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Abstract

This paper presents a novel bio-inspired optimization algorithm called Rat Swarm Optimizer
(RSO) for solving the challenging optimization problems. The main inspiration of this
optimizer is the chasing and attacking behaviors of rats in nature. This paper mathematically
models these behaviors and benchmarks on a set of 38 test problems to ensure its applicability
on different regions of search space. The RSO algorithm is compared with eight well-known
optimization algorithms to validate its performance. It is then employed on six real-life
constrained engineering design problems. The convergence and computational analysis are
also investigated to test exploration, exploitation, and local optima avoidance of proposed
algorithm. The experimental results reveal that the proposed RSO algorithm is highly effective
in solving real world optimization problems as compared to other well-known optimization

algorithms.
Note that the source
http://www.dhimangaurav.com

codes of the proposed

technique are available at:

Keywords: Optimization; Metaheuristics; Swarm-intelligence; Benchmark test functions;

Engineering design problems.

1. Introduction

For real world problems, stochastic optimization methods
have been employed for solving various combinatorial
problems. These optimization problems are non-linear,
multimodal, computationally expensive, and possess large
solution spaces to solve traditional methods (A. Kaur, Jain,
& Goel, 2017, 2019, n.d.; A. Kaur, 2019; H. Kaur et al.,
2019; Dhiman & Kumar, 2017a; Singh & Dhiman, 2018a;
Dhiman & Kumar, 2018d; Singh & Dhiman, 2018b). Meta-
heuristic algorithms are able to solve such complex problems
(Che, Liu, & Yu, 2019; Dhiman & Kumar, 2018b; Dhiman
& Kaur, 2018; Singh, Rabadiya, & Dhiman, 2018; Dhi-
man & Kumar, 2018a; A. Kaur, Kaur, & Dhiman, 2018;
Singh, Dhiman, & Kaur, 2018; Li, He, & Li, 2019; As-
ghari, Rahmani, & Javadi, 2020; Ramirez-Atencia & Ca-
macho, 2019) in a reasonable amount of time. Nowadays,
there has been a lot of interest to develop metaheuristic
optimization algorithms (Dhiman, Guo, & Kaur, 2018; Dhi-

man & Kumar, 2019b; Dhiman & Kaur, 2019b; Dhiman &
Kumar, 2019a; Dhiman, Singh, Kaur, & Maini, 2019; Dhi-
man, 2019b; Singh et al.,, 2019; Dhiman, 2019a, 2019c;
Dehghani, Montazeri, Malik, Dhiman, & Kumar, 2019;
Maini & Dhiman, 2018; Pallavi & Dhiman, 2018; Garg
& Dhiman, 2020; S. Kaur, Awasthi, Sangal, & Dhiman,
2020) which are computationally inexpensive, flexible, and
gradient free (Ragmani, Elomri, Abghour, Moussaid, &
Rida, 2019; D. Yang, Wang, Tian, & Zhang, 2020; Bala-
subramanian & Marichamy, 2020). These techniques have
been classified into three categories (Dhiman, Soni, Pandey,
Slowik, & Kaur, 2020; Dehghani et al., 2020; Chandrawat,
Kumar, Garg, Dhiman, & Kumar, 2017; Singh & Dhiman,
2017; Dhiman & Kaur, 2017; Verma, Kaur, Dhiman, & Kaur,
2018; A. Kaur & Dhiman, 2019; Dhiman & Kaur, 2019a;
Dhiman & Kumar, 2019c): Evolutionary based, Physical
based, and Swarm-intelligence based algorithms.

Evolutionary based algorithms mimic the evolutionary
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processes in nature such as reproduction, mutation,
recombination, and selection. These algorithms are based
on the survival of fittest candidate in a population for
a given environment. This process continues over a
number of generations until the satisfactory solution is not
found. Some of the most popular evolutionary algorithms
are Genetic Programming (GP) (Koza, 1992), Genetic
Algorithms (GA) (Bonabeau, Dorigo, & Theraulaz, 1999),
Differential Evolution (DE) (Storn & Price, 1997), Evolution
Strategy (ES) (Beyer & Schwefel, 2002), and Biogeography-
Based Optimizer (BBO) (Simon, 2008).

The physical based algorithms are inspired by physical
processes.  These processes are defined according to
physics rules such as electromagnetic force, gravitational
force, heating and cooling of materials, inertia force,
and so on. The few of the popular physical based
algorithms are Gravitational Search Algorithm (GSA)
(Rashedi, Nezamabadi-pour, & Saryazdi, 2009), Simulated
Annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983),
Charged System Search (CSS) (Kaveh & Talatahari, 2010a),
Big-Bang Big-Crunch (BBBC) (Erol & Eksin, 2006), Black
Hole (BH) (Hatamlou, 2013) algorithm, Artificial Chemical
Reaction Optimization Algorithm (ACROA) (Alatas, 2011),
Ray Optimization (RO) algorithm (Kaveh & Khayatazad,
2012), Small-World Optimization Algorithm (SWOA) (Du,
Wu, & Zhuang, 2006), Curved Space Optimization (CSO)
(Moghaddam, Moghaddam, & Cheriet, 2012), Central Force
Optimization (CFO) (Formato, 2009), and Galaxy-based
Search Algorithm (GbSA) (Shah Hosseini, 2011).

The swarm-intelligence based algorithms are inspired by
the collective intelligence of groups. This intelligence is
present in flock of birds, school of fishes, ant colonies,
and the like. The most popular algorithm of swarm-
intelligence technique is Particle Swarm Optimization (PSO)
(Kennedy & Eberhart, 1995) which is inspired by the social
behaviors of fish, birds, animals and so forth in nature.
Each particle in this algorithm can move throughout the
search space and update its current position with respect
to global best solution (Anitha & Kaarthick, 2019). There
are also other popular swarm-intelligence based techniques
which are Ant Colony Optimization (Dorigo, Birattari, &
Stutzle, 2006), Bee Collecting Pollen Algorithm (BCPA)
(Lu & Zhou, 2008), Wolf pack search algorithm (C. Yang,
Tu, & Chen, 2007), Monkey Search (Mucherino & Seref,
2007), Dolphin Partner Optimization (DPO) (Shiqin, Jian-
jun, & Guangxing, 2009), Cuckoo Search (CS) (X. S. Yang
& Deb, 2009), Firefly Algorithm (FA) (X.-S. Yang, 2010a),
Bat-inspired Algorithm (BA) (X.-S. Yang, 2010b), Spotted
Hyena Optimizer (SHO) (Dhiman & Kumar, 2017b), and
Hunting Search (HUS) (Oftadeh, Mahjoob, & Shariatpanahi,
2010).

In addition, there are also some other advantages of
swarm-intelligence based algorithms such as: (1) These

algorithms includes very few operators as compared to
evolutionary based algorithms; (2) Swarm-intelligence based
algorithms are able to maintain the information about
the whole search space and very easy to implement; (3)
These algorithms have less parameters that makes the
algorithms utilize less memory space; (4) The computational
efficiency of these algorithms is low as compared to
other metaheuristics. There are other swarm-intelligence
techniques which are listed in Table 1.

However, every optimization algorithm needs to address
and maintains a good balance between the exploration and
exploitation phases of a search space (Alba & Dorronsoro,
2005; Olorunda & Engelbrecht, 2008). The exploration
phase investigates the different promising regions in a given
search space whereas in exploitation phase the optimal
solutions are searched around the promising regions (Lozano
& Garcia-Martinez, 2010). Whereas, the performance
of one optimization algorithm does not guarantee to to
be equally good for other real-life problems (Wolpert &
Macready, 1997). Therefore, proper balancing between
the exploration/exploitation motivates us to develop a novel
swarm-intelligence based optimization algorithm for solving
real-life approaches. This paper presents a novel bio-
inspired based metaheuristic algorithm named as Rat Swarm
Optimizer (RSO) for global optimization problems. The
Rat Swarm Optimizer (RSO) is inspired by the chasing
and attacking behaviors of rats. The performance of RSO
algorithm is tested on thirty-eight benchmark test functions
and six real constrained optimization design problems. The
results reveal that the performance of RSO is better than the
other well-known optimization algorithms.

The rest of this paper is structured as follows: Section 2
presents the proposed RSO algorithm. Section 3 covers the
results and discussion. In Section 4, the performance of RSO
is tested on six constrained engineering design problems and
compared it with other competitor algorithms. Finally, the
conclusion and some future research directions are given in
Section 5.

2. Rat Swarm Optimizer (RSO)
2.1. Inspiration

Rats are long tailed and medium sized rodents which are
different in terms of size and weight. There are two main
species of rat: Black rat and Brown rat. In rats family,
the male rats are called bucks while female rats are called
does. Rats are generally socially intelligent by nature. They
groom each other and involve in various activities such as
jumping, chasing, tumbling, and boxing. Rats are territorial
animals which live in a group of both males and females.
The behavior of rats is very aggressive in many cases which
may result in the death of some animals. This aggressive
behavior is the main motivation of this work while chasing
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and fighting with prey. In this research, the chasing and
fighting behaviors of rats are mathematically modeled to
design RSO algorithm and perform optimization.

2.2. Mathematical model and optimization algorithm

This subsection describes the behavior of rat i.e., chasing
and fighting. Then the proposed RSO algorithm is outlined.

2.2.1. Chasing the prey. Generally, rats are social ani-
mals who chase the prey in a group through their social ag-
onistic behavior. To define this behavior mathematically, we
assume that the best search agent has the knowledge of loca-
tion of prey. The other search agents can update their posi-
tions with respect to best search agent obtained so far. The
following equations are proposed in this mechanism:

P =A-P(x)+C-(P(x) - P(x) (1)
where ﬁ:(x) defines the positions of rats and ﬁ(x) is the best

optimal solution.
However, A and C parameters are calculated as follows:

R
A=R-xx(——D
Ma-xlteration (2)
where, x =0,1,2,..., Maxjeration
C =2-rand() 3)

Therefore, R and C are random numbers between [1, 5] and
[0, 2], respectively. The parameters A and C are responsi-
ble for better exploration and exploitation over the course of
iterations.

2.2.2. Fighting with prey. In order to mathematically
define the fighting process of rats with prey, the following
equation has been proposed:

Pix+1)=| P (x)- P | (4)

where I—’:(x + 1) defines the updated next position of
rat. It saves the best solution and updates the positions of
other search agents with respect to the best search agent.
Fig. 1 shows the effect of Eqs. (1) and (4) in three
dimensional environment. In this figure, the rat (A, B) can
update its position towards the position of prey (A*, B*).
By adjusting the parameters, as shown in Egs. (2) and (3),
the different number of positions can be reached about the
current position. However, this concept can also be extended
in n-dimensional environment.

Therefore, the exploration and exploitation are guaranteed
by the adjusted value of parameters A and C. The proposed
RSO algorithm saves the optimal solution with fewest
operators. The pseudo code of the proposed RSO algorithm
is presented in Algorithm.

Algorithm : Rat Swarm Optimizer

Input: the rats population P; (i = 1,2,...,n)
Output: the optimal search agent

1: procedure RSO
2: Initialize the parameters A, C, and R
3: Calculate the fitness value of each search agent
4: P, « the best search agent
5: while (x < Maxjseration) do
6: for each search agent do
7: Update the position of current search agent
by Eq. (4)
8: end for
9: Update parameters A, C, and R
10: Check if there is any search agent which goes be-
yond the given search space and then adjust it
11: Calculate the fitness of each search agent
12: Update P, if there is a better solution than
previous optimal solution
13: xe—x+1

14: end while
15: return P,
16: end procedure

2.3. Steps and flowchart of RSO

The steps and flowchart (see Fig. 2) of RSO are discussed
below:
Step 1: Initialize the rats
i=12,...,n
Step 2: Choose the initial parameters of RSO: A, C, and R.
Step 3: Now, calculate the fitness value of each search agent.
Step 4: The best search agent is then explored in the given
search space.
Step 5: Update the positions of search agents using Eq. (4).
Step 6: Check whether any search agent goes beyond the
boundary limit of a search space and then amend it.
Step 7: Again, calculate the updated search agent fitness
value and update the vector P, if there is a better solution
than previous optimal solution.
Step 8: Stop the algorithm if the stopping criteria is satisfied.
Otherwise, return to Step 5.
Step 9: Return the best obtained optimal solution.

population P; where

2.4. Computational complexity

In this subsection, the computational time and space com-
plexity of proposed RSO algorithm are discussed.

2.4.1 Time complexity.

1. The initialization of RSO population needs O(n X d)
time where n indicates the number of iterations and d
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defines the dimension of a test function to adjust the
solutions within the boundary.

2. In the next step, the fitness calculation of each search
agent requires O(Maxyerarion X n X d) time where
Maxieraion 18 the maximum number of iterations to
simulate the proposed RSO algorithm.

3. Repeat Steps 1 and 2 until the satisfactory results is
found which needs O(N) time.

Therefore, the overall time complexity of RSO algorithm is
O(Maxlrermion xnxdX N)

2.4.2. Space complexity. The space complexity of RSO
algorithm is the maximum amount of space to be utilized at
any one time as considered during its initialization process.
Hence, the total space complexity of RSO algorithm is
O(n x d).

3. Experimental Results and Discussion

This section covers the experimentation on thirty eight
benchmark test functions to demonstrate the performance of
proposed RSO algorithm. The detailed description of these
benchmarks are discussed below.

3.1. Benchmark test functions

The proposed algorithm is evaluated on thirty eight
benchmark test functions which are divided into four
main categories: Unimodal (Digalakis & Margaritis,
2001), Multimodal (X.-S. Yang, 2010a), Fixed-dimension
Multimodal (Digalakis & Margaritis, 2001; X.-S. Yang,
2010a), and CEC-15 special session functions (Chen et al.,
2014). These functions are described in Tables 3-6.

3.2. State-of-the-art algorithms for comparison

To validate the performance of the proposed RSO algo-
rithm, the eight well-known optimization algorithms are used
for comparison.

e Spotted Hyena Optimizer (SHO) (Dhiman & Ku-
mar, 2017b): Spotted Hyena Optimizer (SHO) is a
bio-inspired based optimization algorithm proposed by
(Dhiman & Kumar, 2017b). It shows the searching,
encircling, and hunting behaviors of spotted hyena in
nature. The search agents can update their positions
with a group of optimal solutions rather than one
optimal solution. The algorithm was applied on
constrained and unconstrained real-life engineering
problems and benchmark test functions.

e Grey Wolf Optimizer (GWO) (Mirjalili, Mirjalili,
& Lewis, 2014): GWO is a another bio-inspired
based algorithm inspired by the behaviors of grey
wolves. GWO employed four types of grey wolves:

alpha, beta, delta, and omega which shows the hunting,
searching, encircling, and attacking behaviors for
optimization problems. Further, the performance of
GWO was tested on well-known test functions and
classical engineering design problems.

Particle Swarm Optimization (PSO) (Kennedy &
Eberhart, 1995): Particle Swarm Optimization is
a popular population based optimization algorithm
which is inspired by the social behavior of birds and
animals. In PSO, each particle can move around the
search space with respect to global optimal solution
and updates its current position. There are only a
few parameters in this algorithm to adjust for better
exploration and exploitation.

Moth-flame Optimization (MFO) (Mirjalili, 2015):
Moth-flame Optimization (MFO) is a bio-inspired
optimization algorithm motivated by the navigation
method of moths in nature. It maintains a fixed angle
with respect to moon for travelling long distances. The
performance of MFO was tested on constrained test
problems to find the global optimum.

Multi-Verse Optimizer (MVO) (Mirjalili, Mirjalili,
& Hatamlou, 2016): Multi-verse Optimizer (MVO)
is a physics based optimization algorithm proposed
by (Mirjalili et al., 2016) which is inspired by the
theory of multi-verse in physics and consists three
main concepts i.e., white hole, black hole, and
wormhole. The concepts of white hole and black
hole are responsible for exploration and wormholes
appropriate for exploitation in the search spaces.

Sine Cosine Algorithm (SCA) (Mirjalili, 2016):
Sine Cosine Algorithm (SCA) is proposed by Mirjalili
that generates multiple solutions using mathematical
model such as sine and cosine functions for solving
optimization problems. The convergence behavior of
SCA is very high and computational complexity is low
which is helpful for local optima avoidance.

Gravitational Search Algorithm (GSA) (Rashedi et
al., 2009): Gravitational Search Algorithm (GSA) is
proposed by (Rashedi et al., 2009) which is based on
the Newton’s law of gravitation and law of motion.
This algorithm has an ability to find global optimum
because it requires only few parameters such as
position, inertial mass, active gravitational mass, and
passive gravitational mass.

Genetic Algorithm (GA) (Bonabeau et al., 1999):
Genetic Algorithm (GA) is an evolutionary algorithm
inspired by the theory of natural selection. It consists
of three operators such as selection, crossover, and
mutation to find the near optimal solutions.
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3.3. Experimental setup

The parameter setting of proposed RSO algorithm and
other optimization algorithms (i.e., SHO, GWO, PSO, MFO,
MVO, SCA, GSA, and GA) is shown in the Table 7. The
whole experimentation process and reported algorithms are
implemented in Matlab R2018b version in the environment
of Microsoft Windows 10 on Core i7 processor with 3.20
GHz and 16 GB memory.

3.4. Performance comparison

In order to demonstrate the performance of proposed RSO
algorithm, its results are tested on unimodal, multimodal,
fixed-dimension multimodal, and CEC-15 special session
benchmark test functions.

3.4.1. Evaluation of functions F| — F; (Exploitation).
The functions F'; — F; are unimodal test problems which have
the capability for better exploitation and find the best optimal
solution. Table 8 reveals that RSO is very competitive as
compared to other competitor algorithms. In particular, it
maintains better results for functions F,, Fs, and F7.

3.4.2. Evaluation of functions Fs — F,3 (Exploration).
Multimodal test functions have the ability to determine
the exploration of an optimization algorithm. Tables 9
and 10 show the results for functions multimodal and
fixed-dimension multimodal functions which demonstrate
the exploration capability of RSO algorithm. RSO is
most efficient in nine test functions such as Fg, Fi, Fii,
F14, F]5, F16, F17, Flg, F19, F20, F22, and F23 as well as
very competitive results in rest of test problems.

3.4.3. Evaluation of CEC-15 functions (CEC1 -
CEC15). This special session test suite is devoted to the
real approaches for solving single objective optimization
problems. These test functions are considered as black-box
problems with bound constraints. Table 11 reveals that RSO
algorithm is efficient for functions CEC—-1, CEC-3, CEC-
7, CEC - 8, CEC -9, CEC - 10, CEC - 11, CEC -
12, CEC - 13, CEC - 14, and CEC — 15. The boxplot
comparison and results on CEC benchmark test functions are
shown in Fig. 3.

The results for functions F; — F»3 and CEC — 15 show that
RSO is the best optimizer for most of the cases as compared
with other competitor algorithms.

3.5. Convergence analysis

The convergence curve analysis is investigated for better
understanding the behaviors of RSO algorithm. These
behaviors have been analysed into three stages.

In the initial stage, RSO converges very quickly through
out the search space as shown in Fy, Fs, F7, Fij, and F3
test functions.

5

In second stage, RSO converges towards the optimum
during final iterations which is shown in F,; and Fy3 test
functions.

In last step, RSO convergence very expressively from
the initial steps of iterations as shown in functions F3, Fy,
F15, F17, and F19.

These results reveal that RSO algorithm maintains a
proper balance between exploration and exploitation to find
the optimal results.

The convergence curves of RSO, SHO, GWO, PSO,
MFO, MVO, SCA, GSA, and GA are compared and
presented in Fig. 4 which shows that RSO is very competitive
and high success rate as compared with other metaheuristic
techniques for solving optimization problems.

3.6. Scalability study

This subsection presents the scalability analysis on
various benchmark test functions. The dimensionality of
these test functions varies from 30-50, 50-80, and 80-100.
Fig. 5 shows the performance of RSO algorithm with
different behaviors on different dimensionality. It has been
observed that the proposed algorithm is applicable on high
dimensional environment.

3.7. Statistical testing

Apart from the basic statistical analysis, the Wilcoxon
ranksum test statistical test is performed at 5% level of
significance. ~The p—values, which are less than 0.05,
demonstrate the superiority of RSO algorithm. The results
of the Wilcoxon ranksum test test are tabulated in Table 2.
Overall, the results reveal that RSO performs better than
other optimization algorithms in the literature.

4. RSO for Engineering Design Problems

In this section, six real-life constrained engineering
design problems have been discussed. These problems are
pressure vessel, speed reducer, welded beam, tension/co-
mpression spring, 25-bar truss, and rolling element bearing
design problems.  These optimization problems have
different constraints and handles infeasible solutions with
low computational efforts (Coello, 2002). These problems
are compared with other reported algorithms in the literature
to validate the performance of proposed algorithm.

4.1. Pressure vessel design

This problem was proposed by Kannan and Kramer
(Kannan & Kramer, 1994) to minimize the total cost of ma-
terial. The schematic view of pressure vessel is shown in Fig.
6 which are capped at both the ends by hemispherical heads.
There are four design variables in this problem (y; — y4):

e (y1, thickness of the shell) T'.
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e (v, thickness of the head) T7,.
e (y3, inner radius) R.

e (y4, length of the cylindrical section) L.

where R and L are continuous design variables and 7'y and T},
are integer numeric values which are multiples of 0.0625 in.
The mathematical formulation of this problem is defined as
follows:

Consider ¥ = [y, y» y3 yal = [Ts T, R L],

Minimize f(3) = 0.6224y,y3y4 + 1.7781y,3
+3.1661yly, + 19.84ylys,

Subject to

g1 = —y; +0.0193y; <0, ®)
2:(7) = —ys + 0.00954y; < 0,

4
&) = —mydyy - §nyg + 1,296,000 < 0,

84() =y4 —240 <0,

Variable range
0<y <99,
0<y,<99,
0 <y; <200,
0 < y4 <200,

From Table 12, RSO obtains the best optimal solution
among other reported algorithms such as SHO, GWO, PSO,
MFO, MVO, SCA, GSA, and GA. According to the results,
RSO achieves near optimal design with minimum cost.

Whereas, Table 13 represents the statistical results for
pressure vessel design problem. The results show that
RSO outperforms all other competitor algorithms. The
convergence behavior of this design problem is shown in Fig.
7 which reveals that proposed algorithm is able to converge
very efficiently in the initial steps of iterations.

4.2. Speed reducer design problem

The speed reducer design problem is a more challenging
problem because it has seven design variables (Gandomi &
Yang, 2011). This optimization problem is a minimization
problem which can minimize the weight of speed reducer as
shown in Fig. 8. The constraints of this design problem are
(Mezura-Montes & Coello, 2005):

e Bending stress of the gear teeth.
e Surface stress.
e Transverse deflections of the shafts.

e Stresses in the shafts.

There are seven design variables (y; — y;) which are face
width (b), module of teeth (m), number of teeth in the pinion
(z), length of the first shaft between bearings (/;), length of
the second shaft between bearings (), the diameter of first
(d,) shafts, and the diameter of second shafts (d5).

The mathematical formulation of this problem is formu-
lated as follows:

Minimize () = 0.7854y,y3(3.3333y% + 14.9334y; — 43.0934)
— 1.508y,(y% + ¥3) + 7.4777(y; + y3) + 0.7854(y4y7 + y5y2),

Subject to
27
g10)=——-1<0,
Y1Y3Y3
397.5
&M =—55-1<0,
YIY2.)’3
1.93y3
&) =——-1<0,
V2YeV3
1.93y?
g =——=-1<0,
Y2Y7y3
745 2 +16.9 x 100172
¢s() = [(745(y4/y2y3)) +3 X ] —1<o,
110y,
745 2 +157.5x 10%]1/2
23 = [(745(ys/y2y3)) +3 X ] _1<o0,
85y;

a0 =22 _1<o,

40
5
gg@ = ﬂ -1 < 0,
Y1
Vi
=—-1<0,
890 12y,
1.5y + 1.9
g = =217 <o,
Ya
1.1y; + 1.9
gll(y):—y7 -1<0,
Vs
where,

26<y; <36, 07<y; <08, 17<y; <28, 73 <y, <83,
73 <ys <83, 29<ys <39, 50<y; <55
(6)
The comparison results with various optimization
algorithms for the best obtained optimal solution are
tabulated in Table 14 and the statistical results are given
in Table 15. To analyze these results, it concludes that
RSO algorithm is best optimizer for speed reducer design
problem. While, RSO algorithm obtains best convergence
behavior during number of generations and achieves better
results than other competitor methods as shown in Fig. 9.

4.3. Welded beam design

The objective of this design problem is to minimize the
fabrication cost of the welded beam (see Fig. 10). The opti-
mization constraints of welded beam are shear stress (1) and
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bending stress () in the beam, buckling load (P.) on the bar,
end deflection () of the beam. There are four optimization
design variables of this problem which are as follows:

e Thickness of weld (k)
e Length of the clamped bar (/)
e Height of the bar (¢)
e Thickness of the bar (b)
The mathematical formulation is described as follows:

Consider ¥y =[y; y» y3 yal = [h [ t b],

Minimize f(7) = 1.10471y2y; + 0.04811y5y4(14.0 + y,),

Subject to

g1 () =710) — Twax <0,
2D =00) — OTmax <0,
83() = 6() = Opax < 0,
83 =y1 -y <0,

g =P-P.() <0,
8() =0.125-y, <0,

¢(5) = 110471y + 0.04811y5y,(14.0 + y;) — 5.0 < 0,

Variable range
0.05 < y; £2.00,
0.25 <y, <£1.30,

2.00 < y; < 15.0,
@)

The comparison results for the best obtained solution by
proposed and reported algorithms (i.e., SHO, GWO, PSO,
MVO, SCA, GSA, GA, and HS) are presented in Table
16. The statistical results of the proposed and competitor
algorithms is given in Table 17 which reveals the better
performance of RSO and requires low computational cost to
find the best optimal design.

By observing Fig. 11, RSO achieves the far optimal
solution and high success rate for welded beam design
problem.

4.4. Tension/compression spring design problem

The objective of this problem is to minimize the tension/
compression spring weight as shown in Fig. 12. The opti-
mization constraints of this problem are:

e Shear stress.
o Surge frequency.
e Minimum deflection.

There are three design variables of this problem: wire
diameter (d), mean coil diameter (D), and the number of

active coils (V). The mathematical formulation of this
problem is described as follows:

Consider ¥ = [y, y; y3] = [d D N],
Minimize f(3) = (y3 + 2)y27,

Subject to
3
Y2)3
=1- <0,
a10) 71785y"
(®)
4y3 = y1y2 1
= S O,
80 12566(y2y" —v') 5108y
140.45
o) =1- 20
y3)3

+
g4(§)=y'1—5y2—1s0,

The best obtained solution by above mentioned competi-
tor and proposed algorithm is given in Table 18. The results
show that RSO performs better than other optimization algo-
rithms. The statistical analysis of tension/compression spring
design is presented in Table 19 which shows the efficiency of
RSO to find the best optimal design.

In Fig. 13, RSO algorithm achieves the near optimal so-
lution during the initial stage of iterations and yields better
results than other optimization algorithms.

4.5. 25-bar truss design

The truss design problem is very popular optimization
problem in the literature. As shown in Fig. 16, there are 10
nodes which are fixed and 25 bars cross-sectional members
which are grouped into eight categories:

e Group 1: A4

o Group 2: Ay, As, Ay, As

e Group 3: Ag, A7, As, Ag

e Group 4: Ay, Ay

e Group 5: Ajs, A3

e Group 6: A4, A1s,A17

e Group 7: Ajg, A9, A, Azg
o Group 8: Ay, Az, Ay, Ass

The other variables which effects on this problem are as fol-
lows:

e p=0.0272 N/em?® (0.1 Ib/in.%)
o E =68947 MPa (10000 Ksi)
e Displacement limitation = 0.35 in.

e Maximum displacement = 0.3504 in.



8 GAURAV DHIMAN'*, MEENAKSHI GARG', ATULYA NAGAR?, VIJAY KUMAR?, MOHAMMAD DEHGHANI*

e Design variable set = {O.l, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
08,09,10,1.1,12,1.3,14,15,1.6,1.7,1.8, 1.9,
2.0,2.1,2.2,2.3,24,26,2.8,3.0,3.2,3.4 }

The member stress limitations for this truss is shown in Table
20.

The leading conditions of 25-bar truss is listed in Table
21. However, Table 22 reveals that RSO obtains best optimal
weight which is better than other competitor algorithms.

The statistical results also show that RSO outperforms
than other optimization algorithms. The effective
convergence behavior of this problem is shown in Fig. 14.

4.6. Rolling element bearing design problem

The main objective of this problem is to maximize the
dynamic load carrying capacity of a rolling element bearing
as shown in Fig. 15. There are 10 decision variables of this
design problem which are pitch diameter (D,,), ball diameter
(Dp), number of balls (Z), inner (f;) and outer (f,) raceway
curvature coefficients, Kpuin, Kpmax» €, €, and £.

The mathematical formulation is described as follows:

Maximize C; = £.Z**Dy®  if D < 25.4mm
C,=3.647£7°°D;*  if D> 25.4mm
Subject to

Q) = g0 ~Z+1<0,

25in~"(Dy/Dyy)
&) = 2Dy = Kppin(D — d) 2 0,

839 = Kppax(D —d) = 2Dy, 2 0,

24(3) = (B, — D, <0,

gs(3) =D, —0.5(D +d) > 0,

26(%) = (0.5 +e)(D +d) - D,, >0, )
8:3) =0.5(D - D,, — Dy) — €D, 2 0,

gs( = f; > 0515,

g = f, 2 0.515,

where,
1.72
1+ {1.04(1_—7)
1+y

f(zf _ 1) 0.415 10/39-0.3
(fo(zﬁ'_ 1)) } ]

£ =37.91

0.41

WA= 2f
8 [ A+ )7 ][Zﬁ my
x = (D= d)/2 = XTI +(D/2 ~ T/4 - Dy — (d)2 + T/41]
z=2{(D-d)/2 -3(T/HHD/2 - T/4 — Dy}

¢o =27 - 2C0S_I(f)

Z

yzg—i, ﬁ:%, _ﬁ,:lr)—”b, T=D-d-2D,
D=160, d=90, B, =30, r=r,=11.033
0.5(D+d) < D, <0.6(D+d), 0.15D—d)<D,
<045(D—d), 4<Z<50, 0515< f and f, < 0.6,
0.4 < Kppin < 0.5, 0.6 < Kppar < 0.7, 03 < e < 0.4,
0.02<e<0.1, 06<¢<085

The comparison results of best optimal solution with
different optimization algorithm is tabulated in Table 23. The
statistical results for reported algorithms with proposed RSO
is compared in Table 24.

In particular, Fig. 17 reveals that RSO algorithm
is capable to achieve the near optimal solution. While
analysing these results, the proposed RSO algorithm is
detected as the best optimizer over other optimizers.

In summary, the results on the six real-life engineering
design problems shows that RSO is able to solve various
high-dimensional challenging problems and has the
capability to handle various combinatorial optimization
problems (COPs). Therefore, RSO is the best optimization
algorithm under low computational costs and fast
convergence speed towards the optimum.

5. Conclusion

This paper presents a novel swarm-intelligence based
optimization algorithm called Rat Swarm Optimizer (RSO).
The proposed RSO algorithm is tested on thirty eight
benchmark test functions to evaluate the exploration and
exploitation phases for avoiding local optimum.

The results on the unimodal and multimodal test functions
reveal the superior exploitation and exploration capability of
the RSO algorithm, respectively. Finally, the algorithm is
benchmarked on very challenging CEC-15 special session
with bound constraints benchmark test functions. The
results show that the RSO is the best optimizer which
provides very competitive results as compared with other
well-known metaheuristics such as SHO, GWO, PSO, MFO,
MVO, SCA, GSA, and GA. In particular, the computational
complexity in terms of time and space complexity and
convergence behavior have also been analyzed.  The
statistical measurements have been discussed to demonstrate
the superiority of proposed algorithm as compared with other
metaheuristics.
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Moreover, the proposed algorithm has been applied
on six real-life constrained engineering design problems
(i.e., pressure vessel, speed reducer, welded beam,
tension/compression spring, 25-bar truss, and rolling element
bearing design) which shows that the RSO algorithm has
high performance capability in unknown search spaces.

There are several research directions which can be
recommended for future works. The binary version of the
RSO algorithm is the one motivation for future work. Also,
extension this algorithm to solve multi-objective as well as
many-objective optimization problems can also be seen as a
future contribution.
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Table 1
Swarm-intelligence based optimization algorithms.

Algorithms Years
Tabu (Taboo) Search (TS) (Glover, 1989) 1989
Harmony Search (HS) (Geem, Kim, & Loganathan, 2001) 2001
Termite Algorithm (TA) (Martin & Stephen, 2006) 2005
Group Search Optimizer (GSO) (He, Wu, & Saunders, 2006) 2006
Seeker Optimization Algorithm (RSO) (Dai, Zhu, & Chen, 2007) 2007
Imperialist Competitive Algorithm (ICA) (Atashpaz-Gargari & Lucas, 2007) 2007
League Championship Algorithm (LCA) (Kashan, 2009) 2009
Firework Algorithm (Tan & Zhu, 2010) 2010
Fruit fly Optimization Algorithm (FOA) (Pan, 2012) 2012
Bird Mating Optimizer (BMO) (Askarzadeh & Rezazadeh, 2013) 2012
Dolphin Echolocation (DE) algorithm (Kaveh & Farhoudi, 2013) 2013
Social-Based Algorithm (SBA) (Ramezani & Lotfi, 2013) 2013
Mine Blast Algorithm (MBA) (Sadollah, Bahreininejad, Eskandar, & Hamdi, 2013) 2013
Variance-Based Harmony Search (Kumar, Chhabra, & Kumar, 2014b) 2014
Parameter Adaptive Harmony Search (PAHS) (Kumar, Chhabra, & Kumar, 2014a) 2014
Exchange Market Algorithm (EMA) (Ghorbani & Babaei, 2014) 2014
Colliding Bodies Optimization (CBO) (Kaveh & Mahdavi, 2014) 2014
Interior Search Algorithm (ISA)(Gandomi, 2014) 2014
Soccer League Competition (SLC) algorithm (Moosavian & Roodsari, 2014) 2014
Crow Search Algorithm (CSA) (Askarzadeh, 2016) 2016
Emperor Penguin Optimizer (EPO) (Dhiman & Kumar, 2018c) 2018
Seagull Optimization Algorithm (SOA) (Dhiman & Kumar, n.d.) 2018

Table 2
p—values obtained from the Wilcoxon ranksum test for CEC-15 benchmark test functions.

F SHO GWO PSO MFO MVO SCA GSA GA
CEC-1  0.0009 0.0004 0.0004 0.0003 0.0067 0.0001 0.0004 0.0060
CEC-2  0.0012 0.0003 0.0003 0.0050 0.0002 0.0085 0.0035 0.0050
CEC-3  0.0002 0.0250 0.0102 0.0053 0.0006 0.0006 0.0007 0.0004
CEC-4 0.0042 0.0226 0.0029 0.0076 0.0023 0.0040 0.0002 0.0001
CEC-5 0.0006 0.0369 0.0005 0.0004 0.0009 0.2267 0.0093 0.0552
CEC-6  0.0076  0.0007 0.0038 0.0097 0.0269 0.4118 0.0072 0.0423
CEC-7 0.0087 0.0092 0.0005 0.0043 0.0022 0.0010 0.0004 0.0003
CEC-8 0.0032 0.5671 0.0009 0.0842 0.0080 0.0001 0.0028 0.0077
CEC-9  0.0001 0.0001 0.0077 0.0095 0.0001 0.0001 0.0003 0.0001

CEC-10  0.0001 0.0001 0.0001 0.0523 0.0440 0.0083 0.0004 0.0009
CEC-11  0.0002 0.0086 0.0009 0.0004 0.0007 0.0023 0.0055 0.0095
CEC-12  0.0001 0.0005 0.0001 0.0001 0.0637 0.0001 0.0042 0.0277
CEC-13  0.0001 0.0251 0.0001 0.0046 0.0048 0.0001 0.0004 0.0006
CEC-14  0.0001 0.0080 0.0036 0.0033 0.0796 0.0001 0.0055 0.0006
CEC-15 0.0009 0.0063 0.0076 0.0198 0.0119 0.0001 0.0076  0.0004
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Table 3
Unimodal benchmark test functions.

Function Dim Range Sonin
Fiy) = XY, »? 30  [-100,100] 0
F(0) = XX, vl + T vl 30 [-10, 10] 0
F3(0) = XL (25 v 30 [-100,100] O
F4(y) = maxi{lyil,1 <i < N} 30 [-100,100] O
Fs(y) = 2211000y — y2? + (i = D1 30 [-30, 30] 0
Fe(y) = T, (lyi + 0.5))? 30 [-100,100] 0
F,(y) = XX, iy? + random[0, 1] 30 [-1.28,1.28] 0

Table 4
Multimodal benchmark test functions.

' Dim Range fmiﬂ
Function

30 [-500,500]  -418.982x5
Fy(y) = S, —yisin(+/lyi)
30 [-5.12,5.12] O
Fo(y) = 3X,[y? — 10cos2ny;) + 10]

[1 1
Fioy) = —20exp( -02 v Zﬁil ytz) - exp(ﬁ Zf\il cos(27ry,-)) +20+e

30 [-32, 32] 0

30 [-600, 600] 0

1 Vi
F =—— YV 211V ¢ (—’) 1
u®) 2000 Y1 i — I1i, cos Vi +
Fo(y) = %{mm(nx.) + 20 G = D[+ 10sin? (e )] + (6, — 1) + 2 u(y;, 10,100, 4)
xi=1+ Tt
! 4
k(y; — a)" yi>a
u(yi, a,k,m) =40 —a<y<a 30 [-50, 50] 0
k(=y; —a)" yi<-—a
30 [-50, 50] 0
Fi3(y) = O.I{Sin2(3ﬂy1)+2f\il(y,~— D?[1 +sin2(3ﬂy,-+ DI+, — ?[1 +sin2(27ry,,)]}+2fi] u(y;, 5,100, 4)
30 [0, 7] -4.687
ly2 2m
Fia) = - XY, sin(y) - (sm(—)) m=10
Ve
30 [-20, 20] -1
Fis(y) = [[Zfi,(ﬂ/ﬁ)z"‘ _ ze—Zﬁ,}',?] . Hj\il coszy,-,m =5
30 [-10, 10] -1

Fis() = {[ZY, sin?(y)] — exp(= TN, y2)} - expl— X, sin® \lyill
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Table 5
Fixed-dimension multimodal benchmark test functions.

Function Dim Range Jrnin
1 ’s 1 )"
Fu)=(—+y® — 2 65,65] 1
0= (555 + 27 J* B - @) 65 03]
b2 + biyy) 1
Fis() = % [ai - u] 4 [-5,5]  0.00030
b2 +biys +y4
1
Fio() = 41 = 2.1y + 237 + 132 =43 + 4% 2 [-5,5]  -1.0316

[\

51, 5 2 1
Fi:(y) = (yz -yt =yi- 6) + 10(1 - —)cosy1 + 10
472 bid 8
Fig() = [1+ 1 +y2 + D219 = 14y1 + 3y = 14y, + 6y1y + 3y3)Ix
[30 + 2y, — 3y,)> x (18 — 32y, + 12y% + 48y, — 36y,y, + 27y§)] 2
Fio(y) = - I, ciexp(= X, aij(v; = pij)*) 3 [1,3] -3.86
Fa(y) = = XL, ciexp(— Z?:l aij(y; = pij)*) 6 [0, 1] -3.32
Fy () = =Y, [(X = a)(X = a)" +ci]™! 4 [0, 10] -10.1532
4
4

[-5, 5] 0.398

[-2, 2] 3

Fyn() = -3 [(X —a)X —a)’ +¢;]™! [0,10]  -10.4028
Fy(y) = -3, 0[(X —a)(X —a)” +¢;]7! [0,10]  -10.536

Table 6
CEC-15 benchmark test functions.

Function Dim Range Srnin
CEC — 1 = Rotated Bent Cigar Function 30 [-100, 100] 100
CEC -2 = Rotated Discus Function 30 [-10, 10] 200
CEC - 3 = Shifted and Rotated Weierstrass Function 30 [-100, 100] 300
CEC - 4 = Shifted and Rotated Schwefel’s Function 30 [-100, 100] 400
CEC -5 = Shifted and Rotated Katsuura Function 30 [-30, 30] 500
CEC - 6 = Shifted and Rotated HappyCat Function 30 [-100, 100] 600
CEC - 7 = Shifted and Rotated HGBat Function 30 [-1.28, 1.28] 700
CEC - 8 = Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function 30 [-500, 500] 800
CEC -9 = Shifted and Rotated Expanded Scaffer’s F6 Function 30 [-5.12,5.12] 900
CEC - 10 = Hybrid Function 1 (N = 3) 30 [-32, 32] 1000
CEC — 11 = Hybrid Function 2 (N = 4) 30 [-600, 600] 1100
CEC — 12 = Hybrid Function 3 (N = 5) 30 [-50, 50] 1200
CEC - 13 = Composition Function 1 (N = 5) 30 [-50, 50] 1300
CEC - 14 = Composition Function 2 (N = 3) 2 [-65.536, 65.536] 1400

CEC — 15 = Composition Function 3 (N = 5) 4 [-5, 5] 1500
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Table 7
Parameters values of algorithms.

Algorithms Parameters Values
# (For all algorithms) Search Agents 30
Number of Generations 1000
Rat Swarm Optimizer (RSO) Control Parameter (R) [1,5]
Constant Parameter C [0, 2]
Spotted Hyena Optimizer (SHO) Control Parameter (l_f) [5, 0]
M Constant [0.5, 1]
Grey Wolf Optimizer (GWO) Control Parameter (@) [2,0]
Particle Swarm Optimization (PSO) Inertia Coefficient 0.75
Cognitive and Social Coeff 1.8, 2
Moth-Flame Optimization (MFO) Convergence Constant [-1, -2]
Logarithmic Spiral 0.75
Multi-Verse Optimizer (MVO) Wormhole Existence Prob.  [0.2, 1]
Travelling Distance Rate [0.6, 1]
Sine Cosine Algorithm (SCA) Number of Elites 2
Gravitational Search Algorithm (GSA)  Gravitational Constant 100
Alpha Coefficient 20
Genetic Algorithm (GA) Crossover and Mutation 0.9, 0.05
Table 8
The obtained average and standard deviation results of RSO on unimodal benchmark test functions.
F RSO SHO GWO PSO MFO MVO SCA GSA GA
Fi  6.09E-32 0.00E+00 4.69E-47 4.98E-09 3.15E-04 2.81E-01 3.55E-02 1.16E-16 1.95E-12
(5.67E-35)  (0.00E+00)  (7.30E-45)  (1.40E-08)  (5.99E-04)  (L.11E-01)  (1.06E-01)  (6.10E-17)  (2.01E-11)
F»  0.00E+00 0.00E+00 1.20E-24 7.29E-04 3.71E+01 3.96E-01 3.23E-05 1.70E-01 6.53E-18
(0.00E+00)  (0.00E+00)  (1.30E-21)  (1.84E-03)  (2.16E+01)  (1.41E-01)  (8.57E-05)  (9.29E-01)  (5.10E-17)
F3  1.10E-18 0.00E+00 1.00E-14 1.40E+01 4.42E+03 4.31E+01 4.91E+03 4.16E+02 7.70E-10
(447E-19)  (0.00E+00)  (4.10E-14)  (7.13E+00)  (3.71E+03)  (8.97E+00)  (3.89E+03)  (1.56E+02)  (7.36E-09)
Fy  4.67E-07 7.78E-12 2.02E-14 6.00E-01 6.70E+01 8.80E-01 1.87E+01 1.12E+00 9.17E+01

(1.96B-08)  (8.96E-12)  (2.43E-14)  (1.72E-01)  (1.06E+01)  (2.50E-01)  (8.21E+00)  (9.89E-01)  (5.67E+01)
Fs  6I3E+00  859E+00  279E+01  4.93B+01  3.50E+03 1.I8E+02  7.37B+02  3.85E+01  5.57E+02
(7.97E-01)  (5.53E-01)  (1.84E+00) (3.89E+01)  (3.98E+03) (1.43E+02) (1.98E+03) (347E+01)  (4.16E+01)
Fs  637E-07 2.46E-01 6.58E-01 9.23E-09 1.66E-04 3.15E-01 488E+00  1.08E-16 3.15E-01
(730E-06)  (1.78E-01)  (3.38E-01)  (1.78B-08)  (2.01E-04)  (9.98E-02)  (9.75B-01)  (4.00E-17)  (9.98E-02)
F;  9.49E-06 3.29E-05 7.80E-04 6.92E-02 3.22E-01 2.02E-02 3.88E-02 7.68E-01 6.79E-04
(1.83E-05)  (243E-05)  (3.85E-04)  (2.87E-02)  (293E-01)  (743E-03)  (5.79B-02)  (2.77E+00)  (3.29E-03)
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Table 9
The obtained average and standard deviation results of RSO on multimodal benchmark test functions.
F RSO SHO GWO PSO MFO MVO SCA GSA GA
Fy  -85TE+03  -1.16E+03  -6.14E+03  -6.01E+03  -8.04E+03  -6.92E+03  -381E+03  -2.75B+03  -5.11E+03
(423E+02)  (272E+02)  (9.32E+02)  (1.30E+03)  (8.80E+02)  (9.19E+02)  (2.83E+02)  (5.72E+02)  (4.37E+02)
Fy  157E+02  0.00E+00  4.34E-01 472E+01 1.63E+02  LOIE+02  223E+01  3.35E+01 1.23E-01
(7.39E+01)  (0.00E+00)  (1.66E+00)  (1.O3E+01)  (3.74E+01)  (I1.89E+01)  (3.25E+01)  (L.I9E+01)  (4.11E+01)
Fio  7T40E-17 2.48E+00 1.63E-14 3.86E-02 1.60E+01 LISE+00  1.55E+01  8.25E-09 531E-11
(642E+00)  (1.41E+00)  (3.14E-15)  (211E01)  (6.I8E+00)  (7.87E-01)  (8.11E+00)  (1.90E-09)  (I.11E-10)
Fii 0.00E+00  0.00E+00  2.29E-03 5.50E-03 5.03E-02 5.74E-01 3.01E-01 8.19E+00  3.31E-06
(0.00E+00)  (0.00E+00)  (5.24E-03)  (7.39E-03)  (1.74E-01)  (L.I2E-01)  (2.89E-01)  (3.70E+00)  (4.23E-05)
Fi,  5.52E-01 3.68E-02 3.93E-02 1.05E-10 126E+00  127E+00  521E+01  2.65E-01 9.16E-08
(840E+00)  (I.ISE-02)  (242E-02)  (2.06E-10)  (1.83E+00) (1.02E+00)  (247E+02)  (3.14E-01)  (4.88E-07)
Fi3  6.05E-02 9.29E-01 4.75E-01 4.03E-03 7.24E-01 6.60E-02 281E+02  5.73E-32 6.39E-02
(743E-01)  (9.52E-02)  (2.38E-01)  (539E-03)  (1.48E+00) (4.33E-02)  (8.63E+02) (8.95E-32)  (4.49E-02)

17
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Table 10
The obtained average and standard deviation results of RSO on fixed-dimension multimodal benchmark test functions.
F RSO SHO GWO PSO MFO MVO SCA GSA GA
Fiy  6.51E-01 9.68E+00  3.71E+00  277E+00  221E+00  9.98E-01 126E400  3.61E+00  4.39E+00
(6.17E-05)  (3.29E+00)  (3.86E+00)  (2.32E+00)  (1.80E+00)  (9.14E-12)  (6.86E-01)  (2.96E+00)  (4.41E-02)
Fis  2.28E-04 9.01E-04 3.66E-03 9.09E-04 1.58E-03 7.15E-03 1.01E-03 6.84E-03 7.36E-03
(4.61E-04)  (1.06E-04)  (7.60E-03)  (2.38E-04)  (3.50E-03)  (1.26E-02)  (3.75B-04)  (7.37E-03)  (2.39E-04)
Fis  -LOSE+01  -1.06E+01  -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00  -1.03E+00  -1.04E+00
(3.34E-13)  (286E-11)  (7.02E-09)  (0.00E+00)  (0.00E+00)  (4.74E-08)  (3.23E-05)  (0.00E+00)  (4.19E-07)
Fi;  4.99E-02 3.97E-01 3.98E-01 3.97E-01 3.98E-01 3.98E-01 3.99E-01 3.98E-01 3.98E-01

(6.17E-07)  (246E-01)  (7.00B-07)  (9.03E-16)  (1.13E-16)  (1.I5E-07)  (7.61E-04)  (I.13E-16)  (3.71E-17)
Fis 3.00E+00  3.00E+00  3.00E+00  3.00E+00  3.00E+00  5.70E+00  3.00E+00  3.01E+00  3.01E+00
(820E-08)  (9.05E+00)  (7.16E-06)  (6.59E-05)  (4.25E-15)  (1.48E+01) (2.25E-05)  (3.24E-02)  (6.33E-07)
Fio  -390E+00  -375E+00  -3.86B+00  -3.90E+00  -3.86E+00  -3.86B+00  -3.86E+00  -3.22E+00  -3.30B+00
(3.87B-10)  (4.39E-01)  (1.57E-03)  (3.37E-15)  (3.16E-15)  (3.53E-070  (2.55E-03)  (4.15B-01)  (4.37E-10)
Fy  -3.32E400  -144E+00  -327E+00  -3.32E+00  -323E+00  -323E+00  -2.84E+00  -147E+00  -2.39B+00
(3.31E-02)  (S47E-01)  (7.27B-02)  (2.66E-01)  (6.65E-02)  (537E-02)  (3.71E-01)  (532E-01)  (4.37E-01)
Fy  -205E+01  -2.08E+00  -9.65E+00  -7.54E+00  -620E+00  -7.38E+00  -228E+00  -4.57E+00  -5.19E+00
(3.66E+00)  (3.80E-01)  (1.54E+00)  (2.77E+00)  (3.52E+00)  (2.91E+00)  (1.80E+00)  (1.30E+00)  (2.34E-+00)
Fy  -186E+01  -1.61E+01  -1.04B+01  -8.55E+00  -7.95E+00  -8.50B+00  -3.99E+00  -6.58E+00  -2.97E+00
(2.00E-04)  (2.04E-04)  (2.73E-04)  (3.08E+00)  (3.20E+00)  (3.02E+00)  (1.99E+00)  (2.64E+00)  (1.37E-02)
Fy;  -1OGE+01  -168E+00  -1.05E+01  -9.19E+00  -7.50E+00  -841E+00  -449E+00  -9.37E+00  -3.10E+00
(5.30E+00)  (2.64E-01)  (L.81E-04)  (252E+00) (3.68E+00)  (3.13E+00)  (1.96E+00)  (2.75E+00)  (2.37E+00)
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Table 11
The obtained average and standard deviation results of RSO on CEC-15 benchmark test functions.
F RSO SHO GWO PSO MFO MVO SCA GSA GA
CEC-1 ~ 419E+05  228E+06  2.02E+06  4.37E+05 147E+06  6.06E+05  7.65E+06  3.20E+07  8.89E+06
(4.19E+06)  (2.18E+06)  (208E+06)  (4.73E+05)  (2.63E+06)  (5.02E+05)  (3.07E+06)  (837E+06)  (6.95E+06)
CEC-2  697E+05  3.13E+05  5.65E+06  9.41E+03 1.97E+04  143E+04  7.33E+08  4.58E+03  2.97E+05
(2.29E+06)  (4.19E+05)  (6.03E+06)  (1.08E+04)  (1.46E+04)  (1.03E+04)  (2.33E+08)  (LOYE+03)  (2.85E+03)
CEC-3  320E+02  320E+02  320E+02  3.20E+02  3.20E+02  320E+02  320E+02  320E+02  3.20E+02
(5.96E-03)  (3.76E-02)  (7.08E-02)  (8.61E-02)  (9.14E-02)  (3.19E-02)  (7.53E-02)  (LI11E-05)  (2.78E-02)
CEC-4  410E+02  4.11E+02  4.16E+02  4.09E+02  426E+02  4.18E+02  442E+02  439E+02  6.99E+02
(841E+01)  (L71E+01)  (LO3E+01)  (3.96E+00)  (L.I7E+01)  (1.03E+01)  (7.72E+00)  (7.25E+00)  (6.43E+00)
CEC-5  9.14E+02  9.13E+02  920E+02  8.65E+02  133E+03  1.09E+03 L76E+03  1.75E+03 1.26E+03
(6.60E+02)  (1.85E+02)  (L.78E+02)  (2.16E+02)  (345E+02) (2.81E+02)  (2.30E+02)  (2.79E+02)  (1.86E+02)
CEC-6  3.50E+03 129E+04  226E+04  1.86E+03  7.35E+03  3.82B+03  230B+04  3.91E+06  2.91E+05
(4.00E+04)  (LISE+04)  (245E+04)  (L93E+03) (3.82E+03) (2.44E+03) (241E+04)  (270E+06)  (1.67E+05)
CEC-7  T.02E+02  7.02E+02  7.02E+02  7.02E+02  7.02E+02  7.02E+02  7.06E+02  7.08E+02  7.08E+02
(481E-01)  (6.76E-01)  (7.07E-01)  (7.75E-01)  (L.I0E+00)  (9.40E-01)  (9.07E-01)  (1.32E+00)  (2.97E+00)
CEC-8  147E+03  186E+03  3.49E+03  343E+03  9.93E+03  258E+03  6.73E+03  6.07E+05  S5.79E+04
(2.07E+03)  (1.98E+03)  (204E+03)  (277E+03)  (8.74E+03) (1.61E+03) (3.36E+03)  (4.81E+05)  (2.76E+04)
CEC-9  1.00E+03  1.00E+03  1.00E+03 1.00E+03 1.00E+03  1.00E+03 1.00E+03  1.00E+03 1.00E+03
(6.97E-01)  (143E-01)  (1.28E-01)  (7.23E-02)  (220E-01)  (5.29E-02)  (9.79E-01)  (5.33E+00)  (3.97E+00)
CEC-10  159E+03  200E+03  4.00E+03  327E+03  839E+03  262E+03  9.91E+03  3.42E+05  4.13E+04
(2.30E+04)  (2.73E+03)  (2.82E+03)  (1.84E+03)  (L.I2E+04)  (L78E+03)  (8.83E+03)  (1.74E+05)  (2.39E+04)
CEC-11  133E+03  138E+03  1.40E+03 1.35E+03 1.37E+03  1.39E+03 1.35E403  1.41E+03 1.36E+03
(L44E+01)  (242E+01)  (5.81E+01)  (L.I2E+02)  (897E+01)  (5.42E+01)  (L.1IE+02)  (7.73E+01)  (5.39E+01)
CEC-12  130E+03  130E+03  1.30E+03 1.30E+03 1.30E+03  1.30E+03 131E+03  1.31E+03 1.31E+03
(491E+00)  (7.89E-01)  (6.69E-01)  (6.94E-01)  (9.14E-01)  (8.07E-01)  (L.54E+00)  (2.05E+00)  (1.65E+00)
CEC-13  130E+03  130E+03  1.30E+03 1.30E+03 1.30E+03  1.30E+03 1.30E+03  1.35E+03 1.35E+03
(5.09E-05)  (2.76E-04)  (1.92E-04)  (5.44E-03)  (L.O4E-03)  (243E-04)  (3.78E-03)  (470E+01)  (3.97E+01)
CEC-14 356E+03  425E+03  7.29E+03  7.10E+03  7.60E+03  7.34E+03  7.51E+03  9.30E+03  8.96E+03
(6.12E+04)  (1.73E+03)  (245E+03)  (3.12E+03)  (1.29E+03)  (2.47E+03)  (1.52E+03)  (4.04E+02)  (6.32E+03)
CEC-I5 160E+03  1.60E+03  1.61E+03 1.60E+03 L.61E+03  1.60E+03 L62E+03  1.64E+03 1.63E+03
(6.00E-03)  (3.76E+00)  (4.94E+00)  (2.66E-07)  (L.I3E+01)  (1.80E-02)  (3.64E+00)  (IL.12E+01)  (3.67E+01)
Table 12
Comparison results for pressure vessel design problem.
Algorithms Optimum variables Optimum cost
T, Ty R L
RSO 0.775967 0.383127 40.313297 200.00000 5878.5395
SHO 0.778210 0.384889 40.315040 200.00000 5885.5773
GWO 0.779035 0.384660 40.327793  199.65029 5889.3689
PSO 0.778961 0.384683 40.320913  200.00000 5891.3879
MVO 0.845719 0.418564 43.816270 156.38164 6011.5148
SCA 0.817577 0.417932  41.74939  183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11550.2976
GA 0.752362 0.399540 40.452514 198.00268 5890.3279
HS 1.099523 0.906579 44.456397 179.65887 6550.0230
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Table 13
Statistical results of proposed RSO and competitor algorithms for pressure vessel design problem.

Algorithms Best Mean Worst Std. Dev. Median

RSO 5878.5395  5881.5355  5887.3933  167.041  5880.0051
SHO 5885.5773  5887.4441  5892.3207  002.893  5886.2282
GWO 5889.3689  5891.5247  5894.6238  013.910  5890.6497
PSO 5891.3879  6531.5032  7394.5879  534.119  6416.1138
MVO 6011.5148  6477.3050 72509170  327.007  6397.4805
SCA 6137.3724  6326.7606  6512.3541 126.609  6318.3179
GSA 11550.2976  23342.2909  33226.2526 5790.625 24010.0415

GA 5890.3279  6264.0053  7005.7500  496.128  6112.6899

HS 6550.0230  6643.9870  8005.4397  657.523  7586.0085

Table 14
Comparison results for speed reducer design problem.

Algorithms Optimum variables Optimum cost
b m oz I3 A d d>
RSO 3.50112 0.7 17 7.3 7.8 3.32323 5.24567 2993.0027
SHO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
GWO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
PSO 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763
MVO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928
SCA 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
GA 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561
HS 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002
Table 15

Statistical results of proposed RSO and competitor algorithms for speed reducer design problem.

Algorithms Best Mean Worst Std. Dev.  Median

RSO 2993.0027 2998.597 3000.678 1.75697  2995.357
SHO 2998.5507 2999.640 3003.889  1.93193  2999.187
GWO 3001.288  3005.845 3008.752 5.83794  3004.519

PSO 3005.763  3105.252 3211.174  79.6381  3105.252
MVO 3002.928  3028.841 3060.958 13.0186  3027.031
SCA 3030.563 3065917 3104.779 18.0742  3065.609
GSA 3051.120  3170.334  3363.873 92.5726  3156.752
GA 3067.561 3186.523 3313.199 17.1186  3198.187

HS 3029.002 3295329 3619.465 57.0235  3288.657
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Table 16
Comparison results for welded beam design.

Algorithms Optimum variables Optimum cost
h t / b

RSO 0.205397 3.465789 9.034571 0.201097 1.722789
SHO 0.205563 3.474846  9.035799 0.205811 1.725661
GWO 0.205678 3.475403 9.036964 0.206229 1.726995
PSO 0.197411 3.315061 10.00000 0.201395 1.820395
MVO 0.205611 3.472103 9.040931 0.205709 1.725472
SCA 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858

GA 0.164171 4.032541 10.00000 0.223647 1.873971

HS 0.206487 3.635872 10.00000 0.203249 1.836250

Table 17
Statistical results of proposed RSO and competitor algorithms for welded beam design problem.

Algorithms Best Mean Worst Std. Dev.  Median

RSO 1.722789 1.725097 1.726987 0.015748  1.723697
SHO 1.725661 1.725828 1.726064 0.000287  1.725787
GWO 1.726995 1.727128 1.727564 0.001157  1.727087
PSO 1.820395 2.230310 3.048231 0.324525  2.244663
MVO 1.725472  1.729680 1.741651 0.004866  1.727420
SCA 1.759173  1.817657 1.873408 0.027543  1.820128
GSA 2.172858 2.544239 3.003657 0.255859 2.495114

GA 1.873971 2.119240 2.320125 0.034820  2.097048

HS 1.836250 1.363527 2.035247 0.139485 1.9357485

Table 18
Comparison results for tension/compression spring design.

Algorithms Optimum variables Optimum cost
d D N
RSO 0.051075 0.341987  12.0667 0.012655697
SHO 0.051144 0.343751  12.0955 0.012674000
GWO 0.050178 0.341541 12.07349 0.012678321
PSO 0.05000 0.310414  15.0000 0.013192580

MVO 0.05000  0.315956 14.22623 0.012816930
SCA 0.050780 0.334779  12.72269 0.012709667
GSA 0.05000 0.317312 14.22867 0.012873881
GA 0.05010 0.310111  14.0000 0.013036251
HS 0.05025 0.316351 15.23960 0.012776352
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Statistical results of proposed RSO and competitor algorithms for tension/compression spring design.

Table 20

Algorithms Best Mean Worst Std. Dev. Median
RSO 0.012655697 0.012665789 0.012667980 0.057894  0.012666369
SHO 0.012674000 0.012684106 0.012715185 0.000027 0.012687293
GWO 0.012678321 0.012697116 0.012720757 0.000041 0.012699686
PSO 0.013192580 0.014817181 0.017862507 0.002272  0.013192580
MVO 0.012816930 0.014464372 0.017839737 0.001622 0.014021237
SCA 0.012709667  0.012839637 0.012998448 0.000078  0.012844664
GSA 0.012873881 0.013438871 0.014211731 0.000287 0.013367888

GA 0.013036251 0.014036254 0.016251423 0.002073  0.013002365
HS 0.012776352  0.013069872 0.015214230 0.000375 0.012952142

Member stress limitations for 25-bar truss design problem.

Groups

Compressive stress limitations Ksi (MPa)

Tensile stress limitations Ksi (MPa)

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8

35.092 (241.96)
11.590 (79.913)
17.305 (119.31)
35.092 (241.96)
35.092 (241.96)
6.759 (46.603)
6.959 (47.982)
11.082 (76.410)

40.0 (275.80)
40.0 (275.80)
40.0 (275.80)
40.0 (275.80)
40.0 (275.80)
40.0 (275.80)
40.0 (275.80)
40.0 (275.80)

Table 21
Two loading conditions for 25-bar truss design problem.
Node Case 1 Case 2
P.Kips(kN) P,Kips(kN) P.Kips(kN)  P.Kips(kN) P, Kips(kN) P.Kips(kN)
1 0.0 20.0 (89) -5.0 (22.25) 1.0 (4.45) 10.0 (44.5) -5.0 (22.25)
2 0.0 -20.0 (89) -5.0 (22.25) 0.0 10.0 (44.5) -5.0 (22.25)
3 0.0 0.0 0.0 05 (2.22) 0.0 0.0
6 0.0 0.0 0.0 05 (2.22) 0.0 0.0




Table 22

RSO

Statistical results of proposed RSO with literature for 25-bar truss design problem.
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Group RSO ACO PSO (Schutte CSS (Kaveh
(Bichon, & Groen- & Talatahari, BB-BC
2004) wold, 2003) 2010b) (Kaveh &
Talatahari,
2009)
Al 0.01 0.01 0.01 0.01 0.01
A2-AS5 1.848 2.042 2.052 2.003 1.993
A6-A9 3.000 3.001 3.001 3.007 3.056
Al10-All 0.01 0.01 0.01 0.01 0.01
A12-A13 0.01 0.01 0.01 0.01 0.01
Al4-A17 0.657 0.684 0.684 0.687 0.665
Al18-A21 1.627 1.625 1.616 1.655 1.642
A22-A25 2.661 2.672 2.673 2.66 2.679
Best weight 543.57 545.03 545.21 545.10 545.16
Average 546.20 545.74 546.84 545.58 545.66
weight
Std. dev. 0.388 0.94 1.478 0.412 0.491
Table 23
Comparison results for rolling element bearing design problem.
Algorithms Optimum variables Opt. cost
Dm Db Z fl fa KDmin KDmax & e {
RSO 125 21.41769 10.94027 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85069.021
SHO 125 21.40732  10.93268 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85054.532
GWO 125.6199 21.35129 10.98781 0.515 0.515 0.5 0.68807 0.300151 0.03254 0.62701 84807.111
PSO 125 20.75388 11.17342 0.515 0.515000 0.5  0.61503 0.300000 0.05161  0.60000 81691.202
MVO 125.6002 21.32250 10.97338 0.515 0.515000 0.5 0.68782 0.301348 0.03617 0.61061 84491.266
SCA 125 21.14834 10.96928 0.515 0.515 0.5 0.7 0.3 0.02778  0.62912 83431.117
GSA 125 20.85417 11.14989 0.515 0.517746 0.5  0.61827 0.304068 0.02000 0.624638 82276.941
GA 125 20.77562 11.01247 0.515 0.515000 0.5  0.61397 0.300000 0.05004 0.610001 82773.982
HS 125 20.87123  11.16697 0.515 0.516000 0.5  0.61951 0.301128 0.05024 0.614531 81569.527
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Table 24
Statistical results of proposed RSO and competitor algorithms for rolling element bearing design problem.

Algorithms Best Mean Worst Std. Dev. Median

RSO 85069.021 85041.998 86548.613 1789.14  85054.497
SHO 85054.532  85024.858 85853.876  0186.68  85040.241
GWO 84807.111 84791.613 84517.923  0137.186  84960.147
PSO 81691.202 50435.017 32761.546 13962.150 42287.581
MVO 84491.266 84353.685 84100.834  0392.431  84398.601
SCA 83431.117 81005.232  77992.482  1710.777  81035.109
GSA 82276.941 78002.107 71043.110 3119.904  78398.853

GA 82773.982 81198.753 80687.239  1679.367  8439.728

HS 81569.527 80397.998 79412.779  1756.902  8347.009
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Figure 1. 3D position vectors of rats.
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Figure 2. Flowchart of the proposed RSO algorithm.
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Figure 3. Boxplot analysis of proposed RSO algorithm on CEC benchmark test functions.
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Figure 4. Convergence analysis of proposed RSO algorithm and competitor algorithms obtained on some of the benchmark
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Figure 5. Scalability analysis of proposed RSO algorithm.
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Figure 6. Schematic view of pressure vessel problem.
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Figure 7. Analysis of proposed RSO for the pressure vessel problem.

Figure 8. Schematic view of speed reducer problem.
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Figure 9. Analysis of proposed RSO for the speed reducer problem.

Figure 10. Schematic view of welded beam problem.
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Figure 11. Analysis of proposed RSO for the welded beam problem.
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e

Figure 12. Schematic view of tension/compression spring problem.
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Figure 14. Analysis of proposed RSO for the 25-bar truss problem.
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Figure 15. Schematic view of rolling element bearing problem.

Figure 16. Schematic view of 25-bar truss design problem.
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Figure 17. Analysis of proposed RSO for the rolling element bearing problem.



