1	Experimental ev	vidence for sust	ained carbon s	equestration in	fire-managed,	peat

2	moorlands
3	R. H. Marrs ¹ , E-L Marsland ¹ , R. Lingard ^{1*} , P. G. Appleby ² , G. T. Piliposyan ² , R. J. Rose ³ , J.
4	O'Reilly ⁴ , G. Milligan ¹ , K. A. Allen ¹ , J.G. Alday ¹ , V. Santana ¹ , H. Lee ¹ , K. Halsall ¹ , R.C.
5	Chiverrell ¹
6	¹ School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK;
7	Environmental Radioactivity Research Centre, Department of Mathematical Sciences,
8	University of Liverpool, Liverpool L69 7ZL UK; ³ Centre for Ecology & Hydrology, Bailrigg,
9	Lancaster LA1 4AP UK; ⁴ Ptyxis Ecology, Lambley, Northumberland CA8 7LL, UK.
10	
11	Peat moorlands are important habitats and in the boreal region, where they store ca. 30%
12	of the global soil C. Prescribed burning on peat is a very contentious management
13	strategy widely-linked with loss of carbon. Here, we quantify the effects of prescribed
14	burning for lightly-managed boreal moorlands and show the impacts on peat and C
15	accumulation rates are not as bad as is widely thought. We used stratigraphical
16	techniques within an unique replicated, ecological experiment with known burn
17	frequencies to quantify peat and C accumulation rates (0 managed burns since ca. 1923, 1-
18	burn, 3-burns, 6-burns). Accumulation rates were typical of moorlands elsewhere, and
19	were only reduced significantly in the 6-burn treatment. However, impacts intensified
20	gradually with burn frequency; each additional burn reduced the accumulation rates by
21	4.9 g m ⁻² yr ⁻¹ (peat) and 1.9 g C cm ⁻² yr ⁻¹ but not preventing accumulation. Species diversity
22	and the abundance of peat-forming species also increased with burn frequency. Our data
23	challenge widely-held perceptions that a move to zero burning is essential for peat

24	growth, and show that appropriate prescribed burning can both mitigate wildfire risk in a
25	warmer world and produce relatively fast peat growth and sustained C sequestration.
26	Peatlands are important habitats in many parts of the world covering ca. 3.8 x 10 ⁶ km ² ,
27	concentrated in the boreal region ¹ , storing about 30% of the global soil C ² , estimated at
28	500±100 Gt of C ³ . Peatlands occur where organic matter decomposition is prevented by low
29	temperature and high rainfall ⁴ . As they are composed of dead plant material they are
30	flammable ⁵ , and under suitable conditions, are susceptible to fire and particularly wildfire.
31	Fire is a natural phenomenon in many boreal areas 6 where large areas (0.03-0.24 x 10^{6} km 2
32	yr ⁻¹) are burned annually ⁷⁻⁹ , releasing an estimated 106-209 Tg C yr ⁻¹ , which has important
33	repercussions for the global C cycle ³ . In many peatlands the natural fire return interval
34	varies considerably from 75-425 ¹⁰ to between 400 -1790 years ¹¹ , but, in some regions for
35	example the Alaskan interior, there have been recent increases in wildfire of 2.4% per year
36	between 1943-2012 ⁶ . As prescribed fire is often used to suppress wildfire ^{6,12-13} , so better
37	understanding of the relative risks and impacts of prescribed fire and wildfire is of global
38	interest.
39	In many parts of the world, peatlands are left unmanaged, but large areas are also
40	managed lightly through grazing and prescribed burning. In Norway, for example, prescribed
41	fire has been shown to be a key part of heathland management for at least 6,000 years ¹⁴ ,
42	which has produced a fire-adapted flora ¹⁵ . In the second half of the twentieth-century fire
43	exclusion policies have been adopted in many places in western and Baltic Europe, and
44	there have been calls to reinstate traditional burning practices to restore the functional role
45	of fire in these areas ¹⁶ . In Canada, its use is advocated for both enhancing forest
46	understorey diversity and forest productivity ¹⁰ . In the UK, use of prescribed burning is very
47	contentious with heated debate on its use for moorland vegetation on peat ¹⁷⁻¹⁹ as it is

widely-linked to ecosystem degradation, loss of C and negative impacts on water quality¹⁸⁻ 48 ²³. Much of the concern over prescribed burning on peat is a belief that this practice 49 50 changes the vegetation type and prevents peat formation; e.g. in the UK a shift from plant 51 communities dominated by cotton-grass *Eriophorum*/Sphagnum to one dominated by the shrub Calluna vulgaris. However, where prescribed burning is not used the build-up of 52 shrubs and trees can provide a large, fire-prone fuel load which puts the peatland at greater 53 risk from wildfire¹¹⁻¹³. Wildfires can be much more damaging than prescribed fires²²⁻²³. 54 55 Moorland managers are therefore damned if s(he) burns and damned if s(he) does not. 56 There is, therefore, an urgent need for quantitative evidence about the use of prescribed burning on peat growth rates. Here, we quantify peat and C accumulation rates within an 57 experiment with a known managed burning history 58

59

60 Peat, a recent historic record

61 Peat is a vertically-growing structure, increasing in thickness with time and laying down a stratigraphy that preserves evidence of change in local and regional vegetation^{4,24}, fire 62 frequency (charcoal)²⁴⁻²⁵, hydroclimate²⁶ and C accumulation²⁷. Usually, these sub-fossil 63 records are interrogated over long-time scales (1,000 to 10,000 years). However, the 64 generation of relatively accurate age-depth profiles in peat over the last 150 years²⁸ has 65 been made possible by linking stratigraphical records of atmospheric pollutant deposition²⁸ 66 (stable Pb, ²¹⁴Am, ¹³⁷Cs and Spherical Carbonaceous Particles) calibrated against absolute 67 geochronologies derived from radiometric dating techniques (²¹⁰Pb). Here, we have applied 68 this integrative approach to create age-depth profiles for peat sequences within the unique, 69 long-term, manipulative, experiment at Moor House National Nature Reserve in the north of 70 71 England. This experiment is set up on a *C. vulgaris*-dominated, ombrotrophic (rain-fed)

72	peatland. We tested one of the major assumptions underlying studies on the effect of
73	prescribed burning on peat and C accumulation patterns: that burning or burning frequency
74	prevents or reduces peat and C accumulation. Multiple, shallow peat profiles (n=32; <0.5m
75	depth) were sampled in four different managed burn treatments (of 0, 1, 3 and 6 burns
76	since ca. 1923 ²⁹), each replicated in four blocks (Supplementary Fig. S1). Two additional
77	master peat profiles were collected to determine chronological markers and age-depth
78	profiles using the atmospheric stable Pb down-core record (measured by X-ray Florescence,
79	XRF). Within these master cores, independent age control was secured by 210 Pb, 137 Cs and
80	²⁴¹ Am analysis using direct gamma assay producing ²¹⁰ Pb chronologies corroborated in part
81	by radionuclide fall-out (¹³⁷ Cs and ²⁴¹ Am) markers ³⁰ for 1963 and 1986. Our age-depth
82	models (Supplementary Fig. S3) have chronological uncertainties of $\pm 1-5$ yr (1980–2014) and
83	±5-13 yr (1900-1970) ²⁸ . Atmospheric stable Pb (Extended Data Fig. 2) profiles were then
84	measured for the 32 cores by XRF. The two reliable atmospheric pollutant Pb markers at $^{\sim}$
85	1876 and 1963 were discerned in all 32-peat profiles and used to calculate dry peat and C
86	mass accumulation rates for each profile for the two periods within the age-depth profile
87	(1876-1963 and 1963-2016). The measured peat accumulation rates are net ones,
88	integrating the effects of damage to the peat and subsequent regrowth
89	
90	Impact of increasing burning frequency on peat and C accumulation
91	The measured results of mass and C accumulation rates (1963-2016) for the 0-burn
92	treatment were 124.4 \pm 8.04 g peat m $^{-2}$ yr $^{-1}$ and 48 \pm 3.3 g C m $^{-2}$ yr $^{-1}$ respectively. The C
93	accumulation rates are in the same order of magnitude as reported literature values; 24.1 g

- $\,$ C m⁻² yr⁻¹ as a long-term average for northern peatlands, and between 18 and 206.2 g C m⁻²
- yr⁻¹ from a range of UK peatlands sites³¹⁻³⁶. Moreover, our values are very close to the

96 average predicted value of 56 g C m⁻² yr (range (20 –91) derived from the entire catchment 97 in which the Moor House managed burn experiment is situated³⁷. Our measurements for 98 1963-2016 were lower than those from the earlier 1876-1963 period (142.1±16.1 g peat cm² 99 yr⁻¹; 55.0±6.2 g C m⁻² yr⁻¹) but this difference was not statistically significant (peat, t=0.97, 100 P=0.38; C, t=0.99, P=0.37, df=3).

101 Prescribed burning only caused significant reductions in peat and C accumulation rates (Fig. 1a; peat $F_{3,9}$ = 5.5,0 P=0.026; C $F_{3,9}$ = 4.51, P=0.034) at the extremes between the 0-burn 102 103 and 6-burn treatments; (Tukey HSD, Mass = P<0.020; C = P<0.027). As we did not detect a 104 significant difference in vertical peat growth between burning treatments (mean $0.158 \pm$ 0.005 cm yr⁻², n=32, range =0.116-0.202), the observed changes in peat mass must reflect a 105 106 changing peat density. The different burning treatments reflect an increasing number of 107 burns, which can be described by a linear relationship (P<0.01, Fig. 1b), essentially for each additional burn the accumulation rates were reduced by 4.9 g m⁻² yr⁻¹ for peat and 1.9 g m⁻² 108 yr⁻¹ for C. 109

110 The burning treatments have also produced changes in biodiversity (Fig. 2). Overall 111 diversity (Shannon-Weiner Index) increased in the 3-burn and 6-burn treatment but 112 declined in the 1-burn one. C. vulgaris had greatest abundance in the 1- and 3-burn 113 treatments and lowest in 6-burn treatment, although all increased in abundance through 114 time. Sphagnum showed no significant change in 1-burn treatment but significantly 115 increased in the 3- and 6-burn treatments, with the 6-burn one having a greater overall 116 abundance. Eriophorum vaginatum showed no temporal trend but its abundance increased with increasing burning frequency. 117 118 These results debunk a number of widely-held beliefs in peatland conservation (Fig. 3).

119 First, the belief that prescribed burning prevents peat and C accumulation was not

120	supported because even after six burns, peat and C were both accumulating; the
121	accumulation rates were reduced, but not stopped. We should, however, not be
122	complacent and further monitoring is needed to better understand longer-term impacts.
123	Second, in broad terms it is usually believed that C. vulgaris-dominated communities will
124	have little peat accumulation whereas those dominated by E. vaginatum and Sphagnum will
125	be good peat accumulators ¹⁸ . Here, the opposite was found; the vegetation in the 1-burn
126	(and indeed the 0-burn reference plots) had the greatest accumulation rates yet were
127	dominated by C. vulgaris and the plots burned most frequently with the lowest peat and C
128	accumulation rates were dominated by <i>E. vaginatum</i> and had greatest Sphagnum
129	abundance (Fig. 2) ³⁸⁻³⁹ . Taken together, these results do not support the simplistic ideas
130	about peat accumulation and plant community type, and confirm that reasonable peat
131	formation (0-burn treatment = 48 g C m ⁻² yr ⁻¹) can occur under a <i>C. vulgaris</i> -dominated
132	community with lower rates under <i>E. vaginatum</i> and <i>Sphagnum</i> (6-burn treatment = 36 g C
133	m^{-2} yr ⁻¹). It is possible that the presence of the peat-producers (<i>Sphagnum</i> and <i>E</i> .
134	vaginatum) counter-balance the effects of more frequent, prescribed fires.
135	Management implications
136	At face value, these results imply that prescribed burning on moorlands should be limited in
137	order to enhance C accumulation rates and support C storage as an ecosystem service ¹⁷⁻¹⁹ .
138	Alas, it is not quite so simple (Fig. 3). Peatland conservation and its associated ecosystem
139	services cannot be separated from potential wildfire occurrence, common in upland parts of
140	the UK and elsewhere in the boreal region ^{2-3,6-11} . Wildfire is expected to be a greater
141	problem with the drier summers predicted as the climate changes ^{19,40-41} . C. vulgaris, the
142	dominant and increasingly dominant species in the 0-burn treatment, is a species with traits
143	that respond positively to fire; igniting easily especially where there is a large proportion of

144	dead material ⁵ , as is the case in old-growth stands, regenerating quickly after prescribed
145	burning ⁴² with seed germination enhanced by smoke ⁴³ . However, under wildfire the entire
146	plant can be killed and surface peat damaged severely [direct damage and C loss] ²² , and loss
147	of bryophyte regeneration potential ⁴⁴ . Thus, where <i>C. vulgaris</i> dominates over large areas,
148	as here in the 0- and 1-burn treatments, the vegetation must be susceptible to spring and
149	summer wildfires; previous wildfires have seen large areas damaged, loss of surface
150	vegetation hence loss of biotic control ⁴⁵ , with subsequent erosion of peat by heavy rainfall
151	[indirect damage, but up to 1m depth can be lost] ⁴⁶ . In such a wildfire, C losses could swamp
152	any improvement in C accumulation occurring through a reduction in prescribed burning,
153	especially if the peat burns. To estimate potential damage we estimated the total C
154	concentration in the surface vegetation (820 g C m $^{-2}$) plus the amount in the surface 1 cm
155	and 5 cm depth layers (240 and 1274 g cm ⁻² respectively, Fig. 3). If these surface
156	vegetation/peat layers were destroyed by wildfire we estimate it would take and 58 years to
157	recover this lost C and attain the status quo. These estimates have large uncertainties (95%
158	CL = 22-38 and 48-71 years for 1 cm and 5 cm peat loss respectively and an optimistic
159	scenario of an immediate ecosystem recovery and a C accumulation rate of 36 g C m $^{-2}$ yr $^{-2}$
160	(6-burn value). Clearly, if accumulation rates were further reduced by wildfire, or if there
161	was an extended lag-effect ¹¹ then these estimates would increase.
162	Managers must consider, therefore, both the impacts of prescribed burning relative to
163	wildfire risk in developing moorland conservation policies ⁴⁷ . We suggest that for this
164	moorland under current climatic conditions (Fig. 3) the 3-burn treatment (equating to a
165	burn every 20 years, with some areas left unburned) would be a pragmatic solution. This
166	approach would minimize damage to peat and C accumulation rates, maintain a mixed-
167	moorland community with maximum diversity, and a reduced fuel-load providing some

168 degree of resilience to wildfire. With different patches burned annually, a mosaic of stages 169 ranging from post-burn through to old stages would be created across the landscape. These 170 findings have implications for managed and unmanaged peatlands globally where prescribed burning is a widely-used management strategy^{9,10,16}. Indeed, for northern Europe 171 172 it has been argued that the recent reduction in the use of prescribe burning needs to be reversed¹⁶. If global warming introduces a much shorter return cycle to wildfires, then 173 174 prescribed fires could be one way of reducing the damage. The unique long-term ecological 175 experiment at Moor House National Nature Reserve shows that C sequestration and 176 biodiversity in the fire-managed NW European boreal peat moorlands is not as bad as 177 previously thought. The threshold burn cycle to optimise C sequestration and promote greater biodiversity may need to be shortened in areas with faster vegetation growth 178 rates^{12,47}, or lengthened in peatlands with slower growth, and particularly where arboreal 179 communities are part of the ecosystem²³. However, our general stratigraphical approach 180 181 offers a mechanism in modified form for identifying the optimal managed-burn frequencies 182 for other locations should changing wildfire regime require a more active management 183 strategy. The major conclusion is that prescribed burning on peatlands is not necessarily 184 damaging. Where there is evidence of the traditions use of fire on peatlands, appropriate 185 frequencies need to be derived, and even where there is no current management, 186 prescribed burning could perhaps be considered for wildfire prevention in the future, especially with the projected global increase in frequency wildfire^{48,49}. 187 188 189 **Online Content** Methods, including statements of data availability are available at 190 Nature.website.

191

192 References

193 Kaat, A., Joosten, H. Fact book for UNFCCC policies on peat carbon emissions, 26pp. 1. 194 Wetlands International, Ede (2008). 195 2. Lavoie, M., Paré, D., Bergeron Y. Impact of global change and forest management on 196 carbon sequestration in northern forested peatlands. Environ. Rev. 13, 199–240 (2005). 197 Yu, Z. Northern peatland carbon stocks and dynamics: a review. *Biogeosciences*, 9, 3. 198 4071-4085 (2012). Rydin H., Jeglum J.K. *The Biology of Peatlands*, 2nd edn. OUP, Oxford (2013). 199 4. 200 5. Santana, V.M., Marrs, R.H. Flammability properties of British heathland and moorland 201 vegetation: models for predicting fire ignition and spread. J. Environ. Manage., 129, 88-202 96 (2014). 203 6. Kasischke, E.S., French, Nancy H.F. Locating and estimating the areal extent of wildfires 204 in Alaskan boreal forests using multiple-season AVHRR NDVI composite data. Rem. Sens. 205 Environ., 51, 263-275 (1995). 206 Calef M.P., Varvak A., McGuire A.D., Chapin III. F.S., Reinhold K. B. Recent Changes in 7. 207 Annual Area Burned in Interior Alaska: The Impact of Fire Management. Earth 208 Interactions, 19.005 (2015). 209 8. Kasischke, E. S., E. J. Hyer, P. C. Novelli, L. P. Bruhwiler, N. H. F. French, A. I. Sukhinin, J. 210 H. Hewson, Stocks B. J. Influences of boreal fire emissions on Northern Hemisphere 211 atmospheric carbon and carbon monoxide, Global Biogeochem. Cycles, 19, GB1012 212 (2005). 213 9. Goldammer, J.G., ed. Vegetation fires and global change. Kessel Publishing House, 214 Remagen-Oberwinter, Germany (2013). 215 10. Faivre, N., Boudreault C., Renard, S., Fenton, N.J., Gauthier, S., Bergeron, Y. Prescribed 216 burning of harvested boreal black spruce forests in eastern Canada: effect on 217 understory vegetation. Can. J. For. Res., 46, 876–884 (2016). 218 11. Kuhry, P. The Role of Fire in the Development of Sphagnum-Dominated Peatlands in 219 Western Boreal Canada. J. Ecol., 82, 899-910 (1994). 220 12. Allen, K.A., Harris, M.P.K., Marrs, R.H. Matrix modelling of prescribed-burning in Calluna 221 vulgaris-dominated moorland: short burning rotations minimise carbon loss at 222 increased wildfire frequencies. J. Appld Ecol., 50, 614-624, (2013). 223 13. Alday, J.G., Santana, V.M., Lee, H. Allen, K., Marrs, R.H. Above-ground biomass 224 accumulation patterns in moorlands after prescribed burning and low-intensity grazing. 225 Persp. Pl. Ecol., Evol. Syst, 17, 388-396 (2015). 226 14. Kaland, P.E. in Anthropogenic indicators in pollen diagrams (ed, Behre, K.E.) 19-36. 227 Balkema, Rotterdam (1978). 228 15. Vandvik, V., Töpper, J. P., Cook, Z., Daws, M.I. Heegaard, E., Måren, I.E. Velle L.G. 229 Management-driven evolution in a domesticated ecosystem. Biol. Lett. 10, 20131082 230 (2014).

231 232	16.	Goldammer, J.G., Bruce, M. The use of prescribed fire in the land management of western and Baltic Europe. <i>Intnl For. Fire News</i> , 30 , 2-13 (2004).
233	17.	Douglas, D.J.T., Buchanan, G.M., Thompson, P., Amar, A., Fielding, D.A., Redpath S.M.,
234		Wilson J D. Vegetation burning for game management in the UK uplands is increasing
235		and overlaps spatially with soil carbon and protected areas. <i>Biol. Conserv.</i> , 191 , 243–250
236		(2015).
237	18.	Bain, C.G., Bonn, A., Stoneman, R., Chapman, S., Coupar, A., Evans, M., Gearey, B.,
238		Howat, M., Joosten, H., Keenleyside, C., Labadz, J., Lindsay, R., Littlewood, N., Lunt, P.,
239		Miller, C.J., Moxey, A., Orr, H., Reed, M., Smith, P., Swales, V., Thompson, D.B.A.,
240		Thompson, P.S., Van de Noort, R., Wilson, J.D., Worrall, F. IUCN UK Commission of
241		Inquiry on Peatlands. IUCN UK Peatland Programme, Edinburgh (2011).
242	19.	Davies, G.M., Kettridge, N., Stoof, C.R., Gray, A., Ascoli D., Fernandes, P,M., Marrs, R.,
243		Allen, K.A., Doerr, S.H., Clay, G.D., McMorrow , J. Vandvik V. The role of fire in U.K.
244		peatland and moorland management; the need for informed, unbiased debate.
245		Phil.Trans Roy.Soc. B, 371 , 20160434 (2016).
246	20.	Yallop, A.R., Clutterbuck, B. Land management as a factor controlling dissolved
247		organic carbon release from upland peat soils. 1: Spatial variation in DOC
248		productivity. Sci.Tot. Environ., 407 , 3803-3813 (2009).
249	21.	Clymo, R. S., Turunen J., Tolonen, K. Carbon accumulation in peatland. <i>Oikos</i> , 81 , 368-
250		388 (1998).
251	22.	Maltby, E., Legg, C.J., Proctor, M.C.F. The ecology of severe moorland fire on the North
252		York Moors: effects of the 1976 fires, and subsequent surface and vegetation
253		development. J. Ecol., 78 , 490–518 (1990).
254	23.	Davies, G.M., Gray, A., Rein, G. Legg CJ. Peat consumption and carbon loss due to
255		smouldering wildfire in a temperate peatland. <i>For. Ecol. & Manage.</i> , 308 , 169-177.
256		<u>https://doi.org/10.1016/j.foreco.2013.07.051 (</u> 2015).
257	24.	Clear, J.L., Seppa, H., Kuosmanen, N., Bradshaw, R.H.W. Holocene stand-scale
258		vegetation dynamics and fire history of an old-growth spruce forest in southern Finland.
259		Veg. Hist. Archeobot., 24 , 731–741 (2015).
260	25.	Clear, J.L., Molinari, C., Bradshaw, R.H.W. Holocene fire in Fennoscandia and Denmark.
261	•	Int. J. Wildland Fire, 23 , 781–789 (2014).
262	26.	Charman, D.J., Blundell, A., Chiverrell, R.C., Hendon, D., Langdon, P.G. Compilation of
263		non-annually resolved Holocene proxy climate records: stacked Holocene peatland
264		palaeo-water table reconstructions from northern Britain. Quaternary Sci. Rev., 25 ,
265	~ 7	336-350 (2006).
266	27.	Charman, D.J., Beilman, D.W., Blaauw, M., Booth, R.K., Brewer, S., Chambers, F.M.,
267		Christen, J.A., Gallego-Sala, A., Harrison, S.P., Hughes, P.D.M., Jackson, S.I., Korhola, A.,
268		Wauquoy, D., Mitchell, F.J.G., Prentice, I.C., van der Linden, M., De Vleeschouwer, F.,
269		Yu, Z.C., Aim, J., Bauer, I.E., Corish, Y.M.C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E.,
270		Le Roux, G., Loisel, J., Moschen, R., Nichols, J.E., Nieminen, T.M., MacDonald, G.M.,
271		Phadtare, N.R., Rausch, N., Sillasoo, U, Swindles, G.T., Tuittila, ES., Ukonmaanaho, L.,

272 Väliranta, M., van Bellen, S., van Geel, B., Vitt, D.H., Zhao, Y., Climate-related changes in 273 peatland carbon accumulation during the last millennium. *Biogeosciences*, 10, 929–944 274 (2013). 28. Appleby, P.G., Oldfield, F. The calculation of ²¹⁰Pb dates assuming a constant rate of 275 supply of unsupported ²¹⁰Pb to the sediment. *Catena*, **5**, 1-8 (1978). 276 277 29. Marrs, R.H., Rawes, M. Robinson, J.S., Poppitt, S.D. Long-term Studies of Vegetation 278 Change at Moor House NNR: Guide to Recording Methods and Database. Merlewood R & D Paper 109. Institute of Terrestrial Ecology, Grange-over-Sands (1986). 279 280 30. Renberg I., Persson M.W., Emteryd O. Preindustrial atmospheric lead contamination 281 detected in Swedish lake-sediments. Nature, 368, 23–326 (1994). 282 31. Clymo, R.S. A model for peat growth, in Production ecology of British Moors and 283 Montane Grasslands (eds, Heal O.W., Perkins, D.F.) 185-223. Springer-Verlag, Berlin 284 (1978). 285 32. Farmer. J.G., MacKenzie, A.B., Sugden, C.L., Edgar, P.J. & Eades, L.J. A comparison of the 286 historical lead pollution recorded in peat and freshwater lake sediments from central 287 Scotland. Water, Air, Soil Poll., 100, 253-270 (1997). 288 33. Turner, J. The anthropogenic factor in vegetational history. I. Tregaron and Whixall 289 mosses. New Phytol., 63, 73-90 (1964). 290 34. Evans, M., Lindsay, J. Impact of gulley erosion on carbon sequestration in blanket 291 peatlands. Clim. Res., 45, 31-41 (2010). 292 35. Billett, M.F., Charman, D.J., Clark, J.M., Evans, C.D., Ostle, N.J., Worrall, F., Burden, A., 293 Dinsmore, K.J., Jones, T., McNamara, N.P., Parry, L. Rowson, J.G., Rose, R. Carbon 294 balance of UK peatlands: current state of knowledge and future research challenges. 295 Clim. Res., 45, 13-29 (2010). 296 36. Garnett, M.H., Ineson, P., Stevenson, A.C., Effects of burning and grazing on carbon 297 sequestration in a Pennine blanket bog, UK. Holocene, 10, 729-736 (2000). 298 37. Worrall. F., Burt, T.P., Rowson, J.G., Warburton, J., Adamson, J.K. The multi-annual 299 carbon budget of a peat-covered catchment. Sci. Tot. Environ., 407, 4084–4094 (2009). 300 38. Lee, H., Alday, J.G., Rose, R.J., O'Reilly, J., Marrs, R.H. Long-term effects of rotational 301 prescribed-burning and low-intensity sheep-grazing on blanket-bog plant communities. 302 J. Appl. Ecol., 50, 625-635 (2013). 303 39. Milligan, G., Rose, R.J., O'Reilly, J., Marrs R.H. Effects of rotational prescribed burning 304 and sheep-grazing on moorland plant communities: results from a 60-year intervention 305 experiment. Land Degr. & Dev., 29, 1397-1412 (2018). 40. Albertson, K., Aylen, J., Cavan, G., McMorrow, J. Forecasting the outbreak of moorland 306 307 wildfires in the English Peak District. J. Environ. Manage., 90, 2642-2651 (2009). 308 41. Albertson, K., Aylen, J., Cavan, G., McMorrow, J. Climate change and the future 309 occurrence of moorland wildfires in the Peak District of the UK. Clim. Res., 45, 105-118 310 (2010). 42. Gimingham, C.H. Ecology of Heathlands. Chapman & Hall, London (1972). 311

- 43. Måren, I.E., Janovsky, Z., Spindelböck, J.P., Daws, M.I., Kaland, P.E., Vandvik, V.
 Prescribed burning of northern heathlands: *Calluna vulgaris* germination cues and seedbank dynamics. *Plant Ecol.*, **207**, 245–256 (2010).
- 44. Lee, H., Alday, J. G., Rosenburgh, A., Harris M., McAllister, H. & Marrs R. H. Change in
 propagule banks during prescribed burning: a tale of two contrasting moorlands. *Biol. Conserv.*, **165**, 187-197 (2013).
- 45. Bormann, F.H., Likens, G.E. *Pattern and Processes in a Forested Ecosystem*. New York:
 Springer Verlag (1979).
- 46. Anderson, P. Fire damage on blanket mires, in *Blanket Mire Degradation: Causes, Consequences and Challenges* (eds Tallis, J.H., Meade, R., Hulme, P.D). 16–28. Macaulay
 Land Use Research Institute, Aberdeen (1997).
- 47. Santana, V.M., Alday, J.G., Lee, H., Allen, K.A., Marrs R.H. Modelling carbon emissions in
 Calluna vulgaris-dominated ecosystems when prescribed burning and wildfires interact.
 PLOS ONE, **11(11)**, e0167137 (2016).
- 48. Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D, Bilir, T.E.,
- 327 Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova R.C, Girma B., Kissel, E.S., Levy, A.N.,
- MacCracken, S., Mastrandrea, P.R., White L.L., eds. IPCC, 2014: Climate Change 2014:
- 329 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.
- 330 Contribution of Working Group II to the Fifth Assessment Report of the
- 331 Intergovernmental Panel on Climate Change. CUP, Cambridge.
- 49. Anon. Spreading like wildfire. *Nature Climate Change*, **7**, 755 (2017).

334 Acknowledgements

- 335 We thank the Nature Conservancy for having the foresight to initiate the Hard Hill Burning
- 336 Experiment and the UK Environmental Change Network for its continuation. This work was
- 337 funded by the Heather Trust and NERC/DEFRA (FIREMAN BioDiversa project
- 338 (NE/G002096/1). S. Yee provided graphical support.
- 339

340 Author Contributions

- 341 RHM and RCC planned and carried out the field sampling with RR, E-LM, RL and KH. RCC led
- 342 the geochemistry/stratigraphy with E-LM and RL; PA and GP were responsible for the
- radiometric dating; the vegetation survey and analyses were planned and performed by JA,
- 344 KAA, HL, GM, RR, JO'R and VS. RHM and RCC produced the manuscript and all authors
- 345 contributed to the final version.
- 346

347 Competing interests

- 348 The authors declare no competing interests.
- 349

350 Additional information

- 351 **Supplementary information** is available for this paper at Nature.website.
- 352 **Reprints and permissions information** is available at <u>www.nature.com/reprints</u>.
- 353 Correspondence and requests for materials should be addressed to R.H.M or R.C.C.
- 354 **Publisher's note:** Springer Nature remains neutral with regard to jurisdictional claims in
- 355 published maps and institutional affiliations.
- 356 SOCIAL MEDIA: Twitter accounts @robmarrs1, @RCHIVERRELL.

358 **Figure captions:**

359 Figure 1 | Effects of differing prescribed fire frequencies on peat and C accumulation rates

360 with respect to: (a) burn treatment and (b) number of burns applied. Key for a. R =

- unburned since ca. 1923, N= burned in 1954, L = burned in 1954 and then every 20 years, S
- 362 = burned in 1954 and then every 10 years; treatments denoted with similar small letters
- 363 were not detected as significantly different (Tukey HSD, Peat = P<0.020; C = P<0.027); b.</p>
- Linear regressions (±95% confidence limits are illustrated); equations (±SE) are presented in
- 365 Supplementary Table S1.
- 366

368 diversity and abundance of major species. Abundance units are number of hits by pin

369 quadrat^{38,39}. a-c represent the effects of prescribed burning through time; d represents

treatment effects as temporal effects were not significant. Key: N= 1-burn in 1954 (green,

the intercept), L = 3-burns, burned in 1954 and every 20 years (blue), S = 6-burns, burned in

372 1954 and every 10 years (red). Significance: ns = not significant, P>0.05; + = P<0.05, +++/---,

P <0.000; direction of effects are shown by + and – symbols.

374

375 Figure 3 Summarised impacts of the four fire return intervals on key ecosystem

376 **properties** a. Species composition' the arrows reflect relative increases and the figures are

- 377 the final mean frequencies of key species, b. Carbon in the above-ground biomass, c. Peat
- and C net accumulation rates, and d. mass of C the surface 1 cm and 5 cm peat.

379 METHODS

380 Description of the Moor House Experiment and sampling protocol. Moor House National Nature Reserve (NNR) is located in the Northern Pennines of England, and covers 40 km² of 381 upland blanket bog, the largest area of ombrotrophic, mire-covered moorland in England⁵⁰. 382 383 The management pressure on this reserve is very low; there has been no burning outside this experiment for ca. 100 years and is approaching the lower end of the natural burn 384 return cycle for unmanaged peatlands in upland England (ca. 115-250 years¹²⁻¹³). Sheep-385 grazing pressure on blanket bog is low; it was ca. 0.5 sheep ha⁻¹ when 15,400 sheep grazed 386 387 the entire reserve pre-1970, and since then there has been a reduction to ca. 7,000 in 1970 388 and 3,500 after 2001. Moreover, the sheep grazing pressure is mainly concentrated on grassland areas outside the blanket bog⁵¹. 389 390 The Sheep-grazing and Burning Experiment was established at Hard Hill (British grid 391 reference; NY 758 328; Latitude 54.689656, Longitude -2.376928) in 1954 to investigate the 392 effects of low-density sheep grazing and long-term, prescribed burning on blanket bog 393 vegetation. The experiment was set up with a randomized block, split-plot design with four 394 blocks, each with two sheep-grazing treatments (background sheep grazing pressure versus 395 no sheep grazing) applied randomly within block and the three prescribed burning sub-396 treatments applied randomly within sheep-grazing treatments (Supplementary Fig. S1). 397 Both the sheep grazing and burning treatments are fixed effects within the experimental 398 design. All the plots were burnt in 1954/5 (here denoted 1954), and thereafter, three 399 prescribed burning treatments were applied: short-rotation, every 10 years (S); long-400 rotation, every 20 years (L); and no subsequent burn since 1954 (N). Each of the four blocks has an associated reference plot (R) which has not been burnt since at least 1923³⁸; the 401 402 plots are referred to by the number of burns implemented since 1954; R=0-burn, N=1-burn,

403 L=3-burns, and S=6-burns. The burning treatments applied were intended to test the 404 impacts of the prescribed burning in many areas of upland Britain that is routinely applied for moorland management. Historically, this management practice was implemented to 405 406 increase sheep utilization of the available grazing, but more recently it has been used mainly 407 to increase red grouse (Lagopus lagopus scotica Latham) numbers for sporting purposes^{38,39,42}. The intention is to use fire to open up the canopy of the dominant shrub 408 409 species (*Calluna vulgaris* (L.) Hull), then allowing it to regenerate from both seedlings and burned stems through a distinct post-fire succession^{42,43,52a}. This management is carried out 410 on rotation across the landscape, providing a mosaic of burned patches¹⁷. In the uplands, 411 prescribed burning must by law be done between October 1st and 15th April⁵³. At Moor 412 413 House, burning is applied in late March or early April. However, as this site has very inclement weather⁵⁴ it often is not possible to burn on an exact schedule; thus burning is 414 415 applied at the end of March or beginning of April in close as possible to the intended year^{29,38-39}. The fires would be described as flaming fires^{23,55} produced by "cool-burning"⁵⁶, 416 and there is no evidence that smouldering peat fires have occurred²³. Here, cores were only 417 418 sampled from the grazed treatments as this is the "business-as-usual" management regime for most upland blanket bog in the UK³⁸⁻³⁹. 419

420

Field methods. Following a pilot study in 2011 (not shown), two "Master" cores were sampled (July 2013) from the Reference plot of Block A (no burn since ca. 1923) for analysis of peat and C dry mass accumulation, air-fall Pb by XRF (Supplementary Fig. S2) and for radiometric dating (MH13/1, MH13/4, Supplementary Fig. S3). Comprehensive analysis of the peat and C dry mass accumulation rates was undertaken by sampling (June 2016) within each burning treatment with four cores from treatment R, eight cores from L and N and

twelve cores from S; thus comprising 8 cores per block (1xR, 2xL, 2xN, 3xS) and 32 cores in
total (MH16/1-32). Throughout, a hemi-cylindrical peat sampler (0.5 m x 0.05 m diameter)
was used to extract the peat cores, and they were stored in guttering, sealed in plastic
sleeves, and stored under refrigeration until analysis.

431

432 Estimating down-core concentrations of air-fall PB. Major element and trace metal 433 concentrations (ppm) including air-fall Pb were determined on a wet sediment basis at 5mm 434 resolution for each core using an Olympus Delta Energy Dispersive (ED)-XRF) mounted on a 435 Geotek MSCL-XZ core scanner. The XRF has a 4 W Rhodium X-ray tube (8–40 keV; 5–200 μA 436 excitement), a thermo-electrically cooled large-area silicon drift detector with the 6 mm 437 diameter detector window covered with a thin (6 μ m) polypropylene film to avoid 438 contamination of the internal measurement sensors. Measurements were conducted in 439 'Soil' mode, which applies three successive X-ray intensities (15, 40 and 40 (filtered) keV 440 beam conditions). The analyser undergoes daily standardisation procedures and is tested routinely using certified reference materials⁵⁷. The measured uncertainties for Pb ($\mu g g^{-1}$) 441 442 are around 1% at 100 ppm increasing to 25% at 5ppm, and so the variation through the 443 peak airfall Pb from 1850-1940 are captured by the μ XRF scanning. Repeat measurements of 444 calibration materials, 16 dried hand-pressed powders, for Pb across concentrations ranging from 5 to 700 μ g g⁻¹ produced average 2 sigma uncertainties of ±3 μ g g⁻¹. For the objectives 445 446 of this paper, the stable Pb measured by ED- μ XRF the airfall pollutant concentrations are greater than 10 μ g g⁻¹ throughout the period 1840 to 1960, therefore, our quantification is 447 robust. For the deeper peats, Pb concentrations are closer to background and we struggled 448 449 to detect plausible Pb data, with the exception of the spike association with Roman-age 450 smelting dust from central Europe (0-400 AD).

451	Radiometric dating the Master cores. Here, we calibrated Pb deposition and hence peat
452	growth using radioisotopic markers. The Master cores were sub-sampled at 1 cm intervals
453	and bulk densities calculated using standard water displacement techniques and
454	measurement of the wet and dry masses after freeze drying. Sub-samples from each core
455	were analysed for ²¹⁰ Pb, ²²⁶ Ra, ¹³⁷ Cs and ²⁴¹ Am by direct gamma assay in the Liverpool
456	University Environmental Radioactivity Laboratory using a Canberra SAGe well-type coaxial
457	low background intrinsic germanium detectors ⁵⁸ . ²¹⁰ Pb was determined via its gamma
458	emissions at 46.5 keV, and ^{226}Ra by the 295 keV and 352 keV $\gamma\text{-rays}$ emitted by its daughter
459	radionuclide ²¹⁴ Pb following 3 weeks storage in sealed containers to allow radioactive
460	equilibration. ¹³⁷ Cs and ²⁴¹ Am concentrations were estimated by their emissions at 662 keV
461	and 59.5 keV respectively. The absolute efficiencies of the detectors were determined using
462	calibrated sources and sediment samples of known activity. Corrections were made for the
463	effect of self-absorption of low energy γ -rays within the sample ⁵⁹ . The results were plotted
464	alongside data for atmospheric fallout Pb and Zn concentrations measured by ED-XRF
465	(Supplementary Fig. S3), with supported ²¹⁰ Pb activity assumed to be equal to the measured
466	²²⁶ Ra activity, and unsupported ²¹⁰ Pb activity calculated by subtracting supported ²¹⁰ Pb from
467	the measured total ²¹⁰ Pb activity.

469 Core MH13/1. Extrapolation of the total ²¹⁰Pb data (Supplementary Fig. S3c) indicates that
470 99% equilibrium with the supporting ²²⁶Ra (corresponding to around 150 years
471 accumulation) occurred at a depth of between 14-15 cm. Because of the very low ²²⁶Ra
472 concentrations (mean value 4 Bq kg⁻¹) it was not practicable to continue total ²¹⁰Pb
473 measurements to a point where radioactive equilibrium was achieved fully. Although there
474 were some irregularities in the unsupported ²¹⁰Pb record (Supplementary Fig. S3b)

475	concentrations declined more or less exponentially with depth, suggesting relatively
476	uniform peat accumulation over the past 100 years or so. High ¹³⁷ Cs concentrations
477	(Supplementary Fig. S3b) in the form of a double peak were detected in samples between 1
478	and 4 cm. The proximity to the surface of the core suggests that this feature records fallout
479	from the 1986 Chernobyl accident. Downward migration of Chernobyl ¹³⁷ Cs appears to have
480	masked any evidence of an earlier ¹³⁷ Cs peak recording the 1960s fallout maximum from the
481	atmospheric testing of nuclear weapons. Traces of ²⁴¹ Am (Supplementary Fig. S3b), also a
482	product of nuclear weapon test fallout ⁶⁰ in the late 1950s and early 1960s, were however,
483	detected in samples between 3-8 cm. The ²¹⁰ Pb chronology calculated using the CRS model ⁵⁶
484	places 1986 at around 3 cm and 1963 at around 6 cm, which shows a reasonable degree of
485	consistency between these two independent dating methods. Calculations using the
486	alternative CIC ²¹⁰ Pb model gave results broadly similar to those determined from the CRS
487	model, confirming the suggestion that net peat accumulation rates have not change
488	significantly over the past century. Given the large uncertainties in both the 210 Pb and 137 Cs
489	records the mean accumulation rate, 0.010 \pm 0.002 g cm $^{-2}$ yr $^{-1}$ (0.10 cm yr $^{-1}$), was used to
490	calculate the age-depth model (Supplementary Fig. S3).

traces of ²⁴¹Am present in samples above 9 cm most probably originate from fallout from 499 500 the atmospheric testing of nuclear weapons. However, in neither case are there distinct features that can be linked clearly to specific dates. The ²¹⁰Pb chronology was calculated 501 using the CRS model⁶¹, and although a lack of clarity in the ¹³⁷Cs/²⁴¹Am records prevented 502 close validation of the ²¹⁰Pb calculations, since these place 1986 at around 5 cm and 1963 at 503 around 9 cm the two methods are broadly consistent. Use of the CIC model yielded similar 504 505 results to those given by the CRS model, supporting the suggestion that net peat accumulation rates have been relatively constant. The age-depth model (Supplementary Fig. 506 S3d) was calculated using the mean value of 0.017 ± 0.003 g cm⁻² yr⁻¹ (0.17 cm yr⁻¹). 507

508

509 Calculating peat and C accumulation rates (Cores M16/1-32). Peat accumulation rates were 510 derived using features or markers in the pronounced down-core atmospheric fall-out stable Pb profile measured by XRF. Pb is relatively immobile in ombrotrophic peat and has 511 produced profile repeatable between all the cores⁶². Four good age markers were detected 512 513 and assigned ages from the radiometric dating at 1876, 1963, 1986 and the peat surface (2016). As 1963 was the closest to the start of the Hard Hill experiment this marker was 514 used to estimate recent peat and C accumulation rates. Peat growth rates (cm yr⁻¹) were 515 516 calculated for each core across the two periods (1876-1963 and 1963-2016), essentially pre-517 and post-experiment. C accumulation was measured for the peat sequence using Near-518 Infra-Red Spectrophotometry (NIRS) cross-calibrated using a training set of direct mass loss-519 on-ignition (I-o-i) measurements. NIRS results have been shown to correlate strongly with the organic content of sediments⁶³⁻⁶⁵. NIRS reflectance was measured on each 1-cm depth 520 521 samples from all cores using a BRUKER MPA FT-NIR spectrometer; lightly-ground peat was 522 scanned at 4 nm intervals between 3598-12493 nm. L-o-i was measured on each 1-cm depth

523 section from four cores, one selected form each burning treatment; peat samples were ashed at 550°C for 3 h^{63} . Cross-calibration indicated a strong correlation (r^2 = 86%) between 524 the first derivative of the entire NIR spectra and measured I-o-i (Supplementary Fig. S4). L-o-525 i and hence C concentration (as a normative 40% of the burnt mass loss) was predicted from 526 527 the NIRS data. This NIRS-based approach provides robust, rapid and non-destructive estimates for I-o-I and C concentrations. The C accumulation rate (g C m² yr⁻¹⁾ was calculated 528 using the measured or NIRS predicted I-o-I results for each core for the periods 1876-1963 529 and 1963-2016. 530

531

Statistical Methods. All analyses were performed in the R statistical environment⁶⁶; three 532 533 hypotheses were tested with respect to peat accumulation. (1) The peat and C mass 534 accumulation rates were similar in the pre-burn (1876-1963) and post-burn (1963-2016) 535 periods; here pre- and post-burn rates from the 0-burn treatments were compared using a 536 Student's t-test (function 't.test', untransformed data). (2) Prescribed burning implemented 537 within the experiment changed peat and C mass accumulation rates. Here, effects of the prescribed burning treatments on accumulation rates since 1963 were tested using analysis 538 539 of variance (functions 'aov' and 'TukeyHSD', loge transformation). (3) Peat and C mass 540 accumulation rates are dependent on different prescribed burning frequencies. Here, the 541 relationships between accumulation rates of peat depth and C since 1963 were assessed 542 using simple linear regression ('Im' function, untransformed data). For hypotheses 2 and 3, 543 QQ-plots were inspected to ensure normality; in the linear regression analysis transformations did not improve the analysis, so analyses based on raw data are presented. 544 545 To estimate the time taken to recover the C lost after wildfire, we calculated the total 546 amount of C in both the surface vegetation and surface peat at two depths (0-1 cm and 0-5

cm) and divided by the C accumulation rate measured for the 6-burn treatment. We used a randomization approach (n=10,000) selecting data from each of the three variables (mean and SD) using the 'rnorm' function and calculating the mean and 95% confidence limits ('quantile' function). The mean values (\pm SD) were: vegetation C = 820 \pm 127 g C m⁻²; Peat_{0-1cm} C = 240 \pm 22 g C m⁻²; Peat_{0-5cm} C= 1274 \pm 82 g C m⁻²and C accumulation rate =36 \pm 2.6 g C m⁻² yr⁻² (6-burn value).

553 In addition, in order to provide ancillary information about the effects of prescribed 554 burning on the moorland community, data on species frequency of occurrence, derived 555 from pin-quadrats) were abstracted from the vegetation monitoring program for this experiment (1972-2013)²⁹. Here, modelled responses, derived from a GLM analysis for 556 557 Shannon-Weiner diversity index and the frequency of occurrence of the major components 558 of the vegetation (C. vulgaris, Eriophorum vaginatum (L.); both Poisson error distribution, 559 and combined Sphagnum (L.) spp. Binomial error distribution). Only the modelled responses 560 of the ungrazed treatments are presented for the N, L and S treatments; comparable data 561 for R were not collected.

562

563 **Data availability**. The data that support the findings of this study are available in (1) DataCat:

- the University of Liverpool Research Data Catalogue with the identifier
- 565 [http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/531] for peat and C accumulation rates⁶⁶, and
- 566 (2) the NERC Environmental Information Data Centre with the identifier
- 567 <u>https://doi.org/10.5285/0b931b16-796e-4ce4-8c64-d112f09293f7</u> for species change⁶⁷.
- 568

References only in Methods:

570	50.	Rawes, M., Heal, O.W. in Production ecology of British Moors and Montane Grasslands (eds,
571		Heal O.W., Perkins, D.F.) 224-243. Springer-Verlag, Berlin (1978).
572	51.	Rawes, M. & Welch, D. Upland productivity of vegetation and sheep at Moor House National
573		Nature Reserves, Westmorland, England. Oikos Suppl., 11, 1-69 (1969).
574	52.	DEFRA. The heather and grass burning code. Defra Publications, London. (2007).
575	53.	Heal, O.W., Smith, R.A.H., in Production ecology of British Moors and Montane Grasslands (eds,
576		Heal O.W., Perkins, D.F.) 3–16Springer-Verlag, Berlin (1978).
577	54.	Zaccone, C., Rein, G, D'Orazio, V., Hadden, R.M. Belcher, C.M., Miano, T.M. Smouldering fire
578		signatures in peat and their implications for palaeoenvironmental reconstructions. Geochim.
579		Cosmochim. Acta, 137 , 134-146 (2014).
580	55.	Harris, M.P.K., Allen, K., McAllister, H., Eyre, G., Le Duc, M., Marrs, R.H. Factors affecting
581		moorland plant communities and component species in relation to prescribed burning. J. Appld
582		<i>Ecol.</i> , 48 , 1411-1421 (2011).
583	56.	Boyle, J., Chiverrell, R., Schillereff, D. Approaches to water content correction and calibration for
584		μ XRF core scanning: comparing x-ray scattering with simple regression of elemental
585		concentrations, in Micro-XRF studies of sediment cores: A non-destructive tool for the
586		environmental sciences. Developments in Paleoenvironmental Research (eds Rothwell, G.,
587		Croudace, I.). pp. 373-390. Springer, Dordrecht (2015).
588	57.	Appleby, P.G., Nolan, P.J., Gifford, D.W., Godfrey, M.J., Oldfield, F., Anderson N.J., Battarbee,
589		R.W. ²¹⁰ Pb dating by low background gamma counting. <i>Hydrobiologia</i> , 141, 21-27 (1986).
590	58.	Appleby, P.G., Richardson, N., Nolan, P.J. Self-absorption corrections for well-type germaniun
591		detectors. Nucl. Inst. Methods B, 71, 228-233 (1992).
592	59.	Appleby, P.G., Richardson, N., Nolan, P.J. ²⁴¹ Am dating of lake sediments. <i>Hydrobiologia</i> , 214 ,
593		35-42 (1991).
594	60.	Appleby, P.G., Oldfield F. The calculation of ²¹⁰ Pb dates assuming a constant rate of supply of
595		unsupported ²¹⁰ Pb to the sediment. <i>Catena</i> , 5 , 1-8 (1978).
596	61.	Vile, M.A., Wieder, R.K., Novák, M. Mobility of Pb in Sphagnum-derived peat. Biogeochem., 45,.
597		35–52 (1999).
598	62.	Martin, P.D., Malley, D.F., Manning, G, Fuller, L. Determination of soil organic carbon and
599		nitrogen at the field level using near-infrared spectroscopy. Can. J. Soil Sci., 82, 413–422 (2002).
600	63.	Pearson, E.J., Juggins, S., Tyler, J. Ultrahigh resolution total organic carbon analysis using Fourier
601		transform near Infrared reflectance spectroscopy (FT-NIRS). Geochem., Geophys., Geosyst., 15,
602		292–301 (2014).
603	64.	Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, J.C.J., Tittonell, P.A. Estimating soil organic
604		carbon through loss on ignition: Effects of ignition conditions and structural water loss,
605		European J. Soil Sci., 66 , 320–328 (2015).
606	65.	R Core Team. R: A language and environment for statistical computing. R Foundation for
607	~~	Statistical Computing, Vienna, Austria (2015). at <u>https://www.R-project.org/</u> .
608	66.	Marrs, R., Chiverrell, R. Experimental evidence for sustained carbon sequestration in fire-
609		managed peat moorlands. DataCat: the University of Liverpool Research Data Catalogue.
610	c-	http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/531 (2018).
611 612	67.	2013) from moorland burning plots established at Hard Hill, Moor House in 1954. NERC

- 613 Environmental Information Data Centre. <u>https://doi.org/10.5285/0b931b16-796e-4ce4-8c64-</u>
- 614 <u>d112f09293f7</u> (2018). 615

b. Regression analysis

Number of burns

