently  for 

motion control  of the 
quadcopter in 3D space 

 

 
 

Classification results for each 

control instruction >96%, 
Information Transfer rate> 

45 bits/minute for all control 

actions. 

 

 

 
 

Proposed study 

 

 

Closed loop position control 
of a robot arm with 

provisions for  link 

selection at random and 
near  zero steady-state error 

 

SSVEP based link selection, 

ERD/ERS based motor activation, 
and P300 based error detection 

and reversing motion at zero-

crossings with gradually 
diminishing speed for any link till 

speed falls below a threshold 

MI: MP-CSP features 

+RBF kernelized SVM 

classifier 
P300:AAR features + 

Evolutionary feature 

selection + LSVM classifier 
SSVEP: Spectral power 

features+ Evolutionary 
feature selection + LSVM 

classifier 

 

 

Steady-state error= 0.2%. 
Settling time =  24s 

Success rate = 90.2%. 

 

VIII. COMPARISON WITH EXISTING LITERATURE 

 

There exist quite a few literatures in BCI where the EEG 

based robot manipulation has been used successfully. Most of 

the cited references use open-loop control strategy to control 

the position of the end-effecter. Those were achieved using 

different BCI signals like SSVEP [53] MI [13, 54]. All of 

them use a controller which essentially works in ON/OFF 

control mode, and no feedback path is introduced between the 

robot and the human. A few very recent works have used P300 

brain pattern for mobile robot navigation [8] and also for the 

movement of rehabilitative external agent [10]. All of the 

works are exposed to high positional error and large value of 

peak overshoot because of the absence of any feedback 

mechanism from robot to human subject. The above 

approaches also need a rigorous amount subject training to 

achieve a satisfactory calibration. 

 This paper proposes a novel idea of minimizing bi- 

directional error and peak overshoot of the controller by 

incorporating a closed loop control strategy. It also reduces the 

scope of subject-dependency by using Event Related Potential 

P300 for stopping further movement of the arm. For a 

particular link operation, the subject has to perform the MI 

task once, and position alignment with target will be achieved 

automatically by means of P300, for which the subject only 

has to concentrate on the object he has visually fixed. Such 

use of closed-loop control strategy for BCI based robot control 

is novel in the literature. The flexible link selection scheme 

also provides some definite advantages over end-effecter 

based control scheme of manipulator. First, it is observed that 

linear movement of the end-effecter (translation along three 

co-ordinate axes) leads to alignment singularity [55] condition 

when operated in large range. It is not possible for the subject 

to resolve the singularity condition without any external 

intervention. Second, due to the lack of flexibility to control 



 

each degree of freedom, an overall movement of six joints 

becomes necessary even when the task can be achieved by 

turning only a single link. It is evident from relative 

performance analysis that steady-state error in case of 

proposed approach is reduced drastically.   

  The comparison of the work with Hybrid BCI systems 

designed for position control by robots is presented in Table 

XI. It is clear from the Table that the proposed study and the 

one by Bhattacharya et al. [14] only address the problem of 

closed-loop control strategy. The proposed one has improved 

steady-state error, settling time and success rate, and so 

outperforms [14] significantly. 

 

IX. CONCLUSION AND FUTURE DIRECTIONS 

The paper introduced a new approach for position-control of a 

robot’s end-effecter by judiciouly controlling the positions of 

the individual links of the arm. The choice of the individual 

link selection and their  position control is left to the user. The 

individual link selection is performed by the user by noticing 

the flickering LED mounted on the link. In fact, each link has 

one LED mounted over it to flicker at fixed frequency.  If the 

subject releases a P300 from one of the links, it’s inferred that 

the subject likes to use the link in the next time-slot  for 

position control.  

    Apart from BCI-based link selection, the other imporatnt 

attributes of the work lie in ERD/ERS based motor planning 

of the previously seleceted link, and a P300 induced automatic 

stopping and speed-reversal, each time the target position is 

reached  by an individual link.  

    A thorough modeling and analysis of the controller 

performance undertaken in the paper reveals that the proposed 

BCI based control is stable with low steady-state error (0.2 

%),  low peak-overshoot (4.2%) and relatively lower settling 

time (24s) than the same for existing realization [14]. 

    An analysis of root locus of the overall system reveals that 

the stability margin of the proposed system is contigent to the 

initial choice of the maximum speed of the robotic links. The 

classifiers chosen having high classification accuracy and 

ability to work in presence of noise prove their elgance in the 

present study.  

    Above all, the proposed system outperforms all existing and 

reported works on BCI-basd position control with respect to 

both classifier and controller performance, thus justifying its 

utility in rehabilitative aids for people with neuor-motor 

disability. Future works may involve i)designing alternative 

control strategies to reduce subjective cognitive load, ii) 

improving clasifier design, particularly MI classifiers 

following [48], [59], and iii) removing ocular artifacts 

following [60]  to develop robust, noise-insensitive BCI based 

control systems.  

 

Appendix-A: 

 

Amplitude and Phase-sensitive CSP (AP-CSP)       

 

The classical CSP formulation takes into account of the 

amplitudes of the EEG time samples, disregarding the phases 

of the EEG signals. In [39], the authors considered both 

amplitude and phase of the EEG signals to obtain more 

reliable CSP features, responsible for improving the 

classification accuracy for the 2-class classification problem. 

In their formulation, the objective function appears similar to 

(8) with 1C  and 2C  replaced by *
1C and *

2C  respectively 

defined in the complex plane. Later they adopted Lagrange 

multiplier technique to optimize an objective function (A.1) 

equivalent to (8), containing *
1C and *

2C  in place of 1C and 

2C respectively. 

 

),1(),( *
2

*
1  wCwwCwwL T                                         (A.1) 

 

where w  is the complex conjugate of w . The optimization of 

L  with respect to w  returns . *
1

1*
2 wwCC 


 As *
1

1*
2 CCM


 is a 

complex matrix, they adopted Symmetric Singular Value 

Decomposition (SSVD) for eigen value decomposition. In 

SSVD, for a singular matrix of )( qp  we have a unitary 

matrix ,U  such that ,* TUCUP  where ],..,,[ 21
*

pdiagC   

with ,0i where i is the eigen value. Consequently, for the 

square symmetric matrix ,*
1

1*
2 CCA


  we obtain ,TWWDM   

where D is a diagonal matrix and TW  is the desired CSP 

matrix. In classical CSP, Principal Component Analysis 

(PCA) is employed to determine the principal components 

corresponding to the largest and the smallest eigen values of 

.*
1

1*
2 CCA


   

     A non-linear PCA and conformal mapping is required here 

to determine the largest and the smallest eigen values of the 

complex matrix ,*
1

1*
2 CCM


  the details of which are available 

in [42]. The CSP features thus obtained, in conjunction with a 

standard Linear Discriminant Analysis (LDA) classifier 

improves the classification accuracy to more than 98% at the 

cost of additional computational overhead.  

 

Appendix –B 

 

    Tables Prepared for Statistical Tests 
 

TABLE B.1. LATENCY OF THE REPRESENTED P300 TRIALS 

 

Trial No Latency(ms) 

Trial 1 364 

Trial 2 356 

Trial 3 362 

Trial 4 356 

Trial 5 371 

Trial 6 395 

 
TABLE B.2. AMPLITUDE OF THE REPRESENTED SSVEP TRIALS 

 

Trial No Amplitude(dB) 

Trial 1 7.8 

Trial 2 8.2 

Trial 3 9.3 

Trial 4 10.2 

Trial 5 10.9 

 

 



 

 
 

 

TABLE B.3:  RANK TABLE OF CLASSIFIERS USED IN SSVEP DETECTION 

 
Sub 

ID 

Friedman Statistical Test for SSVEP 

LSVM Rank QDA Rank LDA Rank k-NN Rank BPNN Rank 

1 95.5 1 92.2 2 91.2 3 89.7 4 86.2 5 

2 96.2 1 94.5 2 92.4 3 90.4 4 86.4 5 

3 95.8 1 92.5 2 90.7 3 87.6 4 84.8 5 

4 96.8 1 93.1 2 90.3 3 88.1 4 85.2 5 

5 95.4 1 95.2 2 91.0 4 92.4 3 89.6 5 

6 95.9 1 92.8 2 90.3 4 91.8 3 87.1 5 

7 93.1. 2 96.0 1 91.6 3 88.9 5 90.2 4 

8 95.1 1 91.2 2 89.6 4 90.8 3 86.3 5 

9 96.3 2 96.9 1 94.0 3 92.2 4 88.8 5 

10 95.8 1 93.6 2 89.1 4 91.9 3 86.5 5 

Total  12  18  34  37  49 

 

TABLE B.4:  RANK TABLE OF CLASSIFIERS USED IN MOTOR IMAGERY DETECTION 

 

Sub 

ID 

Friedman Statistical Test for Motor Imagery 

RBF-SVM Rank LSVM Rank QDA Rank LDA Rank k-NN Rank 

1 98.3 1 96.1 2 95.2 3 93.1 4 92.3 5 

2 98.6 1 95.3 2 94.1 3 92.5 4 91.4 5 

3 97.8 1 93.7 2 92.8 3 91.0 4 89.8 5 

4 99.2 1 95.1 2 94.4 3 92.3 4 90.3 5 

5 97.1 1 93.7 2 92.4 3 90.1 4 89.5 5 

6 96.2 2 96.8 1 94.3 3 91.1 4 88.4 5 

7 98.4 1 93.1 2 91.8 3 91.1 4 86.9 5 

8 98.5 1 93.5 2 92.0 3 90.8 4 89.1 5 

9 97.3 1 93.5 2 91.5 4 91.6 3 90.2 5 

10 98.7 1 92.8 2 91.6 3 90.3 4 89.1 5 

Total  11  19  31  39  50 

 

TABLE B.5:  RANK TABLE OF CLASSIFIERS USED IN P300 DETECTION 

  
Sub 

ID 

Friedman Statistical Test for P300 

LSVM Rank QDA Rank LDA Rank k-NN Rank BPNN Rank 

1 94.1 1 92.0 2 91.4 3 88.2 4 86.4 5 

2 92.6 1 90.1 2 88.3 4 89.2 3 85.2 5 

3 91.8 1 88.6 2 87.2 3 87.1 4 83.3 5 

4 94.3 1 93.2 2 91.0 3 89.3 5 89.8 4 

5 93.2 1 91.5 2 89.4 4 90.0 3 87.8 5 

6 93.7 1 89.9 2 87.2 3 82.4 4 82.2 5 

7 90.5 1 90.1 2 88.1 3 86.3 4 83.4 5 

8 93.4 1 93.0 2 89.3 3 88.6 4 86.0 5 

9 94.9 1 93.7 2 90.6 3 87.2 4 85.1 5 

10 92.4 1 90.2 3 91.8 2 86.9 4 82.9 5 

Total  10  21  31  39  49 
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