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Abstract

For a smooth surface in R3 this article contains local study of certain affine equidistants,
that is loci of points at a fixed ratio between points of contact of parallel tangent planes (but
excluding ratios 0 and 1 where the equidistant contains one or other point of contact). The
situation studied occurs generically in a 1-parameter family, where two parabolic points of
the surface have parallel tangent planes at which the unique asymptotic directions are also
parallel. The singularities are classified by regarding the equidistants as critical values of
a 2-parameter unfolding of maps from R4 to R3. In particular, the singularities that occur
near the so-called ‘supercaustic chord’, joining the two special parabolic points, are classified.
For a given ratio along this chord either one or three special points are identified at which
singularities of the equidistant become more special. Many of the resulting singularities
have occurred before in the literature in abstract classifications, so the article also provides a
natural geometric setting for these singularities, relating back to the geometry of the surfaces
from which they are derived.
MR Classification 57R45, 53A05

Key words: affine equidistant, surface family in 3-space, critical set, map germ 4-space to
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1 Introduction

A smooth closed surface in affine 3-space will contain pairs of points at which the affine
tangent planes are parallel; indeed the tangent plane at a given point may be parallel to that
at several other points if the surface is non-convex. Associated with these pairs of points, and
the chords joining them, there are a number of affinely invariant constructions. The affine
equidistants are the loci of points at a fixed ratio λ : 1− λ along the chords, and the centre
symmetry set is the envelope of the chords, which can be locally empty. These constructions
have been examined from the point of view of singularity theory in the last few years by
several authors; there are many connexions with earlier work such as the ‘Wigner caustic’ of
Berry [2] which, for a curve in the plane, is the equidistant corresponding to a ratio λ = 1

2 ,
that is the midpoints of the parallel tangent chords, and the bifurcations of central symmetry
of Janeczko [11]. Notable among recent studies is the work of Domitrz and his co-authors,
for example [3].

A generic surface M in affine 3-space will generically have pairs of points at which the
tangent planes are parallel and for which both points in the pair are parabolic points of
M . For the locus of parabolic points of M is generically a 1-dimensional set, a union of
smooth curves, and requiring parallel tangent planes imposes two conditions on a pair of
points of this set, so that a finite number of solutions can be expected. In this article we
investigate one possible local degeneration of this generic situation by requiring also that the
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unique asymptotic directions coincide at such a pair of parabolic points with parallel tangent
planes. For this to occur the surface M must be contained in a smoothly varying family Mε

of surfaces. Since our investigation is local we shall in fact consider two surface patches M0

and N0 which vary in a 1-parameter family Mε, Nε. A similar degeneracy was investigated
for plane curves in [6]; we sometimes call it a ‘supercaustic’ situation. This term is defined
in §2.3.

We find the values λ 6= 0, 1 for which the ratio λ : 1 − λ determines an equidistant at
which the structure undergoes a qualitative change. There are one or three of these values,
depending on the relative orientation of M0 and N0. One ‘degenerate’ value always exists
and results in a high codimension singularity; we are able to give a partial analysis of this
case. When the other two values exist we call them special values (Definition 2.6), and a
complete analysis is given.

The article is organized as follows. In §2 we introduce the family of surfaces we shall
work with (§2.1), and the maps which we shall classify up to A-equivalence to study the
equidistants (§§2.2, 2.3). We also show how some of the conditions that arise later can be
interpreted geometrically in terms of a scaled reflexion map (§2.4, Definition 2.5). In §3 we
find normal forms of maps up to A-equivalence that generate the equidistants: they are the
sets of critical values of these maps. We examine in that section general values of the ratio
(Generic Case 1.1) and the two ‘special’ values (Special Case 1.2), leaving the ‘degenerate’
value (Degenerate Case 2) to §4.

The main results are contained in Proposition 3.2 and the accompanying Figure 1 for
Generic Case 1.1; Proposition 3.4 and the accompanying Figure 4 for Special Case 1.2, and
Table 1 in §4.6 for Degenerate Case 2.

2 The general setup

2.1 A generic family of surfaces

Consider the parabolic set P (assumed to be a nonempty smooth curve) of a generic smooth
closed surface M in R3. We can expect generically to find a finite number of pairs of distinct
points on P for which the tangent planes to M are parallel, since the two points give us two
degrees of freedom and it is two conditions for the tangent planes to be parallel. However it
will not be generically true that the unique asymptotic directions at such a pair of points are
parallel. For that we require a 1-parameter family of surfaces and it is this situation which
we study here.

Our considerations are local, and also affinely invariant. For this situation we have two
surfaces, Mε and Nε, varying in a 1-parameter family; using a family of affine transformations
of R3 (coordinates (x, y, z)) we can assume that the origin lies on Mε, that the origin is a
parabolic point of Mε and that the unique asymptotic direction there is always along the
y-axis, for all ε close to 0. Further we can assume that the point (0, 0, 1) lies on Nε for all
small ε and that for ε = 0 this point is parabolic, has horizontal tangent plane parallel to
the (x, y)-plane, and has unique asymptotic direction parallel to the y-axis. We realise this
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setup by the surfaces

Mε : z = f(x, y, ε) = f20x
2 + f300x

3 + f210x
2y + f120xy

2 + f030y
3 + . . .

+ ε
(
f301x

3 + f211x
2y + . . .

)
+ ε2

(
f302x

3 + . . .
)

+ . . . , (1)

Nε : z = 1 + g(x, y, ε) = 1 + g20x
2 + g300x

3 + g210x
2y + g120xy

2 + g030y
3 + . . .

+ ε
(
g101x+ g011y + g201x

2 + g111xy + g021y
2 + . . .

)
+ ε2 (g102x+ g012y + . . .) + . . . . (2)

For terms other than f20, g20, subscripts ijk indicate that the corresponding monomial is
εkxiyj .

We make the following assumptions about these expansions.

Assumptions 2.1 (i) f20 6= 0, g20 6= 0, that is neither M0 nor N0 is umbilic at its basepoint
(0, 0, 0) or (0, 0, 1).

(ii) f030 6= 0, g030 6= 0, that is the parabolic curves of M0 at the origin and N0 at (0, 0, 1)
are smooth and not tangent to the asymptotic directions there (i.e. these points are not
cusps of Gauss). We shall take f030 > 0 without loss of generality, and we sometimes write
f030 = f23 , g030 = ±g23 when a definite sign is needed, to avoid square roots appearing in the
formulas.

2.2 Family of maps for the equidistants

The λ-equidistant for a fixed ε is the locus of points in R3 of the form (1− λ)p + λq where
p ∈Mε, q ∈ Nε and the tangent planes to Mε at p and Nε at q are parallel.

We always assume λ 6= 0, λ 6= 1 in what follows.

We use s = (s1, s2) as parameters on Mε and similarly t = (t1, t2) for Nε; we have a
2-parameter family of maps R4 → R3:

R4 × R2 → R3, (s, t, ε, λ) 7→ (1− λ)(s1, s2, f(s1, s2, ε)) + λ(t1, t2, 1 + g(t1, t2, ε)). (3)

Then it is straightforward to check that, for fixed ε and λ, the set of critical values of this
map is the λ-equidistant of Mε and Nε. We are therefore interested in this family of maps
up to A-equivalence. We make the change of variables

(1− λ)s1 + λt1 = u1, (1− λ)s2 + λt2 = u2, and write λ = λ0 + α,

replacing t1 and t2, to rewrite (3) as a map of the form (for any λ0 6= 0, 1)

H : R4 × R2 → R3, H(s1, s2, u1, u2, ε, α) = (u1, u2, h(s1, s2, u1, u2, ε, λ0 + α)). (4)

regarded as a 2-parameter unfolding of the map H0(s1, s2, u1, u2, 0, λ0). Therefore we have
the following.

Proposition 2.2 The λ-equidistant for fixed ε is the set of points (u1, u2, h) ∈ R3 for which
∂h/∂s1 = ∂h/∂s2 = 0. For fixed λ the union of all the equidistants, spread out in R4, the
planar sections of which are the ε = constant equidistants, is the set of points (u1, u2, h, ε) ∈
R4 for which the same conditions ∂h/∂s1 = ∂h/∂s2 = 0 hold.

3



2.3 Maps and supercaustics

Let φ : R4 → R2 be given, for fixed λ and ε, by φ(s1, s2, u1, u2) = (hs1 , hs2), subscripts
denoting partial derivatives as usual. Then the corresponding equidistant, given by φ−1(0, 0),
is singular when there is a kernel vector of dφ with image under dH equal to 0, these being
evaluated at a point of φ−1(0, 0). This requires that

rank J < 4 where J =


hs1s1 hs1s2 hs1u1 hs1u2
hs2s1 hs2s2 hs2u1 hs2u2

0 0 hu1 hu2
0 0 1 0
0 0 0 1

 ,

that is hs1s1hs2s2 = h2s1s2 . The singular points of the equidistant for fixed λ and ε are therefore

{(u1, u2, h(s1, s2, u1, u2)) : hs1 = hs2 = hs1s1hs2s2 − h2s1s2 = 0}. (5)

We note here that, for fixed ε, the ‘centre symmetry set’ of the pair of surfaces M,N [8],
which is the locus of singular points of the equidistants for varying λ, is given by the same
formula (5) where h is now a function of s1, s2, u1, u2, λ but with ε still fixed.

It is possible that some singular points of the equidistant arise from singularities of the
critical set itself in R4. In our case this requires, for fixed λ and ε, that the top two rows
of the above matrix J are dependent. Indeed, evaluating these rows at (s1, s2, u1, u2, λ, ε) =
(0, 0, 0, 0, λ, 0) the second row is entirely zero. This means that, for all λ, but ε = 0, the
critical set itself is singular at the origin of R4.

Definition 2.3 In the above situation, the λ-axis is called a supercaustic; see [6]. The whole
of this axis maps to singular points of the equidistants.

Remark 2.4 This depends crucially on the special nature of our surfaces, with not only
parallel tangent planes at parabolic points of M0 and N0 but also the asymptotic directions
at those points being parallel. If instead we assume that the asymptotic directions are distinct
(without loss of generality we can take them along the x and y axes) then the top two rows
of J become independent for s1 = s2 = u1 = u2 = ε = 0 and arbitrary λ. In fact, writing
g020 for the coefficient of y2 in the parametrization of N0 and putting g20 = 0 these rows
become (

2(1− λ)f20 0 0 0

0 2g020(1−λ)2
λ 0 −2g020(1−λ)

λ

)
.

In this case the ‘supercaustic’ is empty.

2.4 Scaled reflexion map and contact

Consider the affine map S : R3 → R3 given by S(x, y, z) = (µx, µy, µ(z − 1)) where µ =
λ
λ−1 6= 0. This leaves the point (0, 0, λ) fixed and maps (0, 0, 1) to the origin. We can
measure the contact between S(N0) and M0 by composing the parametrization of S(N0)
given by (µx, µy, µg(x, y, 0)) with the equation of M0, say Z − f(X,Y, 0) = 0.

Definition 2.5 The scaled contact map is the contact map germ

K : R2, (0, 0)→ R, 0, K(x, y) = µg(x, y, 0)− f(µx, µy, 0), µ =
λ

λ− 1
as above.
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We shall find this contact map useful in interpreting the conditions which arise from ε-families
of equidistants as ε passes through 0.

The 2-jet of K is K2(x, y) = µ(g20 − µf20)x2 so that in our situation K is always non-
Morse; it has corank 1 and is of type Ak at (0, 0) for some k, provided f20λ+ g20(1− λ) 6= 0
(when this fails we call this the ‘Degenerate Case 2’; see §4). The coefficient of y3 in K is
µ(g030 − µ2f030) so that K is then of type exactly A3 provided f030λ

2 − g030(1 − λ)2 6= 0.
If f030, g030 are nonzero and have opposite signs then of course this coefficient can never be
zero.

Definition 2.6 Assume as above that f20λ+ g20(1−λ) 6= 0. When f030, g030 have the same
sign (without loss of generality, positive), and the above coefficient f030λ

2 − g030(1 − λ)2

of y3 is zero, then we refer to the two resulting values of λ as special values. Writing

f030 = f23 , g030 = g23 where we may take f3 > 0, g3 > 0, these special values of λ are
g3

g3 ± f3
.

(We shall usually assume f3 6= g3 to avoid one of the special values ‘going to infinity’.) These
special values of λ give rise to what we shall call Special Case 1.2. This is examined in detail
in §3.2.

When λ has a special value, say
g3

g3 + f3
, the condition for K to have exactly type A3 at

(0, 0) works out to be

(4g040g20−g2120)f43 +4g040f20f
3
3 g3+2f120g120f

2
3 g

2
3+4f040g20f3g

3
3+(4f040f20−f2120)g43 6= 0. (6)

This condition will be satisfied by a generic pair of surfaces M0, N0. With the other special
value the signs in front of the coefficients of f33 g3 and f3g

3
3 both change to minus.

When the quadratic terms of the contact map K vanish identically, that is when f20λ+
g20(1− λ) = 0, the cubic terms will in general be nondegenerate and K will generically have
type D±4 , that is R-equivalent to x3 ± xy2. The polynomial in the coefficients of f and g
which distinguishes the two cases is rather complicated but, remarkably, it has a different
interpretation which we give in §4 in the context of self-intersections of the equidistant. See
Remark §4.3.

3 The equidistants: normal forms

For a general study of the equidistants we need to expand the function h in (4) using the
parametrizations (1) and (2). We begin with ε = 0 and write, for a fixed λ, H0λ(s, u) =
(u, h0λ(s, u)) = H(s, u, 0, λ). The coefficient of si1s

j
2u
k
1u

`
2 in h0λ will be written cijk`. We find:

The 2-jet of h0λ at s = u = 0 is (1− λ)(λf20 + (1− λ)g20)s
2
1 − 2g20

1−λ
λ s1u1.

Note that the coefficient of s1u1 is nonzero.
The main subdivision is between those λ for what λf20 + (1− λ)g20 is nonzero (Generic

Case 1) or zero (Degenerate Case 2). We cover the Generic Case here and the Degenerate
Case in §4 below.

Case 1 λf20 + (1− λ)g20 6= 0. From §2.4 this is also the condition for the contact function
K to have type Ak for some k.

We can now redefine the variable s1 (‘completing the square’) to eliminate all terms
containing s1 besides s21 in h0λ. The coefficient of s32 then becomes

c0300 = 1−λ
λ2

(f030λ
2 − g030(1− λ)2).
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3.1 The general values of λ

Generic Case 1.1 c0300 6= 0, that is, Q 6= 0 where

Q = f030λ
2 − g030(1− λ)2. (7)

From §2.4 this is also the condition for the contact function K to have type A2 and that λ
is not a special value.

Consider the 3-jet of H0λ. There are six degree 3 monomials which do not involve s1 and
which do involve s2 (any monomial in u1, u2 alone can be eliminated by a ‘left-change’ of
coordinates). We still have the freedom to change coordinates in s2 (involving s2, u1, u2) and
in u1, u2 (involving u1, u2 only). Using only the first of these the terms in s22u1 and s22u2 can
be eliminated, leaving(

u1, u2, (1− λ)(λf20 + (1− λ)g20)s
2
1 + c0300s

3
2 + s2

(
c0120u

2
1 + c0111u1u2 + c0102u

2
2

))
. (8)

(The coefficients cijk` need to be updated to take account of the substitutions.) The quadratic
form in u1 and u2 can be diagonalised, eliminating the term in s2u1u2 so that, scaling s1,
the last coordinate in R3 and s2, we have 3-jet, say

(u1, u2, s
2
1 + s32 + as2u

2
1 + bs2u

2
2).

Suppose that the quadratic form in parentheses in (8) is not a perfect square, that is
c20111 − 4c0120c0102 6= 0. Then a and b above are nonzero. The condition for this is R 6= 0
where

R = f220f030
(
g2120 − 3g210g030

)
− g220g030

(
f2120 − 3f210f030

)
. (9)

Since this condition does not involve λ it will be satisfied by a generic pair of surfaces M0, N0.
Note that the condition separates into a quantity for M0 unequal to the same quantity for
N0.

Proposition 3.1 The condition R 6= 0 can also be interpreted as saying that the images
under the Gauss map of the parabolic curves on M0 and N0 have ordinary tangency (that is,
2-point contact) in the Gauss sphere. These images are smooth by Assumptions 2.1.

Proof The parabolic curves on the two surfaces are given by fxxfyy − f2xy = 0 and gxxgyy −
g2xy = 0 for M0 and N0 respectively. The surface M0 has a parabolic point at the origin and
N0 has a parabolic point at (0, 0, 1) and since they have parallel asymptotic directions at
these points the images of the respective parabolic curves under the Gauss map are tangent.
We shall use the modified Gauss maps, that is (x, y) 7→ (X,Y ) = (fx, fy) and similarly for g.
By a direct calculation, for M0 the image of the parabolic curve, parametrized by x, under
the modified Gauss map has an equation, up to terms in X2, of the form

Y =
3f030f210 − f2120

12f220f030
X2

with a similar result for N0. The coefficients of X2 are unequal, that is the images have
ordinary tangency, if and only if the condition R above is nonzero. �

Further scaling allows this case to be reduced to

H0λ(s, u) = (u1, u2, s
2
1 + s32 ± s2u21 ± s2u22), (10)

where the ± signs are independent, but by interchanging u1 and u2 we reduce to three cases,
as follows.
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Proposition 3.2 The normal form (10) is as follows, using the notation of (7) and (9). See
Figure 1.
Subcase 1.1.1 (positive definite): H0λ(s, u) = (u1, u2, s

2
1 + s32 + s2u

2
1 + s2u

2
2).

The condition for this is f030g030 < 0 and QR > 0. Bearing in mind the assumptions 2.1 the
latter condition is equivalent to R > 0. This subcase will also be referred to as A++

2 .
Subcase 1.1.2 (negative definite): H0λ(s, u) = (u1, u2, s

2
1 + s32 − s2u21 − s2u22).

The condition for this is f030g030 > 0 and QR > 0. This subcase will also be referred to as
A−−2
Subcase 1.1.3 (indefinite): H0λ(s, u) = (u1, u2, s

2
1 + s32 + s2u

2
1 − s2u22).

The condition for this is QR < 0. In the case when f030g030 < 0 the condition becomes
R < 0. This subcase will also be referred to as A+−

2 , �

The values of f030, g030 and R are fixed by the two surfaces M0 and N0. However, assuming
f030g030 > 0, special values of λ exist at which Q as in (7) is zero. Then, as λ passes through
such a special value, the normal form changes between negative definite and indefinite, so
that the family of equidistants, for ε passing through 0, changes accordingly.

Using standard techniques it can be checked that (10) is 3-A-determined, and that an Ae-
versal unfolding is given by adding a multiple of (0, 0, s2) to the above normal form:

Hελ(s, u) = (u1, u2, s
2
1 + s32 ± s2u21 ± s2u22 + εs2). (11)

In terms of the original surfaces the coefficient of εs2 is −g011(1−λ), and therefore we require
g011 6= 0 for a versal unfolding by the parameter ε.

Remark 3.3 It is interesting to relate the above classification to that of the regions on
M and N which contribute to the pairs of parallel tangent planes (compare Prop.2.4 and
Figure 3 of [5]). A schematic diagram of the common regions for M and N on the Gauss
sphere is given in Figure 2 below. The relationship between these and the classification of
Proposition 3.2 is as follows.
Subcase 1.1.1 (positive definite, f030g030 < 0 and R > 0): This is (d).
Subcase 1.1.2 (negative definite, f030g030 > 0 and QR > 0): This is (ac).
Subcase 1.1.3 (indefinite): This can arise in two ways, as either (ac) or (b)

(ac) when f030g030 > 0 and QR < 0,
(b) when f030g030 < 0 and R < 0.

Let us call a pair of points, one from Mε and the other from Nε, at which the tangent
planes are parallel, ‘mates’. Consider for example the top left diagram of Figure 2 and
assume that the upper curve is the image of the parabolic curve of Nε in the Gauss sphere.
Each point above this curve is the image of two points of Nε and two points of Mε giving
altogether four mates. Each point on the upper curve is the image of two points of Mε and
a single parabolic point of Nε which is a mate for both of them. On the surface Mε itself
there will be a region close to the base-point (0, 0, 0) consisting of those points of Mε with
at least one mate, and usually two mates, on Nε—a region ‘doubly covered by mates on
Nε’. This region will have a local boundary corresponding in the way just described to the
parabolic curve on Nε. Turning to the upper right diagram of Figure 2 the hatched region
representing mates now contains a segment of the parabolic curve of Mε. On the surface Nε

this will result in a closed loop on the boundary of the region of points having mates on Mε.
The situation on the surfaces themselves is illustrated schematically in Figure 3.

7



positive def., ε < 0 negative def., ε < 0 negative def., ε = 0 negative def., ε > 0

Indefinite, ε < 0 Indefinite, ε = 0 Indefinite, ε > 0.

Figure 1: The various subcases of Proposition 3.2: Positive definite (for ε > 0 the
equidistant is empty and for ε < 0 has a compact cuspidal edge); 1.1.2 Negative
definite, where for ε > 0 there is a compact cuspidal edge; 1.1.3 Indefinite, which
has two cuspidal edges for ε 6= 0 that form a crossing when ε = 0.

3.2 The ‘special values’ of λ

Special Case 1.2 c0300 = 0, that is λ has one of the two special values as in §2.4. Note
that this requires f030 and g030 to have the same sign, which we take as positive, and write
f030 = f23 , g030 = g23 where f3 > 0, g3 > 0.

This case will be examined by choosing one of the special values for λ given by c0300 = 0,

namely λ =
g3

g3 + f3
. We can eliminate the terms in s2u

2
2 and s2u1u2 by a substitution of

the form s2 = s′2 + au1 + bu2, assuming only the condition λf20 + (1− λ)g20 6= 0 of Generic
Case 1. The coefficient of s22u2 then becomes 3f22 6= 0 and the remaining degree 3 terms in
h0λ, namely s22u1, s

2
2u2 and s2u

2
1 can therefore be reduced to the last two by redefining u2,

at the same time making the coefficient of s22u2 equal to 1. The 3-jet of H0λ is now of the
form (scaling s1)

(u1, u2,±s21 + s22u2 + c0120s2u
2
1),

where the updated c0120 is nonzero if and only if R 6= 0 as in (9), and for generic M0, N0 this
will be satisfied.

Passing to the 4-jet of H0λ, we can first remove all monomials divisible by s1 besides ±s21
by completing the square, and then eliminate all degree 4 monomials besides s42 and s32u1,
without adding any new monomials of degree 3. This can be done, for example, by substitu-
tions of the form s2 = s′2+ quadratic terms in s′2, u

′
1, u
′
2, u1 = u′1+ quadratic terms in u′1, u

′
2,

and similarly for u2. A left change of coordinates will then restore the first two components
of H0λ to (u1, u2).
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(ac)

(b)

(d)

Figure 2: Schematic diagrams of the images of the Gauss map for the surfaces Mε

and Nε. The curves represent the parabolic curves of these surfaces, along which
the Gauss map has a fold, and the hatched regions represent the regions where the
images of the Gauss maps of Mε and Nε intersect, that is the regions of the Gauss
sphere representing parallel normals (or parallel tangent planes). Left to right of
each row shows varying ε, with the middle diagram ε = 0, and the three possible
cases are labelled (ac), (b), (d) as described in the text, to accord with Figure 3 in
[5]. Note that the two curves for ε = 0 have ordinary tangency—see Remark 3.1.

The 4-jet is now reduced to(
u1, u2,±s21 + s22u2 + c0120s2u

2
1 + c0400s

4
2 + c0310s

3
2u1
)
.

This is 4-A-determined provided all the coefficients are nonzero. The coefficient c0400 is
nonzero if and only if the ‘exactly A3 contact condition’ (6) holds. Unfortunately we do not
know a geometrical criterion for the coefficient of s22u2 to be nonzero; it involves only the
coefficients in the functions f, g which define the surfaces M0, N0.

Scaling reduces all but the coefficient of s21 to 1 and we summarize this discussion as
follows.

Proposition 3.4 For Special Case 1.2, that is f030 = f23 , g030 = g23, a special value of
λ = g3/(g3 ± f3) (Definition 2.6 or Q = 0 as in (7)) but λf20 + (1− λ)g20 6= 0, the function
H0λ reduces under A-equivalence to the normal form

H0λ(s1, s2, u1, u2) =
(
u1, u2,±s21 + s22u2 + s2u

2
1 + s42 + s32u1 + (ps2 + qs32)

)
, (12)

provided the geometrical conditions R 6= 0 (9), and ‘exactly A3-contact’ (6) hold, together
with a third condition on M0, N0 which will be generically satisfied. The terms ps2 + qs32 in
brackets represent an Ae-versal unfolding provided the geometrical condition g011 6= 0 in (1)
holds. See Figure 4 for a ‘clock diagram’ of the equidistants in the (p, q)-plane. �

A similar normal form, without the fourth variable s1, but with an additional ambiguity of
sign, occurs as 422 in [12]; see also [9]. The sign in front of s21 will not affect our results since
the critical set of H0λ has s1 = 0. The versal unfolding condition means that as ε changes
through 0 the normal to N tilts in a direction with a nonzero component along the y-axis,
which is the asymptotic direction at ε = 0.

When λ moves away from a special value then, in (12), p remains at 0 while q becomes
small and nonzero. We can then reduce (12) as in Generic Case 1.1, as follows. The 3-jet of
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Figure 3: In this diagram, the Gauss map of the surfaces Mε and Nε is represented
by vertical projection and the surfaces in this schematic representation are labelled
M̃, Ñ . The rows and columns are arranged as in Figure 2. See the above text for
further explanation.

(12) becomes (u1, u2, s
2
1 + s22u2 + s2u

2
1 + qs32) with q 6= 0. Replacing s2 by ms2 + nu2 where

3qn + 1 = 0 and qm3 = 1, and then removing terms in the third component involving only
u1, u2, reduces this to (

u1, u2, s
2
1 +

1

q1/3
s2u

2
1 −

1

3q4/3
s2u

2
2 + s32

)
.

The product of terms in front of s2u
2
1 and s2u

2
2 therefore has the sign of −q and hence changes

as q passes through 0. Furthermore it is not possible for both signs to be positive. We deduce
the following.

Corollary 3.5 Moving λ through a special value λ = g3/(g3± f3) but keeping ε = 0 the type
of equidistant always changes between Subcase 1.1.2 (negative definite) and Subcase 1.1.3 (in-
definite) as in Proposition 3.2. It is not possible to realize the positive definite Subcase 1.1.1.

Figure 4 shows a typical way in which equidistants near to a special value evolve as λ and ε
change.

10



Figure 4: Special Case 1.2. A typical ‘clock diagram’ of equidistants close to a
special value of λ0 = g3/(g3± f3). The vertical axis represents λ = λ0 +α and the
horizontal axis the parameter ε in the family of surfaces.
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3.3 Some further details of Special Case 1.2

We take λ0 = g3
g3+f3

as a special value, assuming f20 6= 0, g20 6= 0, f3 > 0, g3 > 0, λ0f20 + (1−
λ0)g20 6= 0, i.e. f20g3 + g20f3 6= 0, and also R 6= 0 (9) hold. We write λ = λ0 + α for nearby
values, and examine the full versal unfolding H̃ of H, as follows.

Thus the family of equidistants can be reduced to

H̃(s1, s2, u1, u2, p, q) =
(
u1, u2,±s21 + s22u2 + s2u

2
1 + s42 + s32u1 + ps2 + qs32

)
= (u1, u2, h̃),

(13)
say, where p, q are unfolding parameters that are closely related to ε, α respectively.

As an aid to understanding the equidistants for (ε, α) close to (0, 0) we can calculate the
loci in the (p, q)-plane at which the structure of the singular set or the self-intersection set
on the equidistant changes.

1. Singular set For fixed p, q the singular set is the image under H̃ of the set of points
(using suffices for partial derivatives)

(0, s2, u1, u2) such that h̃s2 = h̃s2s2 = 0.

Eliminating u2, the equations reduce to

u21 − 3s22u1 + (p− 3s22q − 8s32) = 0,

and the condition for this to have real solutions for u1 is

9s42 + 32s32 + 12qs22 − 4p ≥ 0.

We are therefore interested in finding the pairs (p, q) for which there is a change in the
number of real intervals in the set of s2 satisfying this inequality. This will occur when
the discriminant with respect to s2 vanishes, and that gives a locus of the form

p = 0 or p = 1
16q

3 + 9
1024q

4 + . . . . (14)

See Figure 5.

2. Self-intersection locus Suppose (0, s21, u1, u2) and (0, s22, u1, u2) are both in the
critical set of H̃ (hs1 = 0 gives s1 = 0) and have the same image under H̃. Then with
a little more trouble we can eliminate the u variables and obtain a condition in s21, s22
alone. It is slightly more convenient to write s21 = v1 + v2, s22 = v1 − v2; then in fact
we require v1(4v

3
1 + 16v21 + 8qv1 + p + q2) ≥ 0. The number of v1-intervals on which

this holds will change when the discriminant with respect to v1 vanishes. One case
here gives the same condition as (i) above, but we are concerned with the remaining
possibility: taking into account that v1, v2 must both have real solutions the locus in
the (p, q)-plane is

p = −q2, q ≥ 0, (15)

where of course the double root is v1 = 0, that is s22 = −s21. (The other potential dou-
ble root when p = −q2 leads to q = 2 and is therefore not relevant to a neighbourhood
of the origin in the (p, q)-plane.) See Figure 5.
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Figure 5: Special Case 1.2. A schematic drawing of two curves in the p, q-plane at
which the structure of the equidistant in the family (13) changes, either because
the cuspidal edge set changes (solid curve, together with the q-axis) or the self-
intersection set changes (dashed curve).

4 Degenerate Case 2

In this section we give some details of Degenerate Case 2, that is λf20 + (1−λ)g20 = 0. This

gives a unique value of λ, namely λ =
g20

g20 − f20
. (If f20 = g20 then, using λf20+(1−λ)g20 = 0,

it follows that f20 = g20 = 0, contrary to our assumptions.) Thus whatever surfaces M0, N0

we start with there will be an equidistant which falls into this case. It turns out to be a
rich area for investigation; here we shall give some invariants which help to separate out
the many subcases. One of these invariants classifies the effect of changing λ slightly from
the degenerate value, while preserving the geometrical situation of two surfaces with parallel
tangent planes at parabolic points where the asymptotic directions are parallel, that is ε = 0
in (1), (2). See Proposition 4.1.

4.1 A normal form for Degenerate Case 2

The 2-jet of H0λ is now (u1, u2, 2f20s1u1). Writing the third component as u1(s1 + h.o.t.)+
terms independent of u1 and then using the bracketed expression to redefine s1 we can
eliminate u1 from the higher terms. Then replacing s2 by an expression of the form s2 + au2
we can remove the degree 3 terms s1u

2
2 and s1s2u2. When this is done, the coefficient of s22u2

becomes 3g030f
2
20/g

2
20 6= 0 and the coefficient of s2u

2
2 becomes 3f20g030(g20 − f20)/g220 6= 0.

We shall also assume that the coefficient of s31 is nonzero to avoid further degeneration. We
can now use scaling to reduce the 3-jet of H0λ to(

u1, u2, s1u1 + s31 + s22u2 + s2u
2
2 + bs21s2 + cs21u2 + ds1s

2
2 + es32

)
,

for coefficients b, c, d, e. The 4-jet can then be reduced by similar arguments, including
scaling, to

(u1, u2, h) =
(
u1, u2, s1u1 + s31 + s22u2 + s2u

2
2 + bs21s2 + cs21u2 + ds1s

2
2 + es32 + s41

+(ps2 + qs21)
)
, (16)

provided the cofficient of s41 is nonzero: this and the 4-A-determinacy of this 4-jet hold
generically, by standard calculations. The terms in brackets, ps1 +qs21, represent an A-versal
unfolding of this germ. We have not been able to reduce the number of coefficients b, c, d, e.
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We shall work with (16) as a ‘normal form’ and when appropriate interpret the coefficients
in terms of the surfaces M0, N0.

The equidistant for M0, N0 and λ = g20/(g20 − f20) is then locally diffeomorphic to the
image under (16) of the set {(s1, s2, u1, u2) : hs1 = hs2 = 0}. Here, hs1 = 0 defines u1 as a
smooth function of the other three variables, while hs2 = 0 can be written

∂h

∂s2
= (s2 + u2)

2 + bs21 + 2ds1s2 + (3e− 1)s22 = (s2 + u2)
2 − T (s1, s2) = 0, (17)

say where T is a quadratic form in s1, s2 which we shall assume to be nondegenerate, that is
d2 − b(3e− 1) 6= 0.

4.2 Plotting the equidistants

It is also useful to rewrite the equation of the quadric cone C, given by hs2 = 0, where
p = q = 0 in (16), and provided b 6= 0, as

C : (s2 + u2)
2 + b

(
s1 +

d

b
s2

)2

+

(
3be− b− d2

b

)
s22 = 0. (18)

Note that this is a single point at the origin if and only if all coefficients are > 0 (since the
first one is > 0), that is

b > 0, d2 + b− 3be < 0;

compare Proposition 4.1.
The equidistant (for p = q = 0) is the image of C under the map R3 → R3 given by

(s1, s2, u2) 7→ (u1, u2, h(s1, s2, u2))

where on the right-hand side u1 is expressed in terms of s1, s2, u2 using hs1 = 0 and this is
substituted into h, giving the function h.

We can find a ‘good’ parametrization of the equidistant by using coordinates (x1, x2, s2)
and writing (18) as

x21 + bx22 + ks22, where k = 3be−b−d2
b , x1 = s2 + u2, x2 = s1 + d

b s2.

Thus the substitution to use in h is u2 = x1 − s2, s1 = x2 − d
b s2. The equidistant is then

plotted as follows.

1. If b > 0 and C is not a single point then k < 0 (i.e. d2 + b− 3be > 0) and we write

x21 + bx22 = (−k)s22,

so that for any (x1, x2) 6= (0, 0) we have two distinct values for s2: there is no restriction
on the values of x1, x2. We use x1, x2 as parameters and the two ‘halves’ of C are given
by the two values of s2.

2. If b < 0, k > 0 (i.e. d2 + b − 3be > 0) then we similarly write x21 + ks22 = (−b)x22, so
that for any (x1, s2) 6= (0, 0) we have two distinct values for x2. Here x1, s2 are used as
parameters.

3. Finally if b < 0, k < 0 (i.e. d2 + b − 3be < 0) then we write x21 = (−b)x22 + (−k)s22
and for any (x2, s2) 6= (0, 0) we have two distinct values for x1. Here x2, s2 are used as
parameters.
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For values of (p, q) other than (0, 0) the equation of C acquires an extra term −p on the
right-hand side, thus creating a hyperboloid of one or two sheets (or an ellipsoid when C is a
single point). In fact the hyperboloid has one sheet when bkp > 0, that is (d2+b−3be)p < 0),
and two sheets when bkp < 0, that is (d2 + b − 3be)p > 0). In the two-sheet situation
the same method as above plots the equidistant, without restrictions on the values of the
parameters. In the one-sheet situation the points in the parameter plane lie outside an
ellipse, the ‘waist’ of the hyperboloid. This ellipse is given in the three situations above by
x21 + bx22 = −p, x21 + ks22 = −p and (−b)x22 + (−k)s22 = p respectively. In the situation where
C is a single point, and p < 0, the points in the parameter plane lie inside an ellipse. In all
situations, q does not affect the hyperboloid or ellipsoid, but of course its value affects the
function h.

4.3 Nearby non-special values of λ

Here, we examine the effect of adding in the term qs21 in (16). This represents changing λ
from the value g20/(g20 − f20) to a nearby value, which will be of the type considered in
Generic Case 1.1, provided the coefficient e of s32 in (16) is nonzero, and to avoid further
degeneracy we shall assume this to be true. We determine here, in terms of b, c, d, e, which
subcase of Proposition 3.2 is obtained, and then refer this back to the surfaces M0, N0. (The
subcase does not depend on the sign of q in the added term qs21.) To do this we reduce
(16), with p = 0 but with qs21 present, to the normal form found above for Generic Case 1.1,
by making the ‘left’ and ‘right’ changes of coordinates as sketched above. We can restrict
attention for this to the terms of (16) of degree ≤ 3 since the Generic Case 1.1 germ is 3-A-
determined. Thus we start by redefining s1 (‘completing the square’) to change the degree 2
terms to s21, remove the terms in u1, u2 only, remove the remaining terms besides s21 that are
divisible by s1 and then redefine s2 by adding suitable multiples of u1 and u2. The result of
this is to reduce the 3-jet of (16) by A-equivalence to the form(

u1, u1, qs
2
1 + es32 +

s2
12eq2

(
(3be− d2)u21 + 4qdu1u2 + 4q2(3e− 1)u22

))
.

The discriminant of the quadratic form in u1, u2 is (d2 +b−3be)/3eq2, so this form is definite
if and only if e(b+d2−3be) < 0. Scaling so that the terms in s21, s

3
2 have coefficients equal to

1 multiplies the quadratic form in u1, u2 by (q2e)−1/3, and from this we deduce the following,
where (i) and (ii) are derived by direct calculations from the parametrizations of M0 and N0.

Proposition 4.1 The normal form (16) for Degenerate Case 2, with p = 0 but q nonzero
and small, corresponding to a small change in λ, gives the following subcases of Generic
Case 1.1 (general λ):
Subcase 1.1.1 (positive definite, ++): e > 1

3 and d2 + b− 3be < 0,
Subcase 1.1.2 (negative definite, −−): e < 1

3 and e(d2 + b− 3be) < 0,
Subcase 1.1.3 (indefinite, +−): e(d2 + b− 3be > 0.

In terms of the surfaces M0, N0,
(i) When f030g030 > 0, so f030 = f23 , g030 = g23, e < 1

3 and has the sign of f20g
2
3 − g20f23

while d2 + b− 3be has the sign of −R as in (9).
(ii) When f030g030 < 0, so f030 = f23 , g030 = −g23, e > 1

3 and d2 + b− 3be has the sign of R.

4.4 Invariants distinguishing subcases of Degenerate Case 2

We shall use the following:
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1. The number of cuspidal edges on the equidistant for p = q = 0, which can be 0, 2 or 4
(see below);

2. The number of self-intersection curves on the equidistant for p = q = 0, which can be
0, 1, 2 or 3 (see §4.5);

3. The subcase of Generic Case 1.1 given in Proposition 4.1 which is obtained by changing
λ slightly.

This might give 3× 4× 3 = 36 subcases but fortunately many of these combinations cannot
be realized. We shall give values of b, c, d, e realizing of all possible subcases in §4.6, Table 1
below.

For given values of these invariants, the interval in which e lies, either e < 0 or 0 < e < 1
3

or e > 1
3 could in principle affect the equidistant but so far as we are aware the basic

geometrical structure—the qualitative nature of the equidistant—is not affected.

The number of cuspidal edges, that is 1-dimensionial singular sets, on the equidistant,
can be calcuated as follows. We can regard hs2 = 0, as in §4.2 above, as the equation of
a quadric cone C in R3 with coordinates (s1, s2, u2). The quadric cone C is nondegenerate
since T in (17) is a nondegenerate quadratic form, and consists of the origin alone if and
only if T is negative definite (that is, d2 < b(3e − 1) and b > 0), otherwise it is a real cone,
or equivalently a real nonsingular conic in RP 2.

When T is not negative definite, the equidistant therefore has two ‘branches’, which are
the images of the two halves of the cone; these branches may intersect (apart from at the
origin) and will generally themselves be singular. Writing the equation of C more briefly as
γ(s1, s2, u2) = 0, the singular set of the equidistant is the image of certain curves on C, given
by the additional equation

hs1γs2 − hs2γs1 = 0.

(This can be written in terms of h itself as hs1s1hs2s2 − h2s1s2 = 0.) The lowest terms of the
left hand side are of degree 2 in s1, s2, u2 and therefore give another conic C2 in RP 2. The
equation of C2 is in fact

(b2 − 3d)s21 + (bd− 9e)s1s2 − (cd+ 3)s1u2 + (d2 − 3be)s22 − (3ce+ b)s2u2 − cu22 = 0.

This meets the nonsingular conic γ = 0 in 0, 2 or 4 real points. (The conic C2 cannot in
fact be a single point: examination of the matrix of the above quadratic form in variables
s1, s2, u2 defining C2 shows that its determinant is always ≤ 0 so the quadratic form cannot
be positive definite, and negative definiteness is also ruled out by examining the signs of the
other leading minors. The leading 1×1 minor cannot be < 0 at the same time as the leading
2 × 2 minor is > 0.) There are therefore 0, 2 or 4 curves through the origin on C whose
images are the singular points, the cuspidal edges, of the equidistant. These cuspidal edges
pass through the origin, lying on both ‘sheets’ of the equidistant.

The number of cuspidal edges can be calculated for example by substituting (s1, s2, u2) =
(mt, nt, t) in the equations of C and C2, taking out the factor t2 and finding the common
solutions of the two resulting quadratic equations in m,n. Eliminating one of m,n gives a
degree 4 equation in the other and there are standard algebraic techniques for computing
the number of real solutions of a quartic equation—or for given (b, c, d, e) we can solve
numerically. The results for the Classes I-X are given in Table 1 below.
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4.5 Self-intersections of the equidistant in Degenerate Case 2

We start with the normal form (16) in §4, namely

(u1, u2, h) =(
u1, u2, s1u1 + s31 + s22u2 + s2u

2
2 + bs21s2 + cs21u2 + ds1s

2
2 + es32 + s41 + ps2 + qs21

)
,

subject to the critical set conditions hs1 = hs2 = 0. We include the unfolding terms ps2 +
qs21 though we are particularly interested in the self-intersections for p = q = 0. We can
immediately solve hs1 = 0 for u1:

u1 = −2bs1s2 − 2cs1u2 − ds22 − 3s21 − 4s31 − 2qs1,

so that the equations which state that two domain points (s1, s2, u1, u2) and say (t1, t2, u1, u2)
have the same image take the following form.
(SI1): the above formula for u1 gives the same answer for both domain points;
(SI2): the formula for h above gives the same answer for both domain points;
(SI3): hs2(s1, s2, u1, u2) = 0; and
(SI4): ht2(t1, t2, u1, u2) = 0.

It is convenient to make the substitution s1 = x1+y1, t1 = x1−y1, s2 = x2+y2, t2 = x2−y2,
so that the ‘trivial solution’ s1 = t1, s2 = t2 becomes y1 = y2 = 0. Furthermore replacing
y1 by −y1 and y2 by −y2 interchanges (s1, s2) and (t1, t2), that is interchanges the two
domain points (s1, s2, u1, u2) and (t1, t2, u1, u2) with the same image in R3 under the normal
form map (16) . With this substitution the equations become say (SI1′), etc., and we use
(SI3′)-(SI4′) to solve for u2:

u2 = −bx1y1 + dx1y2 + dx2y1 + 3ex2y2
y2

,

where the denominator y2 is harmless since it is easy to check that if y2 = 0 then the other
equations imply that y1 = 0 too. Note that this expression does not involve p, q.

We can solve (SI1′) for x2:

x2 =
bcx1y

2
1 + cdx1y1y2 − bx1y22 − 6x21y1y2 − 2y31y2 − 3x1y1y2 − qy1y2

−cdy21 − 3cey1y2 + by1y2 + dy22
.

This time we may need to investigate the vanishing of the denominator, but assuming the de-
nominator is nonzero and substituting for x2 we find that the equation (SI2′)-y2((SI3′)+(SI4′))
reduces to

SI5 : by21y2 + dy1y
2
2 + ey32 + 4x1y

3
1 + y31 = 0. (19)

This is to be treated as the equation of a surface in 3-space (x1, y1, y2) which contains the
x1-axis, since (x1, 0, 0) is always a solution. The surface will have a certain number of ‘sheets’
passing through the origin, equal to the number of values of k which make the first coordinate
zero in the following parametriztion of SI5 by k and y1.(

−ek
3 + dk2 + bk + 1

4
, y1, ky1

)
. (20)

If y1 = 0 in (19), then y2 = 0 and x1 is arbitrary; and indeed, being cubic in k, (20) gives all
points (x1, 0, 0), possibly for more than one (real) k. If y1 6= 0 then we solve (19) for x1 and
writing y2 = ky1 produces the given value −1

4(ek3 + dk2 + bk + 1) for x1. Conversely, every
point (20) satisfies (19) by substitution. Hence (20) parametrizes the complete surface (19).
Two examples are shown in Figure 6.

Note that the surface (19) and the parametrization (20) are independent of the unfolding
parameters p, q.
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Figure 6: The surface given by (19) or (20), for (left) b = 8, c = −4, d = −3, e =
−1, with three smooth sheets through the origin, which is marked by a black dot;
(right) b = −8, c = 4, d = −3, e = −1, with one smooth sheet. (See Proposi-
tion 4.2.) These are respectively Class III and Class IX in Table 1 below. Note
that in the first of these there are nevertheless only two self-intersection curves of
the equidistant for p = q = 0 , using the criterion of Proposition 4.6. In fact the
picture for Class II is very similar to the left-hand figure, but there is only one
self-intersection curve of the equidistant for p = q = 0.

Proposition 4.2 The number of smooth real sheets of the surface (19) through the origin
in (x1, y1, y2)-space is 1 or 3 according as

27e2 + 2b(2b2 − 9d)e+ d2(4d− b2) > 0 or < 0 respectively.

This number is therefore the maximum number of self-intersection branches of the equidistant,
for any p, q. If b2 < 3d then the displayed expression is > 0 for all values of e.

Proof This is a matter of calculating the discriminant of the cubic polynomial ek3+dk2+bk+1
in k, and the discriminant 16(b2−3d)3 of the displayed quadratic polynomial in e. The sheets
will be smooth provided the cubic in k has no repeated root, that is provided the discriminant
is nonzero. �

Remark 4.3 In §2.4 we noted that, in the current Degenerate Case 2, the sign of a certain
polynomial in the coefficients of the two surfaces M0, N0 determines whether the ‘scaled
contact map’ has type D+

4 or D−4 . By reducing to normal form as in §3 we can re-express
this polynomial in terms of the coefficients b, c, d, e of the normal form. When this is done,
we find that the condition for one (resp. three) sheets as in the above proposition coincides
with the condition for D+

4 (resp. D−4 ) in the scaled contact map. We do not know the full
significance of this fact.

Substituting x1 = −1
4(ek3 + dk2 + bk + 1) and y2 = ky1 in one of the conditions on

x1, y1, y2 not fully used yet (for example, SI2′) we obtain a single equation in y1, k (involving
now p and q) which determines the branches of the self-intersection set of the equidistant.
We are interested in values of k close to a zero k0 of the polynomial ek3 + dk2 + bk + 1, so
we now write k = k0 + z say where z, as well as y1, p, q, will be small. Since k0 satisfies a
cubic equation we can express k30 in terms of k0 and k20, namely as k30 = (−dk20 − bk0 − 1)/e,
and therefore all higher powers of k0 can be expressed in terms of k0, k

2
0 as well.

18



Definition 4.4 For a chosen value of k0, the polynomial in y1, z, p, q just formed, the zero
set of which determines the solutions to (SI1)-(SI4) or their equivalents (SI1′)-(SI4′), and
hence determines the points corresponding to self-intersections of the equidistant, will be
called L(k0). In the special case p = q = 0, we shall write L0(k0) for the polynomial in y1
and z.

We deduce the following; the statements 2-5 are easily checked by direct calculation.

Proposition 4.5 1. For each real root k0 of ek3 + dk2 + bk + 1 = 0 one smooth sheet
of the surface (19) is parametrized by (y1, z) and the points which correspond to self-
intersections on the equidistant for any p, q are given by the additional equation L(k0) =
0.

2. The polynomials L(k0) and L0(k0) contain only the powers y21 and y41 of y1. For any
p, q the zero-set of L(k0) is symmetric about the y1-axis in the (y1, z)-plane.

3. The other variable z occurs to powers ≤ 14 in L(k0). The coefficient of z14 is in fact
27e5(3e− 1) which will not be zero since e = 0, 13 are excluded values.

4. The linear part of L(k0) has the form constant ×p. The nonzero quadratic terms are
in y21, z

2, zp, zq and q2.

5. The 2-jet of L0(k0) has the form c0y
2
1 + c2z

2.

The last statement above implies that, for p = q = 0, a given sheet of the surface (19),
that is a given value of k0, will correspond to a branch of the self-intersection set of the
equidistant if and only of c0, c2 have opposite signs. When c0c2 > 0 there is only an isolated
point at y1 = z = 0. When c0c2 < 0 the two real branches of the set L0(k0) = 0 (forming
a crossing at the origin y1 = z = 0) will give only one branch of the self-intersection set
because, as noted above, replacing y1 by −y1, and hence y2 = ky1 by −y2 = k(−y1), merely
interchanges the domain points contributing to the self-intersection.

Each of c0, c2 is quadratic in k0; multiplying them gives an expression of degree 4 which
can be reduced to degree 2 again using the equation ek3 + dk2 + bk + 1 = 0. Writing the
resulting quadratic expression as N = N0(b, c, d, e) +N1(b, c, d, e)k0 +N2(b, c, d, e)k

2
0 we have

the following, which is used to determine the number of self-intersection branches of the
equidistant in the ten classes of Table 1.

Proposition 4.6 The number of real branches of the self-intersection set of the equidistant
for p = q = 0 is the number of solutions k = k0 of ek3 + dk2 + bk + 1 = 0 at which the
quadratic N is < 0.

As (p, q) moves away from (0, 0) we can still trace the zero set of L(y0) in the (y1, z)-
plane. An isolated point may disappear or open into a symmetric loop, which represents a
self-intersection of the equidistant having two endpoints, if the loop crosses the y1-axis, and a
closed self-intersection curve if it does not. A crossing will become a ‘hyperbola’; if it crosses
the y1-axis then the corresponding self-intersection curve will have two endpoints and if not
then it will be an unbroken arc. This is illustrated in the next section.

4.6 Examples

Considering different realizable values of the three invariants in §4.4, we have the ten classes
of equidistant given in Table 1. It is also possible in some of these classes to allow values of e
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in different ranges e < 0, 0 < e < 1
3 , e >

1
3 but this does not appear to affect the equidistant

in any qualitative way. We can compute the curves in the (p, q)-plane alomg which the cusp
edges or the self-intersection curves on the equidistant underfgo a qualitative change. (The
ten cases of the table in fact have ten distinct configurations of these curves.)

Class Cusp edges self-int Subcase b c d e
(Prop. 4.1)

I 0 0 ++ 8 4 −3 1
II 0 1 +− 8 −4 −3 1

6

III 0 2 −− 8 −4 −3 −1
IV 2 0 +− −13 6 −3 −5
V 2 1 −− 1 2 3 −1
VI 2 2 +− 8 4 −3 1

6

VII 2 3 −− −13 −6 1 1
6

VIII 2 3 +− −8 4 1 1
6

IX 4 1 +− −8 4 −3 −1
X 4 3 +− −8 6 −3 10

Table 1: Ten distinct classes of Case 2, giving all possible realizations of the three
invariants of §4.4, and examples of values of b, c, d, e which realize these invariants.
The fourth column refers to the ‘non-special’ type which results from changing λ
slightly from the degenerate value.

Figure 7: Cases II, III, IV and VI from Table 1, for p = q = 0. The origin is
marked for Case VI, where there are two very arrow swallowtails passing through
the origin, contributing two cusp edges and one self-intersection, and the other
self-intersection is visible where the sheets pass through one-another.

We shall now give more detail on Case II of the table, showing how the cuspidal edges
and self-intersections of the equidistant evolve as (p, q) in (16) makes a circuit of the origin.
Figure 8 shows the transformations in the cuspidal edge as (p, q) moves in such a circuit
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and Figure 9 gives schematic diagrams of the corresponding equidistants, indicating their
self-intersections and cusp edges. We use the following labelling on these figures to indicate
transitions (perestroikas) in the structure of the equidistant.

Notation 4.7 A++
2 , A−−2 , A+−

2 refer to Subcases 1.1.1, 1.1.2 and 1.1.3, as in Proposition 3.2.
The corresponding transitions have also been desscribed to as ‘Zeldovich’s pancakes’ or ‘flying
saucer’, the ‘hyperbolic transformation of an edge’, and ‘the death of a compact component
of an edge’, respectively. See also [9, 10].

A+
3 , A

−
3 refer to the ‘swallowtail-lips’ and ‘swallowtail-beaks’ singularity respectively.

D−4 refers to the ‘pyramid’ singularity (and D+
4 would similarly be the ‘purse’ singularity).

TA3,1
1 , called such in [10, 1] (see also [9]) refers to the situation where three smooth sheets

of the equidistant are pairwise transversal to each other, but the curve of intersection of any
two of them is tangent to the third sheet at the moment of bifurcation.

Figure 8: Pre-images of the cuspidal edges on the equidistants in Class II of
Table 1 for unfolding parameters (p, q) making a circuit of the origin. The colours
correspond to either the two parts of a hyperboloid of two sheets as in §4.2 or to
the two parts into which a hyperboloid of one sheet is cut by the plane through
the ‘waist’. For the labelling of transitions, see Notation 4.7.
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Figure 9: Schematic diagram of the equidistants for Class II of Table 1, with
the unfolding parameters (p, q) making a circuit of the origin. The figure shows
cuspidal edges (thick lines) and self-intersections (thin lines) with solid and dashed
curves indicating visibility from one direction. For the labelling, see Notation 4.7.

5 Conclusion and further work

There have been many recent studies of singularities of (affine) equidistants of surfaces. For a
single equidistant of a fixed surface, the generic singularities are A1, A2, A3 (see for example
[8, 4]); for a fixed surface, but allowing the ratio λ defining the equidistant to vary, the
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generic singularities are now A1 (smooth surface), A2 (cusp edge), A3 (swallowtail), A±3
(swallowtail beaks/lips transition), A4 (butterfly) and also D±4 (purse/pyramid) (compare
[7]). The context of the present paper is to extend this to 1-parameter families of surfaces,
the parameter in the family being ε in our notation, so that there are now two parameters
to consider, λ and ε. The particular degeneracy in the ε family studied here comes from a
‘supercaustic chord’, that is a chord joining two parabolic points with parallel tangent planes
and parallel asymptotic directions. This occurs generically only in a 1-parameter family of
surfaces. Along such a chord there may be special values of λ where singularities become
more degenerate, depending on the relative local geometry of the surface patches at the ends
of the chord. When two such special values exist (our Case 1.2) this corresponds to the
intersection of an A3 stratum with the supercaustic. In addition, there always exists a value
of λ, which we call the degenerate Case 2. This corresponds to the intersection of a D4

stratum with the supercaustic, and we elucidate ten geometrically distinct cases. Our paper
also gives a natural geometric setting for many singularity types which belong to the list of
corank 1 maps from R3 to R3 ([12, 9]), with the addition of a quadratic term in the extra
variable which does not affect the critical set. The cases where equidistants are defined by
λ = 0 or 1 remain to be studied.

A second natural 1-parameter family of surfaces is derived from the ‘tangential’ case in
which two surface pieces share a common tangent plane (see for example [8]); here boundary
singularities occur in the generic case, so that making one contact point parabolic in a
1-parameter family will introduce additional boundary singularities. The full adjacency
diagram for singularities of equidistants of 1-parameter families of surfaces, not restricted to
the supercaustic case, also remains to be found.

Acknowledgement We are grateful to Aleksandr Pukhlikov for helpful discussions on
calculating self-intersections.
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