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ABSTRACT
Wrist-worn gesture sensing systems can be used as a seam-
less interface for AR/VR interactions and control of various
devices. In this paper, we present a low-cost gesture sensing
system that utilizes near Infrared Emitters (600 - 1100 nm)
and Photo-Receivers encompassing the wrist to infer hand ges-
tures. The proposed system consists of a wristband compris-
ing Infrared emitters and receivers, data acquisition hardware,
data post-processing software, and gesture classification algo-
rithms. During the data acquisition process, 24 near Infrared
Emitters are sequentially switched on around the wrist, and
twelve Photo-diodes measure the light reflected, refracted, and
scattered by the tissues inside the wrist. The acquired data
corresponding to different gestures are labeled and input into
a machine learning algorithm for gesture classification. To
demonstrated the accuracy and speed of the proposed system,
real-time gesture sensing user studies were conducted. As a
result of this comparison, we obtained an average accuracy
of 98.06% with standard deviation of 1.82%. In addition, we
evaluated that the system can perform six-eight gestures per
second in real time using a desktop computer operating with
Core i7-7800X CPU at 3.5GHz and 32 GB RAM.
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INTRODUCTION
Hand gesture recognition refers to the problem of identifying
hand gestures executed by a user at a specific time. Humans
naturally gesticulate with their hands forming both static hand
poses and dynamic gestures to deliver information. For this
reason, hand gesture sensing or recognition have long been
studied for intuitive control of interactive systems, as well as
in many other engineering and medical applications [1, 2, 3].
Some typical such applications include human-machine inter-
action interfaces, control of hand prostheses and rehabilitation
devices, sign language interpretations [4, 5, 6].

In order to design all-day-wearable gesture sensing devices,
the following requirements are usually considered: the de-
vices should be non-obtrusive, they should not cause physical
discomfort or encumbrances to the natural hand movement;
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moreover, they should also be intuitive and easily accessi-
ble. To meet all such criteria, a wrist-worn device is a great
candidate. Therefore, there has been several bio-sensing re-
search that seeks to infer gestures from tracking the anatomical
changes within the wrist.

Several wrist-worn devices have been proposed for hand ges-
ture recognition. The sensing modalities include camera-based
systems[7], inertial motion sensing [8, 9], Electromyogra-
phy(EMG) [10, 11, 12, 13], Electrical Impedance Tomography
(EIT) [14, 15], and capacitive and resistive pressure sensing
systems [16, 11, 17]. Each modality has its own merits and
limits. Wearable camera systems attach small cameras near
the wrist to recognize different hand shapes. For example,
Digits [7] uses a 3D infrared camera to identify gestures using
machine vision systems. However, some significant limita-
tions of this type of sensing include line-of-sight occlusions,
ambient light noise, and higher computational cost associated
with more complicated imaging processing algorithms. In-
ertial motion sensing systems employ inertial measurement
units (IMUs), which consist of accelerometers, gyroscopes,
and magnetometers, to measure arm and finger orientations
[8]. Accelerometers data has also been used to recognize dif-
ferent activities by sensing dynamic features related to hand
motions [9]. However, Inertial motion sensors are very limited
at detecting static hand gestures. Electromyography (EMG)
estimates the myoelectric potential generated during hand and
finger movements by attaching electrodes to the upper part
of the forearm. It has been extensively explored for static
and dynamic gesture detection [10, 12]. Compared to other
sensing techniques, the limitations of EMG systems include
the requirement of massive datasets and the heavy computa-
tion burden associated with extensive signal processing. In
addition, they also require careful initial configuration and
calibration for adequate performance. Electrical impedance
tomography (EIT) is another well-studied method for hand
gesture recognition [15]. It measures the impedance changes
between pairs of electrodes to track the wrist tissue changes.
However, this type of method is susceptible to resistance cou-
pling between the electrode and skin, and sometimes require
electric-conductive gel for stable coupling. Other sensing
modalities include Force sensing resistors (FSRs) system,
which measures the pressure distribution around the wrist to
identify different static gestures [16], and Capacitive pres-
sure sensors, such as GestureWrist [2, 17], which measures
capacitive changes around the wrist are also used. Most of
the gesture sensing methods mentioned above are unsuitable
for practical use due to either low accuracy, high cost, poor
ergonomics, portability, or ease of use.
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Figure 1. Gesture sensing technologies: Electromyography (EMG), Elec-
trical Impedance Tomography (EIT)[15], Near Infrared Sensing(NIR)
[18], From Left to Right

NEAR INFRARED(NIR) SYSTEM
Near-infrared (NIR) systems have been long investigated in
the area of medical applications, because of their ability to
image changes in tissues [19, 20]. The near-infrared win-
dow is the light spectrum in the wavelength range between
600nm to 1100nm. As shown in Figure 2, Light has max-
imum penetration in tissues in Near Infrared window. The
absorption coefficient of water, melanin, de-oxygenated, and
oxygenated blood are low in NIR window. Photons that enter
human tissue typically undergo absorption, scattering, and
reflection. Changes in the anatomical structures of the wrist
while performing different gestures will result in changes in
how injected light interacts with tissues, including the three
types of incidents mentioned above. These changes can be
utilized to detect hand gestures by measuring the transmission
and diffraction of light through the wrist.

Figure 2. Absorption rate of NIR for different tissues [21]

This project uses wristband which consists of pairs of in-
frared emitters and receivers to measure the light reflected
or scattered through/off the wrist. There have been some
previous works [18], that demonstrated NIR’s potentials for
non-invasive and accurate gestures recognition. In our study,
We explore further to improve the accuracy of the NIR system
in detecting gestures by developing a system which is robust

against skin-sensor coupling. This study also explores the
impact of the number and configuration of the sensors on the
overall accuracy of the system. Two different wavelengths
were also tested to see the variation in accuracy at different
light absorption rates of tissues.

NIR WRISTBAND IMPLEMENTATION

Wristband Hardware
The NIR wristband (shown in Figure 4) is composed of 24
near-infrared emitters, 12 photo-diodes with an on-chip trans-
impedance amplifier. A controller is used to switch the IR
LEDs and sample the photodiodes output sequentially. The
sampled data is then used by a machine learning algorithm to
classify features into different gestures.

Figure 3. Block Diagram of NIR wristband

Figure 4. Wristband hardware setup: The data acquisition and IR LED
control hardware

The selection of emitters consider factors including power con-
sumption, optical power, and emitter-detector spacing on the
wristband. After testing different IR emitters to see the effect
of radiant intensity (12 - 1100 mW/sr) and light beam angle
(6− 130°) and emission wavelength on the received signal,
we chose MTMD7885NN24 multi-chip IR emitters that have
peak emission wavelengths at 770nm, 810nm, and 850nm. We
chose the photodiodes to be TI’s OPT101 with an on-chip
trans-impedance amplifier and 1 Mohm feedback resistor cre-
ating a bandwidth of 14kHz. The built-in trans-impedance
amplifier reduces noise pick-up and space requirement, com-
pared to an external amplifier.

To generate a timed and synchronized PWM control signal
sequence, a NI DAQ(USB-6353) device was employed. The



Figure 5. The NIR Wristband

Figure 6. Single IR emitter and receiver module

PWM sequence was generated at a 20Hz frequency, with 4%
duty cycle and 15 degrees phase shift of consecutive channels.
It creates a sequential switching of all emitters in 50 ms dura-
tion. A Darlington array ICs, ULN2803a (capable of sinking
up to 500 mA, 50V) was used to amplify the control signal.
The cascade connection of two transistors in Darlington arrays
creates the effect of a single transistor with a very high current
gain. The very high β allows for high output current drive with
a very-low input current, essentially equating to operation with
low GPIO voltages. Current limiting resistors were utilized
to control the amount of current drawn by the emitters. The
acquired analog signal from each photodiode amplifier was
sampled at 16-bit resolution and 9600 samples per second.

Compared to SenseIR [18], this wristband hardware is devel-
oped with more IR emitters, i.e., 24 IR emitters and a better
mechanical wristband design. This improvement increases the
relative prediction accuracy because the rigidity if the wrist-
band improves the robustness of the system to misalignment
errors. A careful analysis of the optical power with respect
to emitter-receiver spacing and IR beam angle has also been

done. The wristnband hardware also features PCB connectors
(as shown in Figure 6) which are modular and durable. Not
only this reduces the cumbersome cabling needed but also
reduces noise pickups.

Machine Learning Software
The software of this study consists of four major components:
data collection, data processing, model training, and both
offline and real-time evaluation.

Data Collection
During this phase, the PWM waveform generation and emitter
control session are run continuously in the background and
scan the full 360 degrees of the wrist at an effective frequency
of 20Hz. During each scanning of 360 degrees, 24 emitters are
pulsed in sequence, each generating a finite width rectangular
waveform.

The rising edge of emitter 1 triggers the analog data acquisition
and lasts for exactly 50ms. Since the analog signal is sampled
at 9600 samples/sec, 480 samples are acquired per channel in
every full wrist scan, which is referred to as one ’frame’. An
example of such a frame of data is shown in Figure 7

Figure 7. Matrix of Emitter-receiver measurements of a single frame

Data Processing
The data collected from each photodiode (channel) are first
filtered using a median filter of width five, to suppress some
narrow-width noises from external near-infrared interference.
The resulting data for each channel, which is 480 samples, are
then segmented into 24 segments, each corresponding to the
time when a specific emitter has been switched on. Because
we have observed that each 20-sample segment appear to be
almost flat in our experiment, we computed the mean value as
a representation for each segment to reduce the size of data by
a factor of 20. In this way, the 480 samples per channel can be
reduced to 24 samples, and a total of 12 channels sum up to
288 samples per frame. These processed data were input into
both the model training and real-time evaluation steps in this
study.



Model Training
For several applications, wearable gesture recognition systems
are required to function in real time with comparable accuracy
to those in offline modes. For a gesture recognition system to
operate in real-time, it has to recognize a gesture in less than
300 ms equivalent to 3Hz update rate [10]. Since wearable
systems run on systems which needs low computational com-
plexity and low power systems, the primary challenge here
is choosing a classifier which can exhibit good performance
using less complicated recognition models.

The labeled and processed data from the Data Processing step
are employed to train various machine learning models. We
have explored the following supervised learning classifiers:
k-Nearest Neighbors (kNN), Support Vector Machine (SVM),
Linear Discriminant Analysis(LDA), and Neural Networks
(NN). After a series of accuracy comparison for different mod-
els, a shallow neural network worked best for our context.
Therefore we will focus on describing this model. The shallow
neural network that we chose was a single-layer fully con-
nected network, with the hidden layer consisting of 56 hidden
nodes. The activation function was set to be the rectified linear
unit (ReLU) function, and the cost function was a negative
log-likelihood function. During training, one epoch of data
was divided into batches of the size of 600, and a total of
1000 epochs were trained, after which the changes in both
accuracy and cost-function value falls below a small thresh-
old. No dropout or batch normalization was applied during
training, because this model is relatively simple, and it already
generalized pretty well without these tricks.

Model Evaluation
We performed both offline evaluation of the trained model
using the collected data, also real-time evaluation by applying
the trained model on real-time streamed sensor data.

1. For offline evaluation, a typically collected dataset usually
consists of 10 trials. 10-fold cross-validation was performed
by training on any nine trials and validating on the other
one trial of data. Both validation accuracy and confusion
matrices were averaged over all ten folds and served as a
metric of gesture classification performance.

2. For real-time evaluation, a real-time software streamed
frames of raw sensor data from the wristband hardware,
and performed the same data-processing procedure on each
frame, and invoked model inference employing the trained
model to predict the gesture of the current frame. The
real-time evaluation software can update a new gesture at
6-8Hz.

USER STUDY DESIGN
To assess the performance of the built wristband, hand ges-
ture sensing studies were conducted across multiple subjects.
To better compare our results with a previous study done by
SenseIR [18], we designed the studies to replicate the set-ups
in SenseIR as much as possible. Specifically, a total of four
pinch gestures (Index Pinch, Middle Pinch, Ring Pinch, and
Little Pinch), six common gestures (Fist, Spread, Call, Gun,
Index Point, and Thumbs up), and three wrist gestures (Wrist

Flexion, Wrist Extension, and Wrist Abduction) were chosen,
as shown in Figure 8.

Figure 8. Set of gestures used in the user study

All participant wore the wristband on their right arm. Before
the test, each subject was given some time to practice the
gestures. During a single trial, the subject was prompt to
perform all 13 gestures in a random sequence specified by
the software, each gesture for 5 seconds. The randomness
in gesture sequence can enhance the generalization of the
machine learning model.

A total of 10 trials of data were collected for each subject.
Data corresponding to the first 2 seconds of a new gesture was
truncated, because we observed that the raw sensor signals
would fluctuate to difference extents during this transitioning
time, this truncation can provide more stabilized signals for
each gesture. The labels of the data were simultaneously
created and time stamped.

RESULTS
In our study, the confusion matrix was computed to serve as
the metric of performance. The confusion matrix is a Ngesture
by Ngesture matrix, each entry is strictly between 0 and 100,
with the i-th column and j-th row indicating the percentage of
i-th gesture (true) being classified as the j-th gesture, during
validation. Its diagonal elements imply the percentage of
each gesture being classified correctly, whose average value
is a quantitative measure for the performance of the trained
model, therefore denoted as "validation accuracy" for the rest
of the study. The confusion matrix is always averaged over
all folds during the 10-fold cross-validation. The confusion
matrix (shown in Figure 9) corresponds to the confusion
matrix averaged over all ten subjects, and all ten folds for each
subject. The validation accuracy over all subjects is 98.06%
with the standard deviation of ± 1.82%.



Figure 9. Confusion Matrix - The mean validation accuracy across 10
participants for each gesture

The prediction accuracy is observed to be less for less-
pronounced gestures. i.e., pinch gestures and other gestures
which only involve the movement of a single finger. This is be-
cause the pinch gestures use common muscle group. However,
wrist gestures, gestures which rotate the whole hand around
the wrist joint are easily recognized by the ML algorithms.
In addition, other experiments were designed to investigate
the impact of the number of sensors, sensor coverage area
and density, peak emission wavelength of the IR emitters, and
motion artifacts (particularly arm rotations) on the sensing
performance:

1. Number of sensors: From a dataset collected on the full
setup (24 emitters and 12 detectors), we removed some
data to create combination setups with different number of
emitters (6, 12, 24) and detectors (6, 12) as shown in Figure
10, Where the blue circles indicate the active IR emitters and
the blue rectangles indicate the active IR receivers. We only
reduce the numbers of emitters and detectors in the new
setups, both are still equally spaced around the wrist. The
results show a small decrease in accuracy for less number
of sensors. However, the small variation in accuracy for
different emitter and receiver combination shows that it is
still possible to get a reasonably high accuracy with less
number of sensors.

Figure 10. Number of sensors vs Validation accuracy

2. Peak emission wavelengths: Two wavelengths, 770 nm,
and 850 nm, are tested in an experiment with a 12-emitter-
12-detector configuration. The resulting validation accu-

racies for the two wavelengths are 94.33% and 93.37%,
respectively. The changes in accuracy are not significant
between the chosen two wavelengths.

3. Sensor coverage area: For hand gestures, more useful
signals may concentrate on specific regions of the wrist.
Sensor configuration, particularly sensor density in some
regions of the wrist and the overall coverage area of the
wristband should also be carefully designed to keep the
trade-off between the accuracy of the system and wristband
complexity or cost. In Figure 11, we showed the variation
in accuracy for different sensor configuration of 12 emitters
and 6 receivers wristband. This result shows that the sensors
can be concentrated to a particular side of the wrist without
a significant variation in accuracy. The sensors can also
be arranged in a low-density configuration to include other
complementary types of sensor such as EMG, inertial and
pressure sensors which can be used to reduce the practicality
issues related with the NIR wristband. However, the results
also show covering more wrist area with sensors can give
slightly better results than having sensors concentrated in a
particular area.

Figure 11. Different sensor configurations Vs Validation accuracy

4. Arm rotation: We have found that the rotation of the arm in-
troduces a relatively significant change in the near-infrared
signals. Therefore a significant error may be observed if the
arm rotation angles during training and validation are differ-
ent. This problem can be solved by introducing various arm
orientations during training or including the orientation in-
formation from additional sensors during both training and
validation. We performed a preliminary study in which data
corresponding to three different arm rotations (0°, 45°, 90°)
were collected (as shown in Fig. 12) Validation accuracies
were computed by training on the 0° data and validating on
the 45 ° and 90° data. The accuracy of the system reduces to
74% and 68% for arm rotation of 45° and 90° respectively.

DISCUSSION
From the experiments conducted and observations during
those experiments, we distinguished some factors that affect
the model training and recognition prediction algorithms.

• Misalignment of the IR sensors: This problem mainly hap-
pens for multiple session tests when the user takeoff the



Figure 12. Hand or fore-arm Rotation Test

wristband and wear it again. However, the shift can also
happen while the user wears the wristband in single session
tests. The misalignment can happen either by rotational dis-
placement or longitudinal displacement on the wrist. The
position of the sensors will be displaced from the training
position causing the shift for the order of the features. Since
the wristband is sensitive for a shift in millimeters, man-
ual calibration is very difficult. Every time the wristband
shifts, the position/orientation of the wristband with respect
to a reference position should be calculated. The reference
position can be recognized using a specific gesture which
shows strong features or a significant change in the signal.
After the position is detected, reassignment of the channels
can be used to maintain the order of the features without
rotating the wristband.

• Arm movement: motion artifacts are the other major prob-
lem in NIR systems. The motion of the hand (arm rota-
tion, elongation, elevation) causes blood movement and
muscle/tendon movement. These movements cause an un-
wanted change in the signal. It is difficult to solve this
problem entirely by including the arm movement informa-
tion in the study or machine learning training procedures.
However, it can be reduced by training the different arm
rotations and elevations for the same gesture. An additional
sensors output such as IMU orientation data can also be
used to compensate for the arm rotation problem.

• Skin-sensor Coupling: Even though NIR wristband does not
suffer from any electrical sensor-skin coupling unlike EMG
and EIT techniques, They still suffer from problems caused
by mechanical coupling between the sensor and the skin.
This is mainly because light can be reflected directly from
the skin without entering the skin tissue, thereby causing the
saturation of photo-diodes. This problem can be reduced by
using an appropriate mechanical wristband design which
can keep the coupling constant.

• IR interference: IR light from external IR sources, e.g., The
sun, IR illuminating cameras adds noise on the main signal.
In order to remove these noises, enclosing the outer part of
the wristband with IR block film can be a potential solution.
The other solution can be a differential measurement of the
external IR and subtraction from the main signal.

CONCLUSION
This paper presents a wrist-worn gesture sensing system that
consists of an array of an Infrared Emitter and Photo-Receivers

that are used to detect gestures by measuring reflected and re-
fracted light from tissues in or under the skin. In this study,
we have demonstrated that Near-infrared wristbands can of-
fer a low-cost and high accuracy gesture sensing possibility.
With the advancement of ultra-miniature SMD IR emitters and
receivers, these techniques can be easily integrated to wrist-
worn devices such as smart-watches and Fitbit monitors. The
system’s software consists of data acquisition, preprocessing
and classification stages. Thirteen classes of gestures were
analyzed to validate the accuracy of the classification algo-
rithm. Future works include data collection and processing
for cross-session and cross-user performance. Integration with
orientation sensors and pressure sensors should be investigated
as a potential solution to enable recognition of arm rotation
and pressure distribution around the wrist. Development of
embedded data acquisition and wireless data transfer methods
can also be implemented for entirely wearable and wireless
wristband gesture sensing system.
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