
Control Words of String Rewriting P Systems

Atulya K. Nagar · Ajeesh Ramanujan ·
K.G. Subramanian

Abstract P systems with controlled computations have been introduced and in-
vestigated in the recent past, by assigning labels to the rules in the regions of
the P system and guiding the computations by control words. Here we consider
string rewriting cell-like transition P system with label assigned rules working in
acceptor mode and compare the obtained family of languages of control words over
the rule labels with certain well-known language families. An application to chain
code picture generation is also pointed out.

1 Introduction

Among several directions of study related to the bio-inspired computing model of
P system in the area of membrane computing [11–13,21] which was initiated by
Paun [11], a fairly recent area of research is the concept of control language in a
P system [14]. This control language is defined in terms of control words that are
sequences of labels of rules used in the steps of a computation in a P system with
the labels being symbols of an alphabet or the empty word λ.

P systems with label restricted transitions where in each computation step, all
rules used have either the same label, or the empty label λ as well as P systems

Atulya K. Nagar
Department of Mathematics and Computer Science,
Faculty of Science, Liverpool Hope University,
Hope Park, Liverpool L16 9JD, UK

Ajeesh Ramanujan
Department of Computer Science And Engineering
College of Engineering, Thiruvananthapuram,
Kerala 695016 India

K.G. Subramanian∗
Department of Mathematics and Computer Science,
Faculty of Science, Liverpool Hope University,
Hope Park, Liverpool L16 9JD, UK
∗ Honorary Visiting Professor

Authors' Version

2 A.K. Nagar, A. Ramanujan, K.G. Subramanian

with the computations controlled by languages are considered in [8] and relation-
ships between the families of sets of numbers computed by the various classes of
controlled P systems are investigated. On the other hand, spiking neural P sys-
tems [4] with labels associated with the rules and referred to as labeled spiking
neural P systems, are considered in [16] and the family of control languages of
these systems is studied in comparison with other well-known families while tissue
P systems [9] with label assigned rules are considered in [17] and a study of control
languages of these systems is done.

Ramanujan [15] has introduced another variant by considering P system work-
ing in an accepting mode with label assigned rules in the regions and studied such
a system as acceptor of a language of control words over the alphabet of rule labels.
In fact the system reads the input control word from left to right, one symbol at a
time, and uses in a maximally parallel way, the rules labeled with the symbol read
or rules having λ label. If the input control word is processed completely with the
P system reaching a configuration from a given finite set of final configurations,
the input control word is accepted and otherwise the input word is rejected.

String rewriting cell-like transition P system with structured finite strings as ob-
jects and context-free rules in the regions with an evolved object being commu-
nicated as a whole between regions, was first introduced by Paun [11] and subse-
quently several variants have been considered and investigated [1–3,6]. Following
[11], here we consider string rewriting cell-like transition P system with label as-
signed rules working in acceptor mode analogous to [15]. We study the accepting
power of such a P system by comparison of the family of languages of control
words over the rule labels with certain well-known language families.

2 String Rewriting P System with control

We first recall a few needed notions of formal language theory [19].

A word w over an alphabet Σ is a string of symbols of the form w = a1a2 · · · an,
ai ∈ Σ, 1 ≤ i ≤ n. The length of a word w is denoted by |w|. The set of all
words over an alphabet Σ is denoted by Σ∗, which includes the empty word λ
with no symbols. We write Σ+ = Σ∗ − {λ}. We denote by RE, CSL, CFL, REG
respectively, the recursively enumerable, context-sensitive, context-free and regu-
lar families of languages in the Chomsky hierarchy [19].

We now consider a string rewriting cell-like transition P system and define la-
bel restricted computations that accept control words input to the system.

Let

Π = (V, μ,A1, · · · , Am, R1, · · · , Rm)

be a string rewriting transition P system with a membrane structure
μ = [1 [2 · · · [m]m · · ·]2]1 of degree m in which the skin membrane and the mem-
branes inside it are labelled 1, · · · ,m in a one-to-one manner; each Ai, 1 ≤ i ≤ m
is a finite language, which can be empty, initially present in the region i consisting

Control Words of String Rewriting P Systems 3

of finite structured strings over V ; the regions can have rewriting rules of the form
α → β where α (�= λ) and β are words over V with Ri, 1 ≤ i ≤ m being the set
of rules in region i; a string in a region is rewritten by only one rule at a time but
all the strings in a region to which rules could be applied are to be written in a
maximal parallel way; each rule has a target indication here, in or out with the
usual meaning: here means the evolved string remains in the same region while in
means that the evolved string is sent to the directly inner region and out means
that the evolved string is sent to the directly outer region. The target here is not
mentioned in the rule and is understood. Note that the evolved string, when com-
municated to another region, is sent as a whole.

As described in [15], writing R = R1 ∪ · · · ∪ Rm, we consider a labelling func-
tion l : R → Σ ∪{λ} that assigns a label from the finite set Σ, to every rule in the
set R of the P system Π. For a rule α → β with label r ∈ Σ ∪ {λ}, we write the
rule as r : α → β(tar) where tar is the target associated with the rule. We also
consider a finite set F of final configurations of the P system Π.

We denote by (Π,Σ, F) the P system Π with Σ and F defined as described.
With such a system, we associate a language as follows: A configuration of the P
system Π is c = (L1, · · · , Lm) where Li consists of the strings in region i. For two
configurations c1, c2 of the system, c1 yields c2, written c1 ⇒b c2, b ∈ Σ ∪{λ} and
called a label restricted transition, only when rules with the same label b are used
in evolving strings, if any, in the regions. In a label restricted transition, we say
that the symbol b is an input symbol which is “consumed” if the label b of the rules
used belongs to Σ and if the label is λ, then the input symbol is not consumed. A
string w of input symbols over Σ is said to be accepted if, in a computation, all
the symbols of w are consumed and a halting final configuration belonging to the
set F is reached. If no rule with label λ is allowed in a computation, we call it a
λ−restricted computation. Note that the language accepted depends on the final
configuration being reached with the computation in the P system halting and so
there is no need for mentioning any output membrane.

The language consisting of all the strings accepted by the P system Π with
λ−restricted computations is denoted by La(Π,Σ, F). If rules with λ labels are
allowed in the computations in the P system Π, then the language accepted
is denoted by Lλ

a(Π,Σ, F). The family of languages La(Π,Σ, F) (respectively
Lλ
a(Π,Σ, F)) accepted by such P systems with at most m (m ≥ 1) membranes is

denoted by LaPm (respectively Lλ
aPm).

We illustrate with a few examples of a P system with λ−restricted computa-
tions .
Example 1
Consider the string rewriting transition P system

Π1 = ({A,A′, C}, [1]1, {A}, R1)

with the set of rule labels Σ = {a} and the set of final configurations F1 = {({C})}
where

R1 = {a : A → A′, a : A′ → A, a : A′ → C}

4 A.K. Nagar, A. Ramanujan, K.G. Subramanian

The initial configuration of the system is ({A}).

For an input control word of the form a2n, a computation in Π1 is done as follows:
Starting from A in region 1, application of the rules a : A → A′, a : A′ → A
(with the former followed by the latter) and finally a : A → A′ followed by the
application of the rule a : A′ → C once consumes a2n in the input control word
and results in a halting final configuration ({C}). Thus the language accepted by
the system (Π1, Σ, F1) is {a2n | n ≥ 1}.

Note that if any word over {a} which is not of the form a2n for some n ≥ 1,
is given as input control word, then the corresponding computation in the P sys-
tem cannot reach the final configuration specified in the system. The language
accepted is La(Π1, Σ, F1) = {a2n | n ≥ 1}.

Example 2
Consider the language

L = {wwR | w ∈ {a, b}+}.
We construct a string rewriting transition P system Π2 accepting L. Let

Π2 = ({S,A,B,C}, [1]1, {S}, R1)

with one membrane and the set of rule labels Σ = {a, b} where

R1 = {a : S → SA, a : S → CA, b : S → SB, b : S → CB,

a : CA → C, b : CB → C}.
The halting final configuration is ({C}). It can be seen that only for an input word
of the form wwR, w ∈ {a, b}+, the system Π2 carries out a successful computation
starting from the initial configuration ({S}) and ends in a halting final configura-
tion ({C}) consuming the input control word. Note that for an input control word
wwR, the system Π2 produces in the generated string, the symbol A on consuming
a and produces the symbol B on consuming b on reading the first-half w while
the system Π2 deletes the symbol A (respy. B) on consuming the corresponding
a (respy. b) on reading the second-half wR.

Remark
The study of Sureshkumar and Rama [20] on array P systems with the evolution of
arrays being related to control strings of labels of array-rewriting rules, motivated
us to consider string rewriting P systems in the accepting mode for defining string
languages. Thus both the P system in [20] and the P system considered here, work
in the accepting mode but the objects and the types of rules used are different.

We give certain comparison results comparing the family LaPm with other lan-
guage families.

Theorem 1

REG ⊂ LaP1

Control Words of String Rewriting P Systems 5

Proof
Let L be a regular language over an alphabet T generated by a regular grammar
G = (N,T,R, S) where N is the set of nonterminals with start symbol S ∈ N and
R is the set of right-linear rules of the forms A → aB,A → a where A,B ∈ N and
a ∈ T. We construct a string rewriting transition P system

Π3 = (N ∪ T ∪ {d}, [1]1, {S}, R1)

(d /∈ N ∪ T) with only one membrane and the set of rule labels Σ = T where

R1 = {a : A → B, a : A → d | A → aB andA → a ∈ R}

The halting final configurations is ({d}).

An input word w = a1a2 · · · an, w ∈ L1, with a derivation S ⇒∗ w in G, is
accepted by a computation in Π3. In fact a corresponding computation in Π3

starts with S and is continued with the application of a sequence of rules in R1

with labels a1, a2, · · · , an−1 in order and also consuming these symbols in w, yield-
ing finally a nonterminal, say, X. There will be a rule X → an in G as the last
symbol in w ∈ L is an. Hence an : X → d will be in the region 1 and hence the
computation in Π3 reaches the final halting configuration ({d}). Thus Π3 accepts
the language L. This proves the inclusion.

For proper inclusion, consider the non-regular language L′ = {anbn | n ≥ 1}
over the alphabet Σ = {a, b}. We construct a string rewriting transition P system
Π4 = ({S1, S2, A}, [1]1, {S1}, R1) with only one membrane and the set of rule
labels being Σ where

R1 = {a : S1 → AS1, a : S1 → AS2, b : AS2 → S2}

The halting final configuration is ({S2}). It can be seen that Π4 accepts the lan-
guage L′. In fact for an input control word anbn, the system Π4 generates the word
AnS2 while consuming an using the rules a : S1 → AS1, a : S1 → AS2, after which
bn is consumed using the rule b : AS2 → S2 with the system Π4 finally yielding
S2 Any other control word not in L′ will either be not consumed completely or
the system will not enter the final configuration.
�

A class of grammars richer than context-free grammars and called simple ma-
trix grammars of degree n ≥ 1 (n− SMG) has been considered in [7] and investi-
gated further in many studies (see, for example, [5,7,18]). The family of languages
generated by simple matrix grammars of degree n ≥ 1 is denoted by S(n). A hi-
erarchy of classes of languages generated by these grammars has been established
in [7] by showing a language in S(n + 1) which is not in S(n) [7]. We now show
that Ln ∈ LaP2.

Theorem 2
For n ≥ 1,

LaP1 − S(n) �= ∅.

6 A.K. Nagar, A. Ramanujan, K.G. Subramanian

Proof
The language

Ln = {ak1ak2 · · · aknbkcknckn−1 · · · ck1 | k ≥ 1},
with alphabet
{a1, · · · , an, b, c1, · · · , cn} is shown in [7, page 373] to be not in S(n) .
We consider the case when n is even. The case when n is odd can be analogously
dealt with. Let n = 2m, m ≥ 1. We construct a string rewriting transition P
system

Π5 = ({Ai, Xi, Ci, Yi, B | 1 ≤ i ≤ 2m}, [1]1, {A1}, R1).

The rule set

R1 = {a1 : A1 → A1X1, a1 : A1 → A2X1, a2 : A2X1 → X2A2, a2 : A2X1 → X2A3,

a3 : X2A3 → A3X3, a3 : X2A3 → A4X3, · · · , a2m : A2mX2m−1 → X2mA2m,

a2m : A2mX2m−1 → X2mB, b : X2mB → BY2m, b : X2mB → C2mY2m,

c2m : C2mY2m → Y2m−1C2m, c2m : C2mY2m → Y2m−1C2m−1, · · · ,
c3 : Y3C3 → C3Y2, c3 : Y3C3 → C2Y2, c2 : C2Y2 → Y1C2,

c2 : C2Y2 → Y1C1, c1 : Y1C1 → C1.}
The halting final configuration is ({C1}). It can be seen that L2m is accepted by
Π5.
�

We now obtain certain comparison results comparing the family Lλ
aPm with

other language families.

Theorem 3

CF ⊂ Lλ
aP2

Proof
Let LCF be a context-free language over an alphabet T generated by a context-
free grammar G = (N,T,R, S) in Chomsky normal form, where N is the set of
nonterminals with start symbol S ∈ N and R is the set of context-free rules of
the forms A → BC,A → a where A,B,C ∈ N and a ∈ T. For every rule A → a
in R, we include in N, a new nonterminal Aa and include in R, the rule Aa → a
replacing A ∈ N and the rule A → a ∈ R.
We construct a string rewriting transition P system

Π6 = (N ∪ T ∪ {E1, E2}, [1 [2]2]1, {E1SE2}, R1, R2)

(E1, E2 /∈ N ∪ T) with two membranes and the set of rule labels Σ = T where

R1 = {λ : A → BC, λ : AaE2 → Aa(in) | A → BC andAa → a ∈ R}
R2 = {a : E1Aa → E1 | Aa ∈ N}.

The halting final configuration is (∅, {E1}). Note that the rules in region 1 with
label λ generate a word corresponding to the given input word w belonging to
LCF in the computation in the system Π6 but no input symbol is consumed till

Control Words of String Rewriting P Systems 7

the evolved string enters region 2 and a rule of the form a : E1Aa → E1 is applied,
after which a successful computation consumes w and reaches the halting final con-
figuration (∅, {E1}). Thus Π6 accepts the language LCF . This proves the inclusion.

For proper inclusion, consider the non-CF language L′′ = {anbncn | n ≥ 1}.
In order to accept L′′ we construct a string rewriting transition P system

Π7 = ({S1, S2, A,B,C}, [1]1, {S1}, R1)

with the set of rule labels Σ = {a, b, c} and the final configuration ({B}) where

R1 = {a : S1 → AS1C, a : S1 → AS2C, b : AS2 → S2, b : AS2 → B, c : BC → B}.

The initial configuration of the system is ({S1}).

For an input control word of the form anbncn, a computation in Π is done as fol-
lows: Starting from S1 in the only region 1, application of the rule a : S1 → AS1C
(n−1) times followed by the application of the rule a : S1 → AS2C once consumes
an in the input control word and yields the string AnS2C

n. Then the application
of the rule b : AS2 → S2 (n − 1) times followed by the rule b : AS2 → B once,
consumes bn in the control input word and yields the string BCn. At this stage
the application of the rule c : BC → B, n times, consumes cn in the input con-
trol word and results in a halting final configuration ({B}). Thus the language
accepted by the system Π6 is {anbncn | n ≥ 1}.

Note that if any word over {a, b, c} which is not of the form anbncn for some
n ≥ 1, is given as control input word, then either the corresponding computation
in the P system cannot be completed in the sense of consuming all the symbols
in the input word or the computation cannot reach a final configuration specified
in the system.
�

Theorem 4

CS ⊆ Lλ
aP2

Proof
Let LCS be a context-sensitive language over an alphabet T generated by a
context-sensitive grammar G = (N,T,R, S) in Kuroda normal form, where N
is the set of nonterminals with start symbol S ∈ N and R is the set of rules of the
forms AB → CD, A → BC, A → B, A → a where A,B,C,D ∈ N and a ∈ T. For
every rule A → a in R, we include in N, a new nonterminal Aa and include in R,
the rule Aa → a replacing A ∈ N and the rule A → a ∈ R.
We construct a string rewriting transition P system

Π8 = (N ∪ T ∪ {F1, F2}, [1 [2]2]1, {F1SF2}, R1, R2)

(F1, F2 /∈ N ∪ T) with two membranes and the set of rule labels Σ = T where

R1 = {λ : AB → CD, λ : A → BC, λ : A → B, λ : AaF2 → Aa(in) | AB → CD,

A → BC, A → B andAa → a ∈ R}

8 A.K. Nagar, A. Ramanujan, K.G. Subramanian

R2 = {a : F1Aa → F1 | Aa ∈ N}.
The halting final configurations is (∅, {F1}). Note that the rules in region 1 with
label λ generate a word corresponding to the given input word w belonging to
LCS in the computation in the system Π8 but no input symbol is consumed
till the evolved string enters region 2 and a rule of the form a : F1Aa → F1 is
applied, after which a successful computation consumes w and reaches the halting
final configuration (∅, {F1}). Thus Π8 accepts the language LCS . This proves the
inclusion.
�

Theorem 5

Lλ
aP3 = RE

Proof

We only have to prove the inclusion ⊆, the opposite one is a consequence of
the Turing-Church thesis.

Let LRE be a recursive language over an alphabet T generated by a type 0
grammar G = (N,T,R, S) in Penttonen normal form, with the non context-free
rules from R labeled into a one-to-one manner, where N is the set of nonterminals
with start symbol S ∈ N and R is the set of rules of the forms A → λ, AB → AC,
A → BC, A → a where A,B,C ∈ N and a ∈ T. For every rule A → a in R, we
include in N, a new nonterminal Aa and include in R, the rule Aa → a replacing
A ∈ N and the rule A → a ∈ R. We construct a string rewriting transition P
system

Π9 = (N ∪ T ∪ {F1, F2} ∪ {A′ | A ∈ N} ∪ {Ar | r : AB → AC}, [1 [2[3]3]2]1,
{F1SF2}, ∅, ∅, R1, R2, R3)

(F1, F2, A
′ /∈ N ∪T) with three membranes and the set of rule labels Σ = T where

R1 = {λ : A → BC, λ : A → λ, λ : AaF2 → Aa(in) | A → BC, A → λ,Aa → a ∈ R}
∪{λ : B → Br(in) | r : AB → AC ∈ R}

R2 = {a : F1Aa → F1 | Aa ∈ N} ∪ {λ : A′ → A(out) | A ∈ N}
∪{λ : Ar → Ar | A ∈ N}

∪{λ : ABr → ABr(in) | r : AB → AC ∈ R}
R3 = {λ : Br → C′(out) | r : AB → AC ∈ R}.

The halting final configurations is (∅, {F1}, ∅).

The system works as follows:
We can simulate the context free rules from R with out any difficulty. For

simulating rules of the form r : AB → AC ∈ R, assume that we have a string
w1ABw2 in membrane 1. In order to simulate the rule, we apply the B → Br on
the string so that the resulting string is sent to membrane 2. The string is sent to
membrane 3 only if it has a substring of the form ABr such that r : AB → AC ∈ R.

Control Words of String Rewriting P Systems 9

Otherwise, by repeated application of the rule Br → Br in membrane 2, the
computation goes on forever. In membrane 3, we replace the symbol Br with C′

and send the resulting string to membrane 2. From membrane 2, the string is
sent to membrane 1 by applying the rule C′ → C. In this way we complete the
simulation of the rule. The process is continued until no nonterminals other than
Aa, a ∈ T are present in the sentential form. We can see that the rules with λ
label generate a word corresponding to the given input word w belonging to LRE

in the computation in the system Π9 but no input symbol is consumed till the
evolved string enters membrane 2 and a rule of the form a : F1Aa → F1 is applied,
after which a successful computation consumes w and reaches the halting final
configuration (∅, {F1}, ∅). Thus Π9 accepts the language LRE . This proves the
inclusion.
�

3 An Application to Chain Code Pictures

A chain code picture [10], in a basic form, is composed of horizontal or vertical
lines of unit length in the two dimensional plane with their ends at points with
integer coordinates. The drawing of a unit length line to the left, right, up or down
directions, starting from a point z with integer coordinates, is represented by the
symbols l, r, u, d which are referred to as chain code symbols. A chain code picture
itself can be represented by a word over the set Σ = {l, r, u, d} by tracing the
picture starting from an end of a unit line in the picture and covering all the unit
lines that make up the picture.

For example, Fig. 1 shows a chain code picture in the shape of a star and can
be represented by the word rrrrlluudddd starting from the left end of the hori-
zontal line and ending at the bottom end of the vertical line. This representation
is only one among the many words representing the picture.

Chain code picture grammars with context-free rules and the symbols l, r, u, d
as terminal symbols, have been introduced in [10] and extensively studied by oth-
ers subsequently. The language of such a grammar is called a chain code picture
language.

Here we give an illustration of generating a chain code picture language Ls =
{r2nlnund2n | n ≥ 1} with string rewriting P system accepting control words
over Σ = {l, r, u, d}. For example, for n = 2, the word r4l2u2d4 describes the star
shaped picture in Fig. 1.

Consider the string rewriting cell-like transition P system

Πs = ({A,A′, B, C,D,E,X}, [1 [2]2]1, {A}, ∅, R1, R2)

with the set of rule labels Σ = {l, r, u, d} and the set of final configurations F =
{(∅, {E})} where

R1 = {r : A → A′, r : A′ → AC, r : A′ → BC(in),

u : D → DXX,u : D → EXX(in)},

10 A.K. Nagar, A. Ramanujan, K.G. Subramanian

R2 = {l : BC → B, l : BC → D(out), d : EX → E}.
For an input control word of the form r2nlnund2n, a computation in Πs is done
as follows: Starting from A in region 1, application of the rules r : A → A′, r :
A′ → AC, with the former followed by the latter and finally applying the rule
r : A → A′ followed by the application of the rule r : A′ → BC once consumes r2n

in the input control word and yields the string BCn which is sent to region 2 due
to the target indication (in) in the rule r : A′ → BC. In region 2, the application
of the rule l : BC → B (n − 1) times followed by the rule l : BC → D once,
consumes ln in the control input word and yields the string D which is sent back
to membrane 1 as the rule l : BC → D has target out. The application of the rule
u : D → DXX, n − 1 times, followed by the rule u : D → EXX once, consumes
un in the input control word and the resulting string EX2n is sent again to region
2 due to the target in in the rule u : D → EXX. Now the application of the rule
d : EX → E 2n times consumes d2n in the input control word resulting in the
halting final configuration (∅, {E}) which is in F. Thus the language accepted by
the system (Π1, Σ, F) is {r2nlnund2n | n ≥ 1}.

Figure 1: A star-shaped chain code picture corresponding to the word r4l2u2d4

4 Conclusion

String rewriting P systems with control are considered here for defining string
languages in accepting mode and comparison of the family of languages accepted
by such P systems with certain well-known families of languages is done. The
comparison study can be extended to other families of languages as for example,
the families of languages generated by L systems [19]. The study here and in [20]
consider defining string languages in accepting mode by controlling computations
in P systems by control strings although with different kinds of objects. It will
be of interest to compare both these studies for their descriptional complexity in
terms of number of membranes used in the constructions or the number of rules
used and other kinds of measures.

Acknowledgements The authors thank the reviewers for their very useful comments which
helped in improving the presentation

References

1. Besozzi, D., Mauri, G., Zandron, C., Hierarchies of parallel rewriting P systems - A survey,
New Generation Comput., 22(4), 331–347 (2004).

2. Besozzi, D., Ferretti, C., Mauri, G., Zandron, C., Parallel rewriting P systems with dead-
lock, Lecture Notes Comput. Sci., 2568, 302–314 (2003).

Control Words of String Rewriting P Systems 11

3. Bottoni, P., Labella, A., Martin-Vide,C., Păun, Gh., Rewriting P systems with conditional
communication, Lecture Notes Comput. Sci., 2300, 325–353 (2002).

4. Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J., On string languages
generated by spiking neural P systems, Fund. Inform., 75(1-4), 141–162 (2007).

5. Fernau, H.: Even Linear Simple Matrix Languages: Formal Language Properties and
Grammatical Inference, Theor. Comput. Sci. 289, 425–456 (2002).

6. Ferretti, C., Mauri, G., Păun, Gh., Zandron, C., On three variants of rewriting P systems,
Theor. Comput. Sci. 301, 201–215 ((2003).

7. Ibarra, O.H.: Simple Matrix Languages. Inf. Contro. 17, 359–394 (1970)
8. Krithivasan, K., Păun, Gh., Ramanujan, A., On controlled P systems. Fundam. Inform.,

131(3-4), 451–464 (2014).
9. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodrguez Patón, A., Tissue P systems, Theor.

Comp. Sci., 296(2), 295-326 (2003).
10. Maurer, H.A., Rozenberg, G. Welzl, E., Using string languages to describe picture lan-

guages, Inform. Control 54 (1982) 155–185.
11. Pǎun, Gh., Computing with membranes, J. Comp. System Sci., 61, 108–143 (2000).
12. Păun, Gh., Membrane Computing: An Introduction, Springer-Verlag Berlin, Heidelbrg,

(2000).
13. Păun, Gh., Rozenberg, G., Salomaa, A., The Oxford Handbook of Membrane Computing,

Oxford University Press, Inc., New York, NY, USA, 2010.
14. Pǎun, Gh., Pérez Jiménez, M. J., Languages and P Systems: Recent Developments, Com-

puter Science Journal of Maldova, 20, 112–132 (2012),
15. Ramanujan, A., Control Languages in P Systems, Ph.D Thesis, Indian Institute of Tech-

nology Madras, 2014.
16. Ramanujan, A., Krithivasan, K., Control Languages Associated with Spiking Neural P

Systems, Romanian J. Inform. Sci. Tech., 15(4), 301-318 (2012).
17. Ramanujan, A., Krithivasan, K., Control languages associated with tissue P systems, Proc.

Twelfth Int. Conf. Unconventional Computation and Natural Computation 2013, Lecture
Notes in Comp. Sci., 7956, 186–197 (2013).

18. Rosebrugh, R.D., Wood, D., Image Theorems for Simple Matrix Languages and n-parallel
Languages, Math. Syst. Theor., 8(2), 150–155 (1975).

19. Rozenberg, G., Salomaa, A. (Eds.), Handbook of Formal Languages, Vol. 1-3, Springer,
Berlin, 1997.

20. Sureshkumar, W., Rama, R., Regulating a distributed computing model via Chomsky
hierarchy, GSTF Journal of Mathematics, Statistics and Operations Research, 3(1), 21–29
(2015).

21. Zhang, G., Pan, L.: A survey of membrane computing as a new branch of natural com-
puting, Chinese Journal of Computers 33(2), 208–214 (2010).

