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Abstract

A word is a finite sequence of symbols. Parikh matrix of a word is an
upper triangular matrix with ones in the main diagonal and non-negative
integers above the main diagonal which are counts of certain scattered
subwords in the word. On the other hand a picture array, which is a
rectangular arrangement of symbols, is an extension of the notion of word
to two dimensions. Parikh matrices associated with a picture array have
been introduced and their properties have been studied. Here we obtain
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certain algebraic properties of Parikh matrices of binary picture arrays
based on the notions of power, fairness and a restricted shuffle operator
extending the corresponding notions studied in the case of words. We also
obtain properties of Parikh matrices of arrays formed by certain geometric
operations.

1 Introduction

“Combinatorics on words” [16] is a comparatively new branch of Discrete Math-
ematics with applications in many fields. The work [9] of the Norwegian mathe-
matician Axel Thue (1863-1922) is considered to be the origin for the beginning
of this new branch of Mathematics. A finite word or simply a word is a finite
sequence of symbols in a finite set called an alphabet. The Parikh vector [20]
of a finite word, which has played a significant role in the theory of formal lan-
guages [20], expresses a numerical property of the word by counting the number
of occurrences of the different symbols in the word.

The recently introduced notion of Parikh matrix [19] of a word over an or-
dered alphabet is an extension of the Parikh vector. Parikh matrix of a word,
which is based on subwords (also called scattered subwords) of the word, is a
very interesting and effective tool in the study of certain numerical properties of
the word. Intensive work (see, for example, [4, 6, 14, 18, 22, 24, 25]) has taken
place in investigating properties of words based on associated Parikh matrices.
Such theoretical studies have dealt with problems of great interest related to
words such as inequalities on the numbers of occurrences of subwords, injectiv-
ity of the mapping involved in defining the Parikh matrix and other directions
[21]. An application of Parikh matrix in message authentication is considered
in [5].

On the other hand, a picture array or simply an array, having a rectangular
arrangement of symbols in rows and columns, is an extension of a word to two-
dimensions (2D) [20]. Several combinatorial properties of arrays have also been
intensively investigated [1, 2, 3, 10, 11, 12, 15]. For instance, notions such as
repetitions of subarrays in 2D arrays are studied in [2, 3, 10, 12] while period-
icity in arrays are dealt with in [1, 11]. The notion of Parikh matrix of a word
has been extended to row and column Parikh matrices of picture arrays in [23]
and their properties have been studied. The problem of reconstruction of 2D
binary images has been studied [17] based on Parikh matrices.

Here we consider binary picture arrays and establish properties of the Parikh
matrices of power of an array, fairness of an array and a restricted shuffle oper-
ator on arrays, by extending the corresponding notions [7, 13, 15] investigated
in the case of words. We also obtain properties of Parikh matrices of arrays
formed by certain geometric operations. A preliminary version of this work was
presented in the conference MICOPAM 2018 [8].
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2 Preliminaries

For notions of formal string language theory and two-dimensional languages,
not explained here, the reader is referred to [20]. We recall only some basic
notions.

A set Σ, called an alphabet, is a finite set of symbols. A word w over Σ is a finite
sequence of symbols over Σ. The set of all words over Σ is denoted by Σ∗ and λ is
the empty word with no symbols. An alphabet Σ = {a1, a2, · · · , ak} with an or-
der a1 < a2 < · · · < ak defined on it, is called an ordered alphabet and we write
Σ = {a1 < a2 < · · · < ak}. A word u is said to be a scattered subword (or simply
subword) of a word w ∈ Σ∗ if there exist words x1, x2, · · · , xn, y0, y1, · · · , yn ∈ Σ∗

(possibly empty) such that u = x1x2 · · ·xn and w = y0x1y1 · · · yn−1xnyn. The
length of a word w ∈ Σ∗, denoted by |w|, is the number of symbols present in
w. The number of occurrences of a word u as a subword of w is denoted by |w|u.

A picture array (or simply an array) A over Σ of size m × n, m, n ≥ 1 is a
rectangular arrangement of symbols in Σ in m rows and n columns. For exam-

ple,
a b a
b a b

is a 2 × 3 binary array over the binary alphabet Σ = {a, b}.

We denote the set of all m×n arrays over Σ by Σm×n. If X ∈ Σm×n, we denote
by |Xi|x, the number of symbol x in the ith row (or in the ith column) Xi of
array X and by |X|x, the sum Σm

i=1Xi. For two arrays X and Y with the same
number of rows (respy. columns), the column (respy. row) catenation X ◦ Y
(respy. X � Y ) is the array obtained by juxtaposing the array Y on the right
(respy. below) the array X.

Throughout the rest of the paper we consider only a binary ordered alpha-
bet Σ and binary arrays over Σ unless specified otherwise. We now recall the
definition of Parikh matrix mapping [19] restricting it to a binary alphabet. Let
M3 be the monoid of 3× 3 upper triangular matrices with non-negative integer
entries and unit diagonal with respect to multiplication of matrices. The unit
3×3 matrix is denoted by I3. For a matrix M ∈M3, the (i, j)th entry is denoted
by Mij .

Definition 2.1 [19] Let Σ = {a1 < a2} be an ordered alphabet. The Parikh
matrix mapping, denoted by ψ3, is the morphism: ψ3 : Σ∗ −→ M3 defined as
follows: ψ3(λ) = I3 and for 1 ≤ k ≤ 2, ψ3(ak) = (Mij)1≤i,j≤3 where Mii =
1 for 1 ≤ i ≤ 3, Mk(k+1) = 1 and all other entries are zero. For a word
w = w1w2 · · ·wn with wi ∈ Σ, the Parikh matrix of w is given by ψ3(w) =
ψ3(w1)ψ3(w2) · · ·ψ3(wn).

If M1,M2 ∈M3 are two matrices, then the partial sum M = M1⊕M2 is defined
[18] as the usual sum of matrices M1 and M2 except that the diagonal entries
of M by definition have the value 1.
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3 Row and Column Parikh Matrices of a Binary
Picture Array

The notion of Parikh matrix of a word has been extended to a picture array in
[23] by introducing row Parikh matrix and column Parikh matrix of an array,
which we recall now again restricting to a binary alphabet.

Definition 3.1 Let Σ = {a1 < a2} and the array A ∈ Σm×n. Let the word in
the ith row of A be xi, 1 ≤ i ≤ m and the vertical word in the jth column of A
be yj, 1 ≤ j ≤ n. Let the Parikh matrices of xi and yj be respectively M(xi),
1 ≤ i ≤ m and M(yj), 1 ≤ j ≤ n. Then the row Parikh matrix Mr(A) of A is
defined as Mr(A) = M(x1)⊕· · ·⊕M(xm) and the column Parikh matrix Mc(A)
of A is defined as Mc(A) = M(y1)⊕ · · · ⊕M(yn).

As an illustration, consider the array A =
a b a
b a b

. Denoting the words in

the rows as u = aba and v = bab, the row Parikh matrix of A is Mr(A) =

M(u)⊕M(v) =

 1 2 1
0 1 1
0 0 1

 ⊕
 1 1 1

0 1 2
0 0 1

 =

 1 3 2
0 1 3
0 0 1

 .

We first obtain a property of the row (respy. column) Parikh matrix of a binary
picture array, extending a corresponding property [18] of the Parikh matrix of
a binary word.

Theorem 3.2 For integers m,n(≥ 1), suppose M =

 1 r t
0 1 s
0 0 1

 ∈ M3. If

M is the row (respy. column) Parikh matrix of an m× n binary array A, then

r + s = mn and t ≤ nr −
m∑
i=1

r2i (respy. t ≤ mr −
n∑

i=1

c2i ), where |Ai|a = ri

(1 ≤ i ≤ m) (respy. |Ai|a = ci (1 ≤ i ≤ n)) with Ai being the ith row (respy.
column) of A.

Proof.
We prove the result only for row Parikh matrix as the result for column Parikh
matrix can be proved in a similar manner. Let M be the row Parikh matrix
of an m × n binary array A. Then A has mn symbols, r a’s and s b’s, so that
r + s = mn. Let |Ai|a = ri with Ai being the ith (1 ≤ i ≤ m) row of A.

Then
m∑
i=1

ri = r, and the number of b’s in the ith row is (n− ri). Therefore the

maximum number of ab’s in the ith row is ri(n−ri). Thus the maximum number

of ab’s in the row Parikh matrix of A is
m∑
i=1

ri(n− ri) so that t ≤ nr −
m∑
i=1

r2i .

Corollary 3.3 Let M be as in Theorem 3.2. If M is the row (respy. column)

Parikh matrix of an m × n array, then r + s = mn and t ≤ nr − r2

m (respy.

t ≤ mr − r2

n ).
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This result follows from Theorem 3.3 by the Cauchy Schwarz inequality
m∑
i=1

r2i ≥

1
m (

m∑
i=1

ri)
2.

4 Parikh Matrix of Power of an Array

Parikh matrix of a word w raised to an arbitrary power, denoted as wp, for an
integer p ≥ 1 has been studied in [7]. Here we consider power of an array which
has been introduced in [15].

Definition 4.1 Let A be an m × n array. Then p × q power of A, denoted by

A(p×q), is the pm × qn picture array such that A
(p×q)
ij = A

(i mod m)(j mod n)
,

for all 1 ≤ i ≤ pm and 1 ≤ j ≤ qn.

Example 4.2 Let A =
a a b
b a b

be an 2×3 two dimensional array. The 2×4

power of A is given by A(2×4) =

a a b a a b a a b a a b
b a b b a b b a b b a b
a a b a a b a a b a a b
b a b b a b b a b b a b

.

Theorem 4.3 Let M =

 1 r t
0 1 s
0 0 1

 be the row Parikh matrix of a binary

m×n array A over {a < b}. Then the row Parikh matrix of the power A(p×q) is

given by

 1 pqr pqt+ pq(q−1)
2

m∑
i=1

ri · si
0 1 pqs
0 0 1

 , where |Ai|a = ri and |Ai|b = si,

with Ai being the ith row of A.

Proof.
We have A(p×q) = (A(1×q))(p×1). Now A(1×q) is the column catenation A◦· · ·◦A
of A with itself, q times. Let ri, si and ti denote the number of a’s, b’s and
ab’s in the ith row xi, (1 ≤ i ≤ m) of A. Then the ith row of A(1×q) is xqi .
Using the formula in ([7], Theorem 3.1), the Parikh matrix of xqi is given by

ψ3(xqi ) =

 1 qri qti + q(q−1)
2 ri · si

0 1 qsi
0 0 1

 . Therefore the row Parikh matrix of

A(1×q) is =

 1 qr qt+ q(q−1)
2

m∑
i=1

ri · si
0 1 qs
0 0 1

. Since the array A(p×q) is the

row catenation A(1×q) � · · · �A(1×q) of the array A(1×q) with itself p times, each
of the rows of the array A(1×q) is repeated p times in the same order in A(p×q).

5



This means that |A(p×q)|a is p times |A(1×q)|a. i.e. |A(p×q)|a is pqr. Likewise for
b′s and ab′s. This proves the required result.

The notion of M -ambiguity of words has been extended to two dimensional
picture arrays in [23]. We now recall this.

Definition 4.4 The arrays A,B ∈ Σm×n are said to be (i) M -row equivalent if
Mr(A) = Mr(B) and (ii) M -column equivalent if Mc(A) = Mc(B). The arrays
A and B are said to be M -equivalent, denoted by A ≡M B, if they are both M -
row equivalent and M -column equivalent. An array A ∈ Σm×n is M -ambiguous
(or simply ambiguous) if it is M -equivalent to another distinct array; otherwise
it is unambiguous.

In [7], it is shown that for any two words v, w ∈ Σ∗, |Σ| ≥ 2, either of the
following statements (i), (ii) holds: (i) vk ≡M wk, for all positive integers k,
(ii) vk 6≡M wk, for all positive integers k. In the case of binary picture arrays
the situation is different as seen from the following proposition.

Proposition 4.5 There are M -row equivalent picture arrays whose powers are
not M -row equivalent and conversely.

This proposition is illustrated in the following example.

Example 4.6 We consider binary arrays A =
a a b
b a a

and B =
a b b
a a a

.

Then A(1×2) =
a a b a a b
b a a b a a

, B(1×2) =
a b b a b b
a a a a a a

Now Mr(A) =

Mr(B) =

 1 4 2
0 1 2
0 0 1

 so that the binary arrays A and B are M−equivalent.

But Mr(A(1×2)) =

 1 8 8
0 1 4
0 0 1

 and Mr(B(1×2)) =

 1 8 6
0 1 4
0 0 1

 so that

Mr(A(1×2)) and Mr(B(1×2)) are not M−equivalent.

We next consider binary arrays C =
a a b b
b b a a

, D =
a a b a
a b b b

. Then

C(1×2) =
a a b b a a b b
b b a a b b a a

,D(1×2) =
a a b a a a b a
a b b b a b b b

.

We have Mr(C) =

 1 4 4
0 1 4
0 0 1

 and Mr(D) =

 1 4 5
0 1 4
0 0 1

 so that the

binary arrays C and D are not M−equivalent.

But Mr(C(1×2)) =

 1 8 16
0 1 8
0 0 1

 = Mr(D(1×2)) so that Mr(C(1×2)) and

Mr(D(1×2)) are M−equivalent.
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The next result gives a sufficient condition for two M -row equivalent binary
picture arrays to have their powers also M -row equivalent.

Theorem 4.7 Let A and B be two m×n M -row equivalent binary arrays over
Σ = {a < b}. Then their powers A(p×q) and B(p×q) are M -row equivalent if
m∑
i=1

r2i =
m∑
i=1

u2i , where |Ai|a = ri and |Bi|a = ui, 1 ≤ i ≤ m, with Ai and Bi

being the ith rows of A and B respectively.

Proof.
Let A and B be two m × n M -row equivalent binary arrays over Σ = {a < b}

and Mr(A) = Mr(B) =

 1 r t
0 1 s
0 0 1

. Then
m∑
i=1

ri =
m∑
i=1

ui = r where ri and

ui, 1 ≤ i ≤ m are the number of a’s in the ith row of A and B respectively.
Also the number of b’s in the ith row of A and B respectively are (n− ri) and

(n− ui). Suppose
m∑
i=1

r2i =
m∑
i=1

u2i . Now using Theorem 4.3, we have

Mr(A(p×q)) =

 1 pqr α
0 1 pqs
0 0 1

 and Mr(Bp×q) =

 1 pqr β
0 1 pqs
0 0 1

,


where α = pqt + pq(q−1)

2

m∑
i=1

ri · (n − ri) and β = pqt + pq(q−1)
2

m∑
i=1

ui · (n − ui).

We now prove that α = β which will complete the proof.
We have

α = pqt+ pq(q−1)
2

m∑
i=1

ri · (n− ri) = pqt+ pq(q−1)
2

(
n

m∑
i=1

ri −
m∑
i=1

r2i

)
= pqt+ pq(q−1)

2

(
n

m∑
i=1

ui −
m∑
i=1

u2i

)
= pqt+ pq(q−1)

2

m∑
i=1

ui · (n− ui) = β.

This proves that A(p×q) and B(p×q) are M -row equivalent.

Remark 4.8 The sufficient condition in Theorem 4.7 is not vacuous as can be
seen from the following illustration.

Consider the binary arrays A =
a a b b
a b a a

and B =
a a a b
b a a b

which

are M−equivalent with the row Parikh matrix

 1 5 5
0 1 3
0 0 1

 . If the number

of subword a in the rows of A (respy. B) are r1 and r2 (respy. u1 and u2),
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then r21 + r22 = u21 + u22 = 13. Now A(3×2) =

a a b b a a b b
a b a a a b a a
a a b b a a b b
a b a a a b a a
a a b b a a b b
a b a a a b a a

and

B(3×2) =

a a a b a a a b
a a a b a a a b
a a a b a a a b
a a a b a a a b
a a a b a a a b
a a a b a a a b

and Mr(A) = Mr(B) =

 1 30 51
0 1 18
0 0 1


so that the binary arrays A(3×2) and B(3×2) are M−equivalent.

5 Fair picture arrays

Fair words and their properties have been studied in [13]. A weak ratio property
for an array is introduced in [23]. We now extend the notion of fair words to two
dimensional arrays. We also recall the notion of weak ratio property restricting
it to binary arrays.

Definition 5.1 (i) A binary array A ∈ Σm×n is called fair if the total number
of subwords ab in the rows (respectively columns) of A is equal to the total
numbers of subwords ba in the rows (respectively columns) of A.
(ii) Let A and B be two binary arrays over Σ = {a < b}. The arrays A and

B are said to satisfy a weak ratio property if |A|a|B|a = |A|b
|B|b = k where k, is a

non-zero constant.

Theorem 5.2 Let A and B be two fair binary arrays over Σ = {a < b}, both
having the same number of rows and satisfying weak ratio property. Then the
arrays A◦B and B ◦A are also fair. A corresponding result holds good for A�B
and B �A.

Proof.
Let A ∈ Σm×n and B ∈ Σm×l be two fair words satisfying weak ratio property
with ratio constant α. Denoting the total number of subword ab in the rows
of a binary array by |X|rab, we then have |A|rab = |A|rba and |B|rab = |B|rba.
Also we have |A|a|B|a = |A|b

|B|b = α. This implies that mn = |A| = |A|a + |A|b =

α(|B|a + |B|b) = αml, i.e., n = αl.
Since A ◦B is the column catenation of A and B, the column Parikh matrix of
A ◦B is Mc(A ◦B) = Mc(A)⊕Mc(B) . Therefore the number of subword ab’s
column wise in A ◦B is same as the number of ba’s column wise in A ◦B.
Let xi and ui, 1 ≤ i ≤ m be the words in the ith row of A and B respectively.
Now the number of ab’s row wise in A ◦B is given by

|A ◦B|rab =
m∑
i=1

(|xi|ab + |yi|ab + |xi|a · |yi|b) = |A|rab + |B|rab +
m∑
i=1

|xi|a · |yi|b.
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We also have

|A ◦B|rba =

m∑
i=1

(|xi|ba + |xi|ba + |xi|b · |yi|a)

= |A|rba + |B|rba +

m∑
i=1

|xi|b · |yi|a

= |A|rab + |B|rab +

m∑
i=1

|xi|b(l − |yi|b),

since |yi| = l

= |A|rab + |B|rab + l

m∑
i=1

|xi|b −
m∑
i=1

|xi|b|yi|b

= |A|rab + |B|rab + αl

m∑
i=1

|yi|b −
m∑
i=1

|xi|b|yi|b

= |A|rab + |B|rab +

m∑
i=1

(αl − |xi|b)|yi|b

= |A|rab + |B|rab +

m∑
i=1

(n− |xi|b)|yi|b,

since n = αl

= |A|rab + |B|rab +

m∑
i=1

|xi|a · |yi|b = |A ◦B|rab.

This proves that A ◦B is a fair array. In a similar manner it can be shown that
B ◦A is also a fair array.

6 Restricted Shuffle operator on picture arrays

In [6], a restricted shuffle operator on two binary words, denoted as SShuf
is considered and properties of Parikh matrices of words under this operator
are derived, especially over a binary alphabet. Here we extend this operator
to picture arrays and obtain properties of Parikh matrices of arrays under this
operator.

Definition 6.1 Let A,B ∈ Σm×n be two picture arrays over Σ = {a < b} such

that A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

and B =

b11 · · · b1n
...

. . .
...

bm1 · · · bmn

. Then the restricted row

shuffle operator on the pair of arrays A and B is defined by
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RSShuf(A,B) =

a11 b11 a12 b12 · · · a1n b1n
a21 b21 a22 b22 · · · a2n b2n
· · · · · · ·
· · · · · · ·
· · · · · · ·

am1 bm1 am2 bm2 · · · amn bmn

and similarly the restricted column shuffle operator is defined by

CSShuf(A,B) =

a11 a12 · · · a1n
b11 b12 · · · b1n
· · · ·
· · · ·
· · · ·

am1 am2 · · · amn

bm1 bm2 · · · bmn

.

Example 6.2 Let A,B ∈ Σ3×3 over the binary alphabet Σ = {a < b} be given

by A =
a a b
b a a

, B =
b a a
a b a

. Then RSShuf(A,B) =
a b a a b a
b a a b a a

and

CSShuf(A,B) =

a a b
b a a
b a a
a b a

.

We observe a few facts which are immediate from the definition :
(i) Mr(CSShuf(A,B)) = Mr(A)⊕Mr(B),
(ii) Mc(RSShuf(A,B)) = Mc(A)⊕Mc(B).

In [14], the authors introduced a notion of the positions of letters in a word
and using this notion characterized the M -equivalent words over binary alpha-
bet. The sum of positions of a letter a in a word w of length n over an alphabet
Σk, denoted by Sa(w) is defined by Sa(w) =

∑
w[i]=a,1≤i≤n

i.

Here we introduce the sum of positions of a letter in a binary array over
Σ = {a < b} as follows.

Definition 6.3 Let A be a binary m×n array over {a < b}, then the row wise
sum of positions of a letter a in A is defined by Sr

a(A) =
∑

1≤i≤m
Sa(xi), where

xi is the ith row of the array A.
Similarly, the column wise sum of positions of a letter a in A is defined by

Sc
a(A) =

∑
1≤i≤n

Sa(yi), where yi is the ith column of the array A.

Theorem 6.4 Two arrays A and B over {a < b} is M -row equivalent (column
equivalent) to each other if each row (column) of A and B have the same number
of b’s and Sr

b (A) = Sr
b (B) (Sc

b(A) = Sc
b(B) respectively).
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Proof.
Let xi and yi be the ith row of the arrays A and B respectively. Also let
|xi|b = |yi|b, for all 1 ≤ i ≤ m and Sr

b (A) = Sr
b (B). then the number of ab’s in

the row Parikh matrix of A is equal to
∑

1≤i≤m
|xi|ab. Now,∑

1≤i≤m
|xi|ab=

∑
1≤i≤m

[Sb(xi)− |xi|b(|xi|b+1)
2 ] =

∑
1≤i≤m

Sb(xi)−
∑

1≤i≤m

|xi|b(|xi|b+1)
2

=
∑

1≤i≤m
Sb(yi)−

∑
1≤i≤m

|yi|b(|yi|b+1)
2 =

∑
1≤i≤m

[Sb(yi)− |yi|b(|yi|b+1)
2 ] =

∑
1≤i≤m

|yi|ab

which is the number of ab’s in the row Parikh matrix of B. Hence the binary
arrays A and B are M -row equivalent.

Similarly the other case of M -column equivalence can be proved.

Lemma 6.5 Let A,B ∈ Σm×n where Σ = {a < b}, then (i) Sr
b (RSShuf(A,B)) =

2(Sr
b (A)+Sr

b (B))−|A|b and (ii) Sr
b (CSShuf(A,B)) = 2(Sc

b(A)+Sc
b(B))−|A|b

where |A|b is the number of b’s in the array A.

Proof.
Let xi and yi be the ith row of the arrays A and B respectively. Then we have,

Sr
b (RSShuf(A,B)) =

m∑
i=1

Sb(SShuf(xi, yi)) =
m∑
i=1

[2{Sb(xi) + Sb(yi)} − |xi|b]

= 2[
m∑
i=1

Sb(xi) +
m∑
i=1

Sb(yi)]−
m∑
i=1

|xi|b = 2(Sr
b (A) + Sr

b (B))− |A|b
Similarly we can prove the statement (ii). A sufficient condition for the row

shuffle operator of two binary arrays is given as follows.

Theorem 6.6 Let A,B ∈ Σm×n where Σ = {a < b}, then RSShuf(A,B) ≡M

RSShuf(B,A) if |A|b = |B|b.

This can be seen using the Lemma 6.5 and the fact that Mc(RSShuf(A,B)) =
Mc(A)⊕Mc(B).

7 Geometric operations on picture arrays

Geometric operations on picture arrays such as reflection, rotation are now con-
sidered. Properties of Parikh matrices of the arrays resulting from the geometric
operations are obtained.

Proposition 7.1 Let A be a binary m×n picture array over {a < b}. Reflection
of A about its rightmost vertical yields an array Av with the properties
(i) |Av|a = |A|a and |Av|b = |A|b
(ii) The column Parikh matrices of A and Av are the same
(iii) The number of ab’s row wise in Av is |Av|rab =

∑
1≤i≤m

(|ri|a|ri|b − |ri|ab),

where ri is the ith row of A.
Similarly, reflection of A about its bottommost horizontal yields an array Ah

with the properties
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(i) |Ah|a = |A|a and |Ah|b = |A|b
(ii) The row Parikh matrices of A and Ah are the same
(iii) The number of ab’s column wise in Ah is |Ah|cab =

∑
1≤i≤n

(|ci|a|ci|b−|ci|ab),

where ci is the ith column of A.

The following proposition is a consequence of Proposition 7.1.

Proposition 7.2 If two arrays A and B of same sizes are M -equivalent, then
their reflections about their rightmost verticals and their bottommost horizontals
are also M -equivalent.

Definition 7.3 Let A ∈ Σm×n be a picture array over Σ = {a < b} such that

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

. A picture array obtained from A by rotating it by 90◦

clockwise, denoted by A90◦ is defined as A90◦ =

am1 · · · a11
...

. . .
...

amn · · · a1n

.

Note that A90◦ ia an array of size n×m such that the first row of A is the last
column of A90◦ , the second row of A is the last but second column of A90◦ and
so on, and the last row of A is the first column of A90◦ .

Similarly one can define A180◦ (which is same as (A90◦)90
◦
), A270◦ and A360◦ .

It is easy to see that A360◦ = A.
Now we state in the following proposition, the relations between the row and

column Parikh matrices of the rotated arrays.

Proposition 7.4 Let A ∈ Σm×n be a picture array where Σ = {a < b}, then
(i) Mr(A90◦) = Mc(Ah) and Mc(A

90◦) = Mr(A), (ii) Mr(A180◦) = Mr(Av)
and Mc(A

180◦) = Mc(Av) and (iii) Mr(A270◦) = Mc(A) and Mc(A
270◦) =

Mr(Av) where Ah and Av are the reflections of the array A about its bottommost
horizontal and rightmost vertical.

8 Concluding Remarks

Motivated by applications in areas such as pattern recognition, computer vision
and others, several studies have been done on combinatorial properties of two-
dimensional arrays [2] . The study done in this paper is a contribution to this
area as well, and it extends notions and concepts well-studied in the context of
strings. It will be of interest to consider picture arrays of three or more symbols
and examine the applicability of the notions and results considered here.
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