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Abstract 

There is increasing evidence that the global rise in temperature is contributing to the onset of 

diabetes, which could be mediated by a concomitant reduction in brown fat activity. Brown 

(and beige) fat are characterised as possessing a unique mitochondrial protein uncoupling 

protein (UCP)1 that when activated can rapidly generate large amounts of heat. Primary 

environmental stimuli of UCP1 include cold-exposure and diet, leading to increased activity 

of the sympathetic nervous system and large amounts of lipid and glucose being oxidised by 

brown fat. The exact contribution remains controversial, although recent studies indicate that 

the amount of brown and beige fat in adult humans has been greatly underestimated. We 

therefore review the potential mechanisms by which glucose could be utilised within brown 

and beige fat in adult humans and the extent to which these are sensitive to temperature and 

diet. This includes the potential contribution from the peridroplet and cytoplasmic 

mitochondrial sub-fractions recently identified in brown fat, and whether a proportion of 

glucose oxidation could be UCP1-independent. It is thus predicted that as new methods are 

developed to assess glucose metabolism by brown fat, a more accurate determination of the 

thermogenic and non-thermogenic functions could be feasible in humans. 

 

Key words: brown adipose tissue, glucose, mitochondria  
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There is increasing evidence that the rise in diabetes is partly mediated by the increase in 

global temperatures over the past 20 years [1; 2]. This has been observed across the general 

population in the USA [3] and, in pregnant women in Canada relative to the onset of 

gestational diabetes [4]. Moreover, the prevalence of gestational diabetes in Canada is higher 

in the summer and rising ambient temperatures in the 3-4 weeks prior to third trimester 

glucose tolerance testing can predict gestational diabetes onset [5]. Consequently as brown 

fat is highly sensitive to changes in ambient temperature and is normally activated by cold 

exposure it would be expected to become less active as temperature rises [6; 7]. The unique 

capacity of brown fat to rapidly respond to cold exposure resides within uncoupling protein 

(UCP)1 that is located on the inner mitochondrial membrane [8]. When activated this results 

in the free flow of protons across the inner mitochondrial membrane [8], thereby bypassing 

the need to convert ADP to ATP, as occurs in the mitochondria of all other tissues.  

 

The presence of brown fat is adult humans was originally identified from positron emission 

tomography-computed tomography (PET-CT) studies in cancer patients [9], and has been 

confirmed across a range of ethnicities including Caucasian [6], Asian [10] and African [11] 

populations. This technique is dependent on subjects showing an increase in radio-labelled 

glucose uptake within their brown fat, a response that can be modulated by season and 

sensitivity to cold [12]. Consequently the extent to which environmentally induced changes 

in brown fat function can impact on glucose homeostasis remains a matter of debate [13]. It 

should be noted that with repeated PET-CT scans on the same subject then brown fat is 

identifiable in most, if not all, adults [14], and comparable quantification of brown fat has 

been shown between PET-CT and thermal imaging [15]. Consequently, it is likely that brown 

fat is present in all adults [16], and as shown in rodents its temperature fluctuates appreciably 

over a 24h period [17]. The acute sensitivity of brown fat to changes in temperature would 
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thus mean that an overall rise in current global temperature (see https://climate.nasa.gov/vital-

signs/global-temperature/) would be sufficient to reduce its activity on a population wide 

basis. Moreover, if the United Nations report on climate breakdown (see 

http://www.ipcc.ch/report/sr15/) is not swiftly acted upon then an even greater challenge 

would present itself. 

 

What is the contribution of brown fat to whole body glucose homeostasis? 

The primary factors that determine glucose consumption by brown fat are the total amount of 

fat, its rate of glucose oxidation and capacity to transport glucose [18]. A number of 

important recent publications have demonstrated that summary estimates appear to 

substantially underestimate each of these measures. It is therefore highly likely that current 

calculations suggesting only 1% of total daily glucose utilisation is partitioned across brown 

fat are inaccurate [13]. The total contribution of brown fat should therefore be revised due to 

the following: 

1. The amount of brown fat in adult humans is routinely underestimated, mainly due to the 

current imaging techniques and the difficulty in measurement because of the mixing of 

brown and beige fat with other white fat depots in multiple sites in the body [19]. Beige 

fat is defined as being a discrete region within white fat that possesses UCP1 although at 

approximately ten-fold lower concentrations than “classic” brown fat [20], 

2. Brown fat can be activated by diet [21; 22] to the same degree as by cold exposure [21]. 

The extent to which these dual activation pathways may be additive is unknown as 

current studies on cold exposure have been conducted in fasted subjects. 

3. Brown fat shows appreciable metabolic activity in warm ambient temperatures, effects 

that remain for at least two hours after removal of cold exposure [23]. 
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It is now apparent that the total amount of brown and/or beige fat in adult humans could be 

up to ten-fold higher, even in obese adults [19]. This is based on studies that have been able 

to conduct repeated PET-CT scans of the same individual [14], together with further 

refinements in image analysis [19]. Furthermore, a significant proportion of adipocytes 

present in brown or beige depots do not appear to be activated by acute cold exposure. 

Consequently, we suggest that as much as 20% of daily glucose oxidation could be 

potentially accounted for within brown fat, as a consequence of either diet and/or cold 

exposure (see Figure 1). This is in accord with the recognition that brown fat has a regulatory 

role in glucose homeostasis [18] explaining why cold-induced stimulation of brown fat has 

the potential to improve glucose metabolism in both lean [24] and diabetic [25] subjects. 

Indeed, it has recently been shown in obese adults, that long term caloric restriction sufficient 

to reduce body weight by 16.5% (primarily due to fat loss) promoted the brown adipocyte 

content in subcutaneous fat by 10% [26]. At the same time, fasting blood insulin and glucose 

were improved. Furthermore, in humans, brown fat appears to exhibit a glucose responsive 

biorhythm that is disrupted when the abundance of brown fat is low [27]. 

 

Figure 1 near here 

 

 

Is glucose metabolism by brown fat independent of UCP1 mediated thermogenesis? 

Glucose utilisation within UCP1-containing adipocytes in brown and beige fat can occur 

independently of UCP1-mediated thermogenesis [18]. This would explain the observation of 

substantial glucose present in brown fat depots [28], and its appreciable utilisation even at 

thermoneutrality [23]. Glucose present within brown fat could act, in part, as a reserve to be 

utilised during cold exposure, as the amount of glucose taken up within supraclavicular 
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brown fat, for example, is closely associated with cold-induced thermogenesis [28]. Cold 

exposure is also likely to be accompanied by increased uptake of triglycerides which, in 

murine obesity models, results in improved glucose homeostasis and up to a five-fold rise in 

glucose uptake within interscapular brown fat [29]. If triglyceride uptake is inhibited 

pharmacologically, then the uptake of glucose by brown fat is greatly reduced whereas, in 

other tissues such as skeletal muscle, it is unaffected [30]. Gene deletion studies in mice 

indicate an increasing number of pathways which can restrict glucose uptake by brown fat 

[18]. These appear to be linked to glucose transporter 4, e.g. the GAP complex RalGAP 

which, when inactivated, results in a seven-fold rise in glucose uptake by brown fat [31]. It is 

likely that other pathways are involved and that these may differ between brown and beige 

adipocytes. For example, deletion of endonuclease G is associated with increased expression 

of thermogenic genes in beige, but not brown, adipocytes [32]. This, is turn, is accompanied 

with improved glucose homeostasis and reduced white fat mass. Indeed, multiple pathways 

are involved and extend to a wide range of signalling molecules as identified in mice e.g. DJ-

1 [33], although these need confirming in humans. 

 

Two types of brown fat mitochondria and their differential roles in energy balance 

The concept that the regulation of UCP1 differs between brown and beige adipocytes and that 

the utilisation of glucose by these different cell populations requires further investigation. 

Glucose oxidation by beige fat has been shown to be independent of UCP1 and is, therefore, 

non-classical [34]. The potential divergence in mitochondrial function between dietary and 

cold-induced thermogenesis could be partly explained by the recent discovery that brown fat 

contains two different types of mitochondria i.e. the peridroplet and cytoplasmic 

mitochondrial sub-fractions [35]. It has been suggested that these fractions are functionally 

different in their bioenergetic capacity and fatty acid oxidation despite both possessing 



Acc
ep

ted
 M

an
us

cri
pt

7 
 

UCP1. One potential consequence is that there is a greater recruitment of lipid-droplets 

within the peridroplet mitochondrial domain after feeding [35], and perhaps cytoplasmic 

mitochondria are dominant with cold exposure (see Figure 2). Such an adaptation to feeding 

would be in accord with the diurnal rhythm in brown fat activity seen in mice, which is 

consistent with a lower postprandial lipid response, in the morning compared to evening in 

humans [36]. The fundamentally different processes between the peridroplet and cytoplasmic 

mitochondrial sub-fractions [35] have yet to be examined in different human disease states. 

These types of investigations could determine whether glucose metabolism differs between 

each domain. They could also start to explain the recent demonstration of considerable 

heterogeneity in nutrient, including glucose uptake by brown adipocytes [37].  

 

Figure 2 near here 

 

Future research on the role of brown and/or beige adipocytes on glucose homeostasis 

Given the increasing evidence that brown and/or beige fat has a role in both dietary and cold-

induced thermogenesis, more focus is now required on the impact of diet especially under 

thermoneutral conditions [38]. A combined effect of diet and cold exposure could therefore 

herald ground-breaking approaches to diabetes prevention and/or treatment. The urgent need 

to make such an intervention is high-lighted by the continued rise in global temperatures, and 

the increased duration of “summer” (see 

https://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/uk-climate/state-of-the-

uk-climate/soc_supplement-002.pdf) which currently appear to be largely unpreventable. 

Moreover, the impact of ageing needs to be considered as this is accompanied with a 

“natural” decline in brown fat mass, which could underpin the onset of type 2 diabetes [39]. 

Critically, more sophisticated assessments (including the potential use of glucose tracers) to 
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accurately assess glucose uptake by brown adipose tissue and of UCP1, both in vivo and in 

vitro, are required to enable a more accurate partitioning of its thermogenic and non-

thermogenic functions. 
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