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An Advantage for Smooth Compared With Angular Contours in the Speed
of Processing Shape

Marco Bertamini
University of Liverpool and University of Padova

Letizia Palumbo
Liverpool Hope University

Christoph Redies
Friedrich Schiller University of Jena

Curvature along a contour is important for shape perception, and a special role may be played by points
of maxima (extrema) along the contour. Angles are discontinuities in curvature, a special case at one
extreme of the curvature continuum. We report 4 studies using abstract shapes and comparing polygons
(curvature discontinuities at the vertices) and a smoothed version of polygons (no vertices). Polygons are
simpler and are defined by a small set of vertices, whereas smoothed shapes have a continuous curvature
change along the contour. Angles have also been discussed as an early signal of threat and danger, and
on that basis, one may predict faster responses to polygons. However, curved shapes are more typical of
the natural environment in which the visual system has evolved. For a detection task, we found faster
responses to smooth shapes, not mediated by complexity (Experiment 1). We then tested 3 orthogonal
shape tasks: comparison between shapes (detection of repetition; Experiment 2a), comparison after a
rotation (Experiment 2b), and detection of bilateral symmetry (Experiment 3). In all tasks, responses for
smoothed stimuli were faster; there was also an interaction with type of response: Trials with smooth
shapes were faster when a positive response was produced. Overall, there was evidence that smooth
shapes with continuous change in curvature along the contour are processed more efficiently, and they
tend to be classified as targets. We discuss this in relation to shape analysis and to the preference for
smoothed over angular shapes.

Public Significance Statement
The study demonstrates that shapes with smooth curvature are processed more quickly and efficiently
compared with shapes with sharp angles. This perceptual factor may clarify the link between
perception and preference because smooth shapes are known to be preferred.

Keywords: perception, visual preference, curvature, complexity

In his seminal article, Attneave (1954) noted that, along con-
tours, points of maximal curvature carry the greatest information.
He designed a now-famous example using an image of a cat,
reproduced in Figure 1. He selected 38 points of maximal curva-
ture from the boundary contour of the image of a sleeping cat and
connected them with lines. For most people, the cat is still easy to

recognize. In a second demonstration, Attneave asked people to
mark salient points along the contour of a random shape. Here, too,
the points selected were close to the locations of maximal curva-
ture. These locations with peaks of curvature (curvature extrema)
are the sharp turns along the contour. The idea is that they allow
the extraction of an economical description of objects.

The importance of curvature extrema has been studied and
confirmed by empirical studies. De Winter and Wagemans (2008)
found that participants were most likely to pick up local curvature
maxima when asked to mark salient points along the contour line
of 2-D shapes (see also Norman, Phillips, & Ross, 2001). An
explicit representation of curvature has also been implemented
within formal models of vision (Asada & Brady, 1984). In general,
a role for curvature extrema is acknowledged in theories of shape
representation (Cohen & Singh, 2007; De Winter & Wagemans,
2006, 2008; Feldman & Singh, 2005; Hoffman & Richards, 1984;
Hoffman & Singh, 1997; Leyton, 1989). There is also evidence
that attention is allocated preferentially to regions near corners
(Bertamini, Helmy, & Bates, 2013; Cole, Skarratt, & Gellatly,
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of Liverpool, and Department of General Psychology, University of Pa-
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2007), perhaps due to the fact that these are more informative
locations. Many studies have also highlighted how positive and
negative extrema (convexities and concavities) carry information
about solid shape (Bertamini & Wagemans, 2013; Hoffman &
Richards, 1984; Koenderink, 1984).

Separately from the literature on curvature extrema, there is
evidence from experimental aesthetics that smooth curvature along
contours or surfaces is preferred to angular contours (Bar & Neta,
2006; Bertamini, Palumbo, Gheorghes, & Galatsidas, 2016; Silvia
& Barona, 2009). We review this literature next and then consider
a possible link with perception. To fill a gap in the empirical
studies, we conducted four experiments to compare angular and
smooth versions of abstract shapes on three different perceptual
tasks. By angular 2-D shapes, we mean irregular polygons. These
have sharp angles that are easy to see and locate. By smooth 2-D
shapes, we mean similar polygons (generated by the same algo-
rithm) that have been converted into shapes with a continuously
changing curvature along the contour. We carefully controlled that
the same series of convexities and concavities were present in both
sets. To anticipate the results, despite the fact that angular shapes
are simpler, we found an advantage in processing smooth shapes
on perceptual tasks, and we speculate that this may be a contrib-
uting factor to their preference.

Preference for Smooth Curvature

Shapes with smooth curvature along their contours are preferred
to shapes with more angular contours, as observed by both artists
and psychologists (for the historical background, see Bertamini &
Palumbo, 2015; Gómez-Puerto, Munar, & Nadal, 2016). This
phenomenon is true for both familiar objects and abstract shapes
(Bar & Neta, 2006; Bertamini et al., 2016; Silvia & Barona, 2009),
it has been confirmed in different cultures (Gómez-Puerto et al.,

2018) in children (Jadva, Hines, & Golombok, 2010) and in other
species such as great apes (Munar, Gómez-Puerto, Call, & Nadal,
2015), and it has been measured also using implicit tasks of
preference or approach (Palumbo & Bertamini, 2016; Palumbo,
Ruta, & Bertamini, 2015).

The relationship between perception, including attention alloca-
tion, and preference is fascinating but complex. If corners are
important for shape analysis and attract attention, and if one
assumes that stimuli that are salient for perception are also liked
more, one could formulate the prediction of a preference for
angularity. The same conclusion may be based on a differential in
processing speed, which may affect preference through a process
of fluency (Reber, Winkielman, & Schwartz, 1998). However, this
is the opposite of what the empirical studies have consistently
found: Smooth shapes are preferred to angular shapes. Bar and
Neta (2007) have suggested that this is due to the role of angles in
threat detection. Supporting this hypothesis, they found that the
amygdala, a structure involved in fear processing, is significantly
more active for angular objects compared with similar but less
angular objects. Recently, Grebenkina, Brachmann, Bertamini,
Kaduhm, and Redies (2018) found that edge-orientation entropy
predicted aesthetic ratings. This factor shares a large portion of
predicted variance with the preference for curved over angular
stimuli.

The difference in preference between angular and smooth
shapes was the original motivation for the current set of studies.
Given that the preference for smooth curvature is a robust effect,
we need to know more about how shapes with smooth curvature
along their contours are perceived.

Reasons to Expect Faster Responses to Angular or to
Smooth Shapes

We set out to explore the difference between shapes with
angular and smooth contours for different perceptual tasks. A case
can be made to expect faster responses to shapes with angular
contours, but an alternative case can be made to expect faster
responses to shapes with smooth contours.

One hypothesis is that angular shapes, because of their relative
simplicity, because of the salience of angles (Bertamini et al.,
2013; Cole et al., 2007), or because of the threat association (Bar
& Neta, 2006; Larson, Aronoff, Sarinopoulos, & Zhu, 2009; Lar-
son, Aronoff, & Stearns, 2007), will generally lead to faster
responses. The opposite is also possible. Small changes in orien-
tation may facilitate contour integration (Bex, Simmers, & Dakin,
2001; Field, Hayes, & Hess, 1993). A smooth contour is a contour
in which, at any point, change of orientation is small compared
with the abrupt change for an angular shape; therefore, contour
integration is more efficient for smooth contours. Neurophysiolog-
ical evidence supports a role for curvature in how shape is encoded
in early visual areas, in particular in V4 (Pasupathy & Connor,
2002), and explicit coding of local curvature is implied by the
presence of curvature aftereffects (Gheorghiu & Kingdom, 2007,
2008; Suzuki & Cavanagh, 1998).

These two hypotheses are extreme scenarios. It is important to
compare different tasks because advantages and disadvantages
may vary depending on the task; for example, contour integration
may be relevant only when global shape has to be extracted and
analyzed. Finally, for tasks in which there is a correct and an

Figure 1. The image on the left shows a reproduction of the original
demonstration by Attneave (1954) with 38 vertices. The original photo-
graph of a cat is not available. The polygon (top right) is based on 28
vertices around the outside of the image, and the last image is a version of
the same shape with smooth contours. Without information inside the
shape, it is hard to recognize the cat, but angular and smooth versions have
similar overall information.
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incorrect answer, there can also be differences in criterion, with
observers more willing to provide a positive response to some
shapes than others. For example, Brodeur, Chauret, Dion-Lessard,
and Lepage (2011) reported that in a memory task, there was a bias
to classify symmetrical shapes as familiar. This was not a differ-
ence in sensitivity but in response bias.

Summary of Experiments

In Experiment 1, we used a simple task in which observers had
to respond to the shapes on the basis of whether they belonged to
one or the other of the two categories. In this task, observers had
to press a key as soon as a stimulus appeared on screen when it was
angular (in one set of trials) or when it was curved (in a different
set of trials). This can therefore be described as a variation on the
inhibition control procedure (Logan & Cowan, 1984). We used
abstract shapes that were either angular (polygons) or curved
(smoothed version of polygons) and varied in complexity. The aim
was to test whether angular shapes produce faster responses than
smoothly curved shapes.

For Experiment 2, we wanted a task in which the whole shape
had to be processed. We presented two shapes side by side and
the task was to judge whether they were the same. They could be
either both angular or both curved (never a mix of the two). The
aim was to test processing of global shape while the angularity of
the stimuli was not task relevant. In Experiment 2a, the shapes
were presented side by side; in Experiment 2b, the task was harder
because one shape was rotated by 180°.

The aim for Experiment 3 was to test the role of shape in a
symmetry detection task. As in Experiment 2, the task required
processing of the whole shape. The comparison in this case was
between two contours, which could match (bilateral symmetry) or
be different and unrelated (asymmetrical). The information about
whether the contours were angular or smoothly curved was not
relevant for the task.

For both Experiments 2 and 3, the study was designed to record
and analyze speed of responses and errors. In a separate analysis,
we measured sensitivity and response bias using a signal detection
approach. However, the task was easy because we wanted to
minimize errors, and therefore we are aware that, given the focus
on response time, we are likely to see a ceiling effect in terms of
correct responses.

To estimate the expected effect size, we looked at a study in
which the observer was presented with simple polygons and the
task was to discriminate between two different shapes (Bertamini
& Farrant, 2006). The dependent variable was response time and
the average effect size over the three experiments was 0.28 (�p

2)
and therefore 0.62 (Cohen’s f). We used G�Power (Version 3.1.9;
Faul, Erdfelder, Buchner, & Lang, 2009) and entered this effect
size, an alpha of 0.05, and a power of 0.95. For a main effect in an
ANOVA with repeated measures, the necessary sample size was
11. We decided on a more conservative sample size of 26 and also
made an explicit decision that this sample size would be kept the
same across all our experiments.

Experiment 1: Detection Response Time

There were two parts in this experiment. During the first part,
the observer produced a response (pressing the space bar) when an

angular shape was shown on the screen, and waited without
responding when a smooth shape was shown on the screen. In
another set of trials, the observer produced a response when a
smooth shape was shown, and waited without responding when an
angular shape was shown. If no response was produced, the shape
disappeared after 4 s. Every participant performed both types of
tasks in a balanced design. The aim was to see whether observers
are faster to produce a response to one or the other of the two types
of shapes. The positive response to a specific type of stimulus was
inspired in part by the existing techniques using response inhibi-
tion (e.g., go/no-go task; Nosek & Banaji, 2001).

The stimuli were always unfamiliar abstract shapes, and no
shape was ever repeated twice within a task. The color of the shape
was lighter than the background or darker than the background
(with equal probability). Therefore, in one case, the onset of the
stimulus coincided with an increase in luminance, and in the
second case, it coincided with a decrease in luminance.

To vary the complexity of the shapes, we varied the number of
vertices. The polygon could have 10, 20, or 30 vertices. In addi-
tion, we controlled number of convexities and concavities, as this
is likely to affect perceived part structure (Bertamini & Wage-
mans, 2013). Concavities could be 30%, 40%, or 50% of the total
number of vertices. Therefore, for 10 vertices, concavities were 3,
4, or 5; for 20 vertices, they were 6, 8, or 10; and for 30 vertices,
they were 9, 12, or 15.

Method

Participants. Twenty-six participants took part (M age � 24
years; two left-handed; 14 females). All participants had normal or
corrected-to-normal vision. They provided a written consent for
taking part and received course credits. The experiment was ap-
proved by the Ethics Committee of the University of Liverpool and
was conducted in accordance with the Declaration of Helsinki
(2008).

Stimuli and apparatus. Stimuli were created using python
and Psychopy (Peirce, 2007). The shapes were generated by sam-
pling locations along a circle and connecting these locations to
create a polygon. When sampling a location for a vertex, the radius
(i.e., distance from the center) was not kept constant. Instead, it
varied randomly between 110 and 210 pixels. Therefore, the
polygon was irregular. The locations (sides of the polygon) were
either 10, 20, or 30. Concave vertices were 30%, 40%, or 50% of
the total number of vertices. The way that convex and concave
vertices formed a sequence was not constrained, and therefore
more than one convex or more than one concave vertex could
follow each other, creating more complex convexities or concav-
ities. Alternating convex and concave vertices would have created
highly regular star patterns.

To create smooth stimuli, we started with a polygon and gen-
erated a smoothed version by fitting a curve through the vertices
using a cubic spline (see Bertamini et al., 2016, for a similar
approach). The smoothed contour did pass through all the vertices
of the original polygon. The difference between the curved and
angular stimuli can be seen in Figure 2. Note that these are
examples, because in every trial, we used a different set of vertices
and, therefore, no shape was repeated twice during one session
(i.e., one task). In other words, there were 252 different shapes.
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Approximate size (max diameter) was 8 cm. The stimuli are
available from https://osf.io/4278q/.

The background was a uniform gray (approximate luminance �
59 cd/m2). The color of the shape could be either lighter than the
background (68 cd/m2) or darker than the background (53 cd/m2).
This factor is called Color, and it implies that the onset could be an
increase or a decrease of luminance.

Participants sat at approximately 60 cm from the screen. Stimuli
were presented on a 1,280 � 1,024 pixelx Apple StudioDisplay
21-in. CRT monitor at 60 Hz.

Experimental design and procedure. A 2 � 2 � 3 � 2 � 2
design was employed. The within-subjects factors were Task (an-
gular, curved), Shape (angular, curved), Color (light, dark), Com-
plexity (10, 20, 30), and Concavity (30%, 40%, 50%). The only
between-subjects factor was the order of the tasks, whether they
responded to angular first or to curved first. The experiment lasted
approximately 40 min.

The experiment began with the instructions followed by the
practice session (18 trials). Each trial started with a fixation cross
at the center of a gray background. This fixation lasted randomly
between 500 and 1,500 ms. After that, the shape appeared and
remained on screen until response. The response was entered with
the space bar on a computer keyboard. Responses had to be entered
within 4,000 ms of stimulus onset; otherwise, the trial would end
and the program would move on to the next trial. In total, there

were 504 experimental trials, divided in two sessions with 252
trials for each of the two tasks.

Analysis. A mixed ANOVA was performed with Shape (an-
gular, curved), Color (light, dark), Complexity (10, 20, 30), and
Concavity (30%, 40%, 50%) as within-subjects factors, and Order
(angular first, curved first) as between-subjects factor.

The dependent variable was the response time. We inspected the
distribution, which was limited at one end by the 4,000-ms max-
imum time for a response. In terms of wrong responses, there are
two possible errors. First, participants pressed the space bar when
they should not have done so. Second, participants did not press
the space bar when they should have done so (and, therefore, time
reached 4,000 ms). Errors were rare, and all errors (2.5% of trials
in total) were removed. The analysis was carried out on the trials
on which subjects were required to produce a response. In addi-
tion, responses below 250 ms were removed because they were
likely to be anticipation errors. They were extremely rare (0.05%
of trials). Over all of the remaining trials, the mean response time
was 692 ms and the standard deviation was 363 ms.

Results and Discussion

The response time results are illustrated in Figure 3. The
ANOVA confirmed a main effect of shape, F(1, 24) � 5.08, p �
.034, �p

2 � 0.17, with faster responses to smooth shapes; a main

Figure 2. Experiment 1: Examples of angular stimuli (left) and smooth contour stimuli (right). Stimuli could
be darker than the background (top) or lighter (bottom). The three rows show the three levels of number of
vertices: 10, 20, or 30. The three columns show the three levels of percentage of concave vertices.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

4 BERTAMINI, PALUMBO, AND REDIES

AQ:12-13,
F3AQ: 14

tapraid5/zfn-xhp/zfn-xhp/zfn99918/zfn3884d18z xppws S�1 5/22/19 14:08 Art: 2019-0877
APA NLM

https://osf.io/4278q/
marcob
Sticky Note
ok



effect of complexity, F(2, 48) � 23.89, p � .001, �p
2 � 0.50, with

responses becoming slower as complexity increased; a main effect
of color, F(1, 24) � 4.37, p � .047, �p

2 � 0.15, with responses
faster when the shapes were lighter than the background; and a
main effect of concavity, F(2, 48) � 5.87, p � .005, �p

2 � 0.20,
due to slower responses for the stimuli with 50% concave vertices.

In terms of interactions, there was an interaction between color
and order, F(1, 24) � 4.98, p � .035, �p

2 � 0.17, and a three-way
interaction between color, order, and complexity, F(2, 48) � 3.71,
p � .032, �p

2 � 0.13. It seems that there were faster responses to
light stimuli when they were responded to first.

There were also some interactions involving shape, and inter-
actions between shape, complexity, and concavity, F(4, 96) �
5.47, p � .001, �p

2 � 0.19, and between shape, complexity,
concavity, and color, F(4, 96) � 4.09, p � .004, �p

2 � 0.15.
Interpreting these effects required post hoc analyses. Because of its
importance for our hypothesis, we conducted three separate tests of
the effect of shape and complexity at each of the three levels of
concavity. We wanted to see if the effect of these two key factors
would be present in each subset of data. These were three repeated
measures ANOVA, and we adjusted the alpha levels (from 0.05 to
0.008).

For 30% concave vertices, we confirmed the same effects of
shape and complexity as in the main analysis. There was an effect
of shape, F(1, 25) � 20.51, p � .001, �p

2 � 0.45, with faster
responses to smooth shapes; an effect of complexity, F(2, 50) �
15.17, p � .001, �p

2 � 0.38, with responses becoming slower as
complexity increased; and an interaction, F(2, 50) � 6.65, p �
.003, �p

2 � 0.21, in which, for angular stimuli, the slope was
steeper as complexity increased.

For 40% concave vertices, there was an effect of shape, F(1,
25) � 8.72, p � .007, �p

2 � 0.26, with faster responses to smooth

shapes, and an effect of complexity, F(2, 50) � 21.57, p � .001,
�p

2 � 0.46, with responses becoming slower as complexity in-
creased. By contrast, for 50% concave vertices, there was only a
significant effect of complexity, F(2, 50) � 14.01, p � .001, �p

2 �
0.36, with responses becoming slower as complexity increased.

These analyses show that constraining the amount of concavities
can affect the comparison between angular and smooth stimuli. To
understand this effect, it is useful to look at the stimuli in Figure
2: With many alternating convex and concave vertices, the smooth
stimuli become very angular. Indeed, paradoxically, when a con-
cave vertex is between two convex vertices and the distances are
small, the curve has to turn very sharply to reach the vertex,
creating a very pointy feature, one that may be sharper than when
the vertices are connected by straight lines. In other words, some
of the 50% concave stimuli may have been too complex and
therefore degenerate to the point that angular and smooth versions
would be hard to discriminate.

The method used to produce smooth contours starting from
polygons implies that for smooth contours, the length of the
contours will be slightly longer and the area slightly greater. On
average, the length was 1,261 and the area was 78,057 for angular
stimuli; for smooth stimuli, the length was 1,320 and the area was
78,802. These are pixels and squared-pixels values. As a percent-
age, the smooth shapes were 4.4% longer and 0.9% larger than the
angular shapes. To check the relationship between these parame-
ters and response time, we looked at Pearson correlations over all
trials. There was a correlation, as expected, between length and
area (� � 0.468, p � .001) but no correlation between length and
response time (� � 0.006, p � .503) or between area and response
time (� � 0.001, p � .952).

Differences in contour length and complexity are not likely to
explain the faster response to smooth shapes based on other

Figure 3. Results of Experiment 1. Mean response time as a function of shape, color, complexity (number of
vertices), and concavity (percentage of concave vertices). Error bars are �1 SEM.
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considerations as well. A much larger difference in contour length
was present as a function of number of vertices. On average, the
lengths were 1,102, 1,266, and 1,511 for 10, 20, and 30 vertices,
respectively. This difference produced slower responses to the
stimuli with longer perimeters, the opposite pattern when com-
pared with the faster responses to smooth contours. We referred to
the factor number of vertices as complexity. There is an interesting
pattern, with slower responses to more complex stimuli (in terms
of contour length and number of vertices) but faster responses to
more complex stimuli (in terms of smooth change of orientation of
the contour).1

Observers responded faster when they had to produce a response
to smooth shapes. There were other factors, such as complexity
and color, that influenced response time; however, the effect of
shape did not interact with any other factor. The overall difference
was of 50 ms in favor of the smooth contours. Speed of responses
did not correlate with length of the contour; it did increase with
complexity, as defined by number of vertices, whereas it decreased
with smoothness. This apparent paradox may be understood in
terms of the task. With an increase in number of vertices, angular
and smooth stimuli become more similar because smooth stimuli
become more and more pointy. Therefore, the discrimination task
was harder and response time longer. Importantly, this phenome-
non can explain the effect of number of vertices, but it cannot
explain why responses were faster to smooth stimuli.

Post Hoc Analysis of Image Complexity

We have stated that smooth stimuli are more complex. There-
fore, we decided to add an analysis of image complexity. We
calculated two additional measures of objective image complexity
for all stimuli. The first measure (termed gradient) is based on
luminance gradient images that are used to calculate histograms of
oriented gradients (Dalal & Triggs, 2005). The gradients are cal-
culated using the MATLAB function gradient. The mean of all
gradient strengths in the gradient image is used as a measure of the
objective complexity of each image. Low values indicate small
changes in luminance gradients, and high mean values indicate
large changes. For a detailed explanation of how this measure is
calculated, see Braun, Amirshahi, Denzler, and Redies (2013,
Appendix). The second measure is edge density and represents the
sum of all Gabor filter responses in an image, using a bank of 24
oriented Gabor filters, as described in more detail in Redies,
Brachmann, and Wagemans (2017). The higher the edge density,
the more complex the image.

The graphs in Figure 4 show mean values for the two objective
complexity measures as a function of two different factors of
Experiment 1 (number of vertices and shape), and the scatterplots
show how complexity relates to reaction time. The total number of
trials was 13,104, but because each observer only responded to one
category at a time, we have response time for half of this total (n �
6,552).

It is clear that both measures of complexity strongly depend on
the number of vertices. In addition, independent of number of
vertices, Figure 4 also shows that smooth stimuli were more
complex than angular stimuli. The two scatterplots show that
response time increases with objective complexity. This result is
not surprising, as we had already seen that response time increases
with number of vertices.

Next, we used a regression model to test the contribution of
shape (angular vs. smooth) and objective complexity. As gradient
and edge density were highly correlated for our stimuli (� � 0.99),
we selected only one of them (gradient) for the regression. Gra-
dient was centered by subtraction of the mean. We used linear
mixed-effects models (lme4 package; Bates, Mächler, Bolker, &
Walker, 2015) in R Version 3.3.3. The model included Shape and
Gradient as factorial fixed effects. Participants was a random
factor, and in addition, we included Number of Vertices as a
second random factor. This is because the shapes with 10, 20, and
30 vertices are different types of objects, and response time varies
with this factor. However, we are interested in evaluating the role
of shape and complexity, and we are not interested at this stage in
the role of number of vertices. The effects of the fixed predictors
were tested via likelihood ratio (�2) comparisons through the
sequential decomposition of the model.

There was a significant negative effect of Shape (	 � 
0.02),
�2(1) � 79.24, p � .001, but no significant effect of Gradient (	 �
0.59), �2(1) � 3.10, p � .08, and no interaction (	 � 0.28),
�2(1) � 1.34, p � .25. This mixed-effects model accounted for
0.9% of the variance without the random effect structure and
32.6% when it was included (R2m � 0.009, R2c � 0.326). This
analysis confirms that the role of shape is a strong predictor of
response time, even in comparison to objective measures of com-
plexity.

Experiment 2a: Shape Difference Task

In Experiment 1, local information about straight lines or cur-
vature were sufficient to perform the task. For example, people
could look at one edge of the shape and judge whether it was a
straight line or not. A straight line has always the same type of
curvature (zero curvature), whereas a curved contour can vary
greatly in terms of curvature. In Experiment 2, we wanted a task in
which observers had to process the shapes and respond to a global
shape property. We used a task in which two angular or two
smooth shapes were presented side by side and observers judged
whether the two were identical or not. Therefore, local information
is not sufficient, as two shapes may have local similarities but are
the same only if they match in every aspect of the contour. Straight
edges, for example, would be present in both shapes for the
angular condition. Note also that, unlike Experiment 1, the type of
shape (angular or smooth) was irrelevant to the task.

Method

Participants. Twenty-six participants took part in Experiment
2 (M age � 23 years; one left-handed; 12 females). All participants
had normal or corrected-to-normal vision and provided a written
consent for taking part. The experiment was approved by the
Ethics Committee of the University of Liverpool and was con-
ducted in accordance with the Declaration of Helsinki (2008).

Stimuli and apparatus. The stimuli were generated using a
procedure similar to that in Experiment 1, and the apparatus was
the same. The underlying circle for the generation of the polygon

1 We also repeated the ANOVA on response time, adding perimeter as
a covariate. The main results, in particular, the main effect of shape, did not
change (confirming faster responses to smooth shapes).
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was smaller (the radius varied between 75 and 125 pixels). Unlike
Experiment 1, the stimuli were not filled, and the number of
vertices was always 22. They were shown as black contours on a
white background. These stimuli are different from Experiment 1
because we wanted to maximize the contrast for the contour
information. Angular and smooth shapes are therefore easy to
discriminate, but this was not the task in Experiment 2.

On each trial, there was a pair of shapes presented: one to the
left and one to the right of fixation. The distance between the
centers was 320 pixels. Examples of stimuli are shown in Figure 5.
Stimuli are available for download from https://osf.io/4278q/.

Experimental design and procedure. A 2 � 2 � 2 design
was employed. The within-subjects factors were Shape (angular,
curved) and Congruency (same, different). The between-subjects

Figure 4. Average gradient and edge density as a function of shape and number of vertices. Scatterplots with
regression slopes showing the increase in response time (s) as a function of gradient and edge density. See the
online article for the color version of this figure.

Figure 5. Experiment 2a: Examples of angular and smooth stimuli. The first panel shows examples in which
the pair of shapes matches (“same”), and the second panel shows examples in which the pair did not match
(“different”).
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factor was Hand Mapping: Half of the participants used the right
hand to respond “same” and the left hand to respond “different,”
and the other half of the participants did the reverse. No pair of
stimuli was ever presented twice. The experiment lasted approxi-
mately 30 min.

The experiment began with the instructions followed by the
practice session (six trials). Each trial started with a fixation cross
at the center of a white background. This fixation lasted randomly
between 600 and 1,600 ms. After that, the pair of shapes appeared
and remained on screen until response. In total, there were 180
experimental trials. Other aspects of the procedure were the same
as in Experiment 1.

Analysis. A mixed ANOVA was performed with Shape (an-
gular, curved) and Congruency (same, different) as within-subjects
factors and Key Mapping (mapping of right and left hands to the
same/different responses) as a between-subjects factor.

The dependent variable was the response time. Only correct
responses were analyzed in the ANOVA. Errors were 4% of the
total. In addition, responses above 4,381 ms were removed (two
standard deviations above the mean, 1.8% of the trials). After this
process, the average response time was 1,388 ms and the standard
deviation was 760 ms. In addition to the analysis on response time,
we also used a signal detection theory approach and compared d=
and c= measures for sensitivity and bias (Macmillan & Creelman,
2004).

Results and Discussion

The results are illustrated in Figure 6. The effect of shape in the
ANOVA was marginal, F(1, 24) � 3.93, p � .059, �p

2 � 0.14.
There was an interaction between shape and congruency, F(1,
24) � 5.58, p � .027, �p

2 � 0.19. Finally, there was a three-way

interaction between shape, congruency, and key mapping, F(1,
24) � 6.12, p � .021, �p

2 � 0.20. The pattern for response time can
be compared with the pattern for errors in Figure 6. Error rate was
low, and there was no evidence of a speed–accuracy trade-off.

The d= values were 3.84 for angular shapes and 2.88 for smooth
shapes. The c= was used as a measure of bias and the values were
0.015 for angular shapes and 
0.004 for smooth shapes. Positive
values indicate a bias to respond different and negative values a
bias to respond same. A t test analysis did not confirm any signifi-
cant difference between the two shapes in terms of sensitivity,
t(25) � 
0.70, p � .490, or bias, t(25) � 1.11, p � .278. This
analysis found mean differences that were consistent with the
analysis of response time, but it was not conclusive, as level of
performance was high, and therefore d= values suffered from a
ceiling effect.

Let us compare the results of Experiment 2a with those of
Experiment 1. Responses to shapes with smooth contours were
only slightly faster than responses to angular contours (by 26 ms).
We have to consider this together with the interaction between
shape and congruency. A tendency to respond faster when pro-
ducing a “same” rather than a “different” response was associated
with the smooth contours. This can be seen as consistent with the
results from Experiment 1, because in that study, participants had
to produce a positive response (i.e., produce a key press) to either
of the two shapes, and they were faster for the smooth contours. It
may be easier to produce a positive response to smooth contours,
and a negative response to angular contours, in agreement with the
results from the measure of approach/avoidance (Palumbo et al.,
2015).

The three-way interaction complicates the pattern. Perhaps not
surprisingly, there was a tendency to respond more quickly if the

Figure 6. Results of Experiment 2a. On the left, performance is plotted as a function of shape (above: response
time; below: errors). On the right, the graph shows the three-way interaction between Shape, Congruency, and
Key Mapping. Mapping right means the response “same” was given with the right hand. Mapping left means the
response “same” was given with the left hand. Error bars are � 1 SEM. See the online article for the color
version of this figure.
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“same” response is associated with the right hand (by 211 ms),
although key mapping, a between-subjects variable, was not sig-
nificant as a main effect. But this role of key mapping manifested
itself in terms of making the other differences less pronounced for
the group of participants who responded “same” using their right
hand.

Experiment 2b: Shape Difference Task

We conducted a second version of the shape matching experi-
ment. There were two main modifications. The main change was
about orientation: When a pair of identical shapes was presented,
one was always rotated 180° compared with the other. We rea-
soned that this forced the observer to a more global processing of
the shape, perhaps by means of a mental rotation and a comparison
of the structural description of the whole object. We also predicted
that the task would be harder and the response time would be
longer.

The second change was about the match of the stimuli in terms
of perimeter length. In Experiments 1 and 2a, we used stimuli with
similar area and perimeters, but because of how smooth shapes
were generated, they had a slightly longer perimeter compared
with angular stimuli. In Experiment 2b, we decided to match
perimeter length precisely. Therefore, we prepared stimuli so that
each angular shape had a corresponding smooth shape with the
same total perimeter. In all other respects, Experiment 2b was the
same as Experiment 2a.

Method

Participants. Twenty-six participants took part in Experiment
2b (M age � 28 years; one left-handed; 19 females). All partici-
pants had normal or corrected-to-normal vision and provided a
written consent for taking part. The experiment was approved by
the Ethics Committee of the University of Liverpool and was
conducted in accordance with the Declaration of Helsinki (2008).

Stimuli and apparatus. The stimuli were generated using a
procedure similar to that in Experiment 2a, and the apparatus was
the same. On each trial there was a pair of shapes presented, one
to the left and one to the right of fixation. For each pair of angular
shapes in one trial, the total length of the perimeter was matched
to a pair of smooth shapes in another trial. On average, total
perimeter was 742 pixels (for angular and for smooth shapes, and
also for same and different trials). The distance between the
centers was 320 pixels. Examples of stimuli are shown in Figure 7.
Stimuli are available for download from: https://osf.io/4278q/.

Experimental design and procedure. A 2 � 2 � 2 design
was employed. The within-subjects factors were Shape (angular,
curved) and Congruency (same, different). The between-subjects
factor was Hand Mapping: Half of the participants used the right
hand to respond “same” and the left hand to respond “different,”
and the other half of the participants did the reverse. No pair of
stimuli was ever presented twice. The experiment lasted approxi-
mately 30 min. The procedure was the same as in Experiment 2a.

Analysis. A mixed ANOVA was performed with Shape (an-
gular, curved) and Congruency (same, different) as within-subjects
factors and Key Mapping (mapping of right and left hands to the
same/different responses) as a between-subjects factor.

The dependent variable was the response time. Only correct
responses were analyzed in the ANOVA. Errors were 10.4% of the
total. In addition, responses above 5,382 ms were removed (2 SDs
above the mean, 4% of the trials). After this process, the average
response time was 1,999 ms and the standard deviation was 1,013
ms. In addition to the analysis on response time, we also used a
signal detection theory approach and compared d= and c= measures
for sensitivity and bias.

Results and Discussion

The results are illustrated in Figure 8. There was a significant
effect of shape, F(1, 24) � 48.38, p � .001, �p

2 � 0.67, an effect
of congruency, F(1, 24) � 9.51, p � .005, �p

2 � 0.28, and a

Figure 7. Experiment 2b: Examples of angular and smooth stimuli. The first panel shows examples in which
the pair of shapes matches (“same”), and the second panel shows examples in which the pair did not match
(“different”). Note the difference in orientation (180°) in the matching pair. Perimeter length was matched so that
each smooth subset had a matched angular subset. In these examples, the perimeter is 742 pixels. In the
experiment, values ranged between 647 and 814 pixels.
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two-way interaction between shape and key mapping, F(1, 24) �
6.21, p � .020, �p

2 � 0.21. The pattern for response time can be
compared with the pattern for errors in Figure 8. Error rate was
higher than in Experiment 2a, but there was no evidence of a
speed–accuracy trade-off.

The d= values were 2.67 for angular shapes and 2.85 for smooth
shapes. The c= was used as a measure of bias and the values were
0.001 for angular shapes and 0.020 for smooth shapes. Positive
values indicate a bias to respond different and negative values a
bias to respond same. A t-test analysis did not confirm a significant
difference between the two shapes in terms of sensitivity,
t(25) � 
1.66, p � .10,9 or bias, t(25) � 
0.70, p � .490. As for
Experiment 2a, there were some limitations due to ceiling effects
but not to the same extent.

The results of Experiment 2b were in the same direction, but
more clear-cut, than those from Experiment 2a. The task was much
harder, and observers were forced to perform a more global anal-
ysis of the shape because the “same” pair was presented with
different orientations. Responses to shapes with smooth contours
were faster than responses to angular contours (by 235 ms). More-
over, the tendency to respond faster when producing a “same”
rather than a “different” response in the case of smooth contours
was not significant (i.e., no significant interaction between shape
and congruency).

Experiment 3: Symmetry

In Experiments 2a and 2b, we used a task in which two shapes
had to be compared. This can be thought of as a detection of a
translated or rotated shape. In Experiment 3, we used a pair of
contours and asked observers to compare them and to detect
bilateral symmetry. The task is therefore similar to that of Exper-
iment 2, in that the global shape is relevant. Also, again consistent

with Experiment 2, the distinction between smooth and angular
was not relevant for the task. Experiment 3 is, however, different
in what type of correspondence the observer had to detect. Con-
tours could be matched under a reflection, and were therefore
symmetrical, or they could be unrelated. In addition, the contours
were closed to form a single object in one condition or they were
part of two separate objects in another condition. This factor has
been found to affect detection of symmetry in previous studies
(Baylis & Driver, 1995; Bertamini, Friedenberg, & Kubovy, 1997;
Corballis & Roldan, 1974).

Method

Participants. Twenty-six participants took part in Experiment
3 (M age � 29.4 years; one left-handed; 14 females). All partic-
ipants had normal or corrected-to-normal vision and provided a
written consent for taking part. The experiment was approved by
the Ethics Committee of the University of Liverpool and was
conducted in accordance with the Declaration of Helsinki (2008).

Stimuli and apparatus. The stimuli were generated using a
procedure similar to that of Experiment 1. Instead of closed
shapes, we generated pairs of vertical contours with 10 vertices.
They were shown as black contours on a white background. There
was always a context of additional straight lines. One context
joined the two contours so as to form a single vertically oriented
object; we call this the one-object condition. The other context
joined the contours to form two closed shapes with an empty space
in between the contours; we call this the two-objects condition.
Examples of stimuli are shown in Figure 9. Stimuli are available
for download from https://osf.io/4278q/.

Experimental design and procedure. A 2 � 2 � 2 design
was employed. The within-subjects factors were Shape (angular,
curved), Closure (one object, two objects), and Symmetry (sym-

Figure 8. Results of Experiment 2b. On the left, performance is plotted as a function of shape (above: response
time; below: errors). On the right, the graph shows the three-way interaction between shape, congruency, and key
mapping. Error bars are � 1 SEM. See the online article for the color version of this figure.
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metric, asymmetric). The between-subjects factor was the Key
Mapping: Half of the participants used the right hand to respond
“symmetrical” and the left hand to respond “asymmetrical,” and
the other half of the participants did the reverse. The experiment
lasted approximately 30 min.

The experiment began with the instructions followed by the
practice session (eight trials). Each trial started with a fixation
cross. This fixation lasted randomly between 500 and 1,500 ms.
After that, the stimulus appeared and remained on screen until
response. In total, there were 176 experimental trials. Other aspects
of the procedure were the same as in Experiment 1.

Analysis. A mixed ANOVA was performed with Shape (an-
gular, curved), Closure (one object, two objects), and Symmetry
(symmetric, asymmetric) as within-subjects factors and Key Map-
ping (mapping of right and left hands to the responses) as a
between-subjects factor.

The dependent variable was the response time. Only correct
responses were analyzed in the ANOVA. Errors were 4.7% of the
total. Responses above 2,306 ms were removed (2 SDs above the
mean, 3.5% of the trials). After this process, the average was 839
ms and the standard deviation was 347 ms. In addition to the
analysis on response time, we also used a signal detection theory
approach and compared d= and c=measures for sensitivity and bias.

Results and Discussion

The mean response times are illustrated in Figure 10. The
ANOVA confirmed a significant main effect of shape, F(1, 24) �
12.74, p � .002, �p

2 � 0.35 (responses were faster to smooth
contours) and a significant effect of closure, F(1, 24) � 12.58, p �
.002, �p

2 � 0.34 (responses were faster for one object). There was
an interaction between shape and symmetry, F(1, 24) � 6.05, p �
.02, �p

2 � 0.20, and an interaction between shape, symmetry, and
key mapping, F(1, 24) � 8.22, p � .008, �p

2 � 0.25. We did not

find the expected interaction between symmetry and closure, F(1,
24) � 1.60, p � .218, although in terms of mean response time, the
difference is in the predicted direction (a relative advantage for
symmetry within a single object).

The pattern of results is shown in Figure 10. In relative terms,
people are fast when they make positive responses (“same” or
“symmetry”) to the smooth shapes and negative responses (“dif-
ferent” or “asymmetrical”) to the angular shapes. The pattern for
response time can be compared with the pattern for errors. The
error rate was low, and there was no evidence of a speed–accuracy
trade-off.

The d= values were 3.39 for angular shapes and 3.50 for smooth
shapes. The c= was used as a measure of bias and the values were
0.034 for angular shapes and 0.002 for smooth shapes. Negative
values indicate a bias to respond “symmetry” and positive values
a bias to respond “asymmetry.” A t-test analysis did not confirm a
significant difference between the two types in terms of sensitivity,
t(25) � 
1.91, p � .067. There was, however, a difference for the
bias, t(25) � 2.12, p � .044. As for Experiment 2, this analysis
suffered the limitation of high performance and a ceiling effect, but
it does support the conclusion that for smooth shapes, there was
more of a bias to produce a positive response (in this case for
“symmetry”) than for angular shapes.

General Discussion

We have compared abstract shapes with sharp angles (irregular
polygons) and similar shapes with smooth contours. In the first
study, we tested a speeded response to the onset of the stimulus
from a specific category (angular or smooth). Observers could
produce the response quickly (overall average response time was
692 ms). Responses to shapes with smooth contours were faster
compared with angular shapes (by 50 ms).

Figure 9. Experiment 3: Examples of the stimuli: On the top, angular stimuli, and on the bottom, smooth
stimuli. The set of four stimuli on the left show the one-object condition, and the four stimuli on the right show
the two-objects condition.
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In the second study, two shapes had to be compared to decide
whether they were identical or different. The shapes were outlines
and each pair had either both angular or both smooth contours. The
task was harder and required an analysis of the whole shape, in
particular in Experiment 2b, in which shapes were both translated
and rotated (average response time was 1,388 ms in Experiment 2a
and 1,999 ms in Experiment 2b). The task in Experiment 2a was
easy and probably led to ceiling effects. Moreover, as the match
was direct (side by side), it did not force a global processing of the
shapes as much as Experiment 2b. In Experiment 2a, there was
only a trend for participants to be faster when responding to shapes
with smooth contours. There was also an interaction between the
match between the shapes and the type of shape. Specifically,
participants were relatively faster to respond “same” for smooth
contours and to respond “different” for angular contours. The
advantage for smooth shapes, on the other hand, was clear in
Experiment 2b: Responses to smooth shapes were faster by 235
ms.

In the final experiment (Experiment 3), observers had to report
whether a pair of contours were bilaterally symmetrical or not.
This task was slower than the task of Experiment 1 but faster than
the task of Experiments 2a and 2b (average response time was 933
ms). Again, responses were faster for smooth contours than for
angular contours (by 30 ms). There was also a bias to respond
“symmetry,” which was stronger for smooth shapes compared with
angular shapes. Note that in Experiments 2a, 2b, and 3, the
difference in shape (angular or smooth) was completely task
irrelevant. Observers were making a judgment about an orthogonal
dimension.

How can we explain faster responses to smooth contours con-
sistently across three different tasks? Given the way the stimuli
were generated, the two conditions (angular or smooth) were
comparable in terms of overall size (with a slightly larger area for

smooth shapes) and in terms of number of convexities and con-
cavities. Differences in perimeter length were small, and in Ex-
periment 2b, the stimuli were prepared so as to match perimeter
length exactly (using pairs of smooth and angular stimuli matched
on this variable). When we varied the number of vertices in
Experiment 1, shapes with more vertices (which also appear more
angular) were responded to more slowly. It is important to note
that the smooth shapes are objectively more complex, in particular
in terms of edge orientation along the contour. In a delayed
matching task with abstract shapes, Kayaert and Wagemans (2009)
found that responses were slower and less accurate when com-
plexity increased. However, smooth contours are not judged to be
more complex. On the contrary, they are subjectively judged as
less complex (Bertamini et al., 2016, Experiment 1). This may be
because a smooth contour is seen as a single line; by contrast, a
polygon is segmented in a number of individual lines and there-
fore, perhaps, individual parts.

We have argued that angular shapes, and polygons in particular,
are simpler than our smoothed polygons. There are many ways to
operationalize complexity, and there is a large literature on com-
plexity including the analysis of statistical image properties. The
concept of complexity is related to other aspects like fractal
dimension and symmetry (Graham & Redies, 2010). The objective
complexity of the smooth stimuli was documented for the stimuli
in Experiment 1 in an additional post hoc analysis. This was based
on the computation of two objective measures of complexity,
referred to as complexity and edge density. The type of shape was
the best predictor of response time also in the context of complex-
ity as a second predictor.

The results show faster responses to smooth shapes. This finding
is interesting, not related to objective complexity, and likely re-
lated to the subjective simplicity of these shapes and to the fact that
people have a preference for smooth shapes. Previous findings in

Figure 10. Results of Experiment 3. On the left, performance is plotted as a function of shape (above: response
time; below: errors). On the right, the graph shows the two-way interaction between shape and symmetry. Error
bars are � 1 SEM. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

12 BERTAMINI, PALUMBO, AND REDIES

O C
N O
L L
I O
N R
E

AQ: 22

AQ: 23

tapraid5/zfn-xhp/zfn-xhp/zfn99918/zfn3884d18z xppws S�1 5/22/19 14:09 Art: 2019-0877
APA NLM

marcob
Sticky Note
Please add to the references:
Kayaert, G., & Wagemans, J. (2009). Delayed shape matching benefits from simplicity and symmetry. Vision research, 49(7), 708-717.

marcob
Cross-Out

marcob
Inserted Text
response time; this was the case even in 



the literature were mixed, and they come from studies that did not
set out to directly test the question of speed of processing as a
function of contour type. In Bar and Neta (2006), participants were
asked to give a fast preference response (like/dislike) after a brief
presentation of images (84 ms). There was a difference in prefer-
ence but no significant difference in response times. For real
objects and for meaningless patterns, the difference between
smooth and angular conditions was very small (5 ms and 1 ms,
respectively). In Experiment 4 in Bertamini et al. (2016), there was
an overall effect of shape on response time, but this was modulated
by type of response. There was no difference between angular and
smooth shapes for approach responses, and slower responses to
smooth shapes for avoidance responses. In other words, there was
difficulty in producing a negative (avoidance) response to smooth
stimuli. Nevertheless, this difference raises questions about how to
compare different tasks, and in some conditions, responses may be
slower to smooth stimuli. Note that the approach/avoidance task
required an explicit evaluation of contour type: Observers had to
first decide whether the shape was smooth or angular, and then
produce different responses. Therefore, this evidence supports our
choice of using tasks in which shape was not task relevant. Next,
we provide some context and speculation about the origin of this
advantage.

In the introduction, we mentioned that the principles of grouping
introduced by Gestalt psychologists (for a review, see Wagemans
et al., 2012) include proximity and good continuation. Contour
integration can be studied by manipulating local orientation of a
set of elements. When these elements are aligned along a smooth
path (collinearity), sensitivity in a contour detection task increases
(Field et al., 1993). The stimuli typically used in these studies have
become known as snakes (similar local orientation) and ladders
(orthogonal local orientation; Bex et al., 2001). Our stimuli are
fundamentally different, but it is relevant to note that snakes are
related to smooth contours, in that along the contour, changes in
orientation are always small. If it is easier to integrate contours of
this type, this advantage may also lead to faster responses and to
a perception of these shapes as less complex. However, angular
shapes have good continuity for most of their length. The discon-
tinuity is localized at the vertices. If these local discontinuities are
the key difference, then any prediction based on contour integra-
tion should be mainly a function of number of vertices. Our
experiments did not test this factor directly. When number of
vertices was manipulated (Experiment 1), there was no overall
interaction between type of shape and number of vertices. More-
over, for preference tasks, number of vertices does not seem to be
important. For example, smooth curves (parabola) are preferred to
straight lines with or without vertices (Bertamini et al., 2016,
Experiment 3). A similar argument can be made about the hypoth-
esis that segmentation of the shape into separate lines is an im-
portant factor. If it is true that polygons are perceived as composite
objects, this could explain the fact that they are judged as more
complex and, perhaps, that responses are slower. This hypothesis
predicts a difference in behavior as a factor of number of vertices
on all tasks.

With respect to the importance of curvature in perception, it is
worth noting that curvature plays an important role in how shape
is encoded in the brain (Pasupathy & Connor, 2002), and contour
information—in particular, convexities and concavities—affects
perceived part structure (Bertamini & Wagemans, 2013; Hoffman

& Richards, 1984). In terms of experimental evidence, differences
in contour curvature affect visual search efficiency (Hulleman, te
Winkel, & Boselie, 2000; Kristjánsson & Tse, 2001), shape match-
ing (Bertamini, 2008; Garrigan & Kellman, 2011), shape afteref-
fects (Gheorghiu & Kingdom, 2008; Hancock & Peirce, 2008),
target detection (Barenholtz & Feldman, 2003), and perceived part
structure (Barenholtz, Cohen, Feldman, & Singh, 2003; Bertamini
& Croucher, 2003). There are also well-known illusions in which
straight lines are perceived as curved (Hering, 1861; Oppel, 1855)
or curved lines are perceived as straight (Bertamini & Kitaoka,
2018; Takahashi, 2017).

A more fundamental point has to do with the visual environ-
ment. Polygons are simple in terms of geometry and in terms of
how they can be drawn on paper or by computers; however, they
are very artificial and unnatural. If contours are projected outlines
of surface occlusion, and, in particular, surface self-occlusion, then
smooth contours are more common and natural (for smooth sur-
faces; Hoffman & Richards, 1984; Koenderink, 1984, 1990). By
analyzing images of the natural environment in terms of local edge
orientations Sigman, Cecchi, Gilbert, and Magnasco (2001) found
long-range correlations. There was a pattern of cocircularity for
orientation, and this pattern extended over the entire visual field. A
follow-up analysis by Chow, Jin, and Treves (2002) came to a
slightly different conclusion: The data may simply “indicate that
there are many closed smooth contours in natural visual scenes”
(p. ●●●). The important point is that, as Sigman et al. suggested,
properties of the visual system that integrate edge information
match regularities in the environment.

The relative advantage of the visual system to process smooth
contours may therefore be seen as a result of the statistics of the
natural environment in which the system has evolved. Future work
needs to focus on natural statistics. In turn, this analysis may also
shed light over the robust preference that human observers display
for smooth contours.
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