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Abstract. The Parikh matrix of a word w over an alphabet {a1, · · · , ak} with an ordering
a1 < a2 < · · · ak, gives the number of occurrences of each factor of the word a1 · · · ak as a
(scattered) subword of the word w. Two words u, v are said to be M−equivalent, if the Parikh
matrices of u and v are the same. On the other hand properties of image words under different
morphisms have been studied in the context of subwords and Parikh matrices. Here an extension
to three letters, introduced by Séébold (2003), of the well-known Thue morphism on two letters,
is considered and properties of Parikh matrices of morphic images of words are investigated.
The significance of the contribution is that various classes of binary words are obtained whose
images are M−equivalent under this extended morphism.

1. Introduction
In the exciting topic of Combinatorics on words [7, 9, 10], there has been a great interest and
intensive research in the recent past on problems and properties of words although as early as in
the beginning years of 20th century, pioneering work on various combinatorial problems related
to words has been done by Axel Thue [6, 7]. Parikh matrix of a word, introduced by Mateescu
et al. [13] is a comparatively recent research area in this field and is an extension of the classical
notion of Parikh vector [14, 15] which tells the number of occurrences of symbols of an alphabet,
in a given word. The Parikh matrix of a word w over an ordered alphabet {a1, · · · , ak} is an
upper triangular matrix, with 1′s on the main diagonal and 0′s below it but the entries above
the main diagonal give information on the number of certain subwords (or also called scattered
subwords) in w. In fact the Parikh matrix gives the number of occurrences of each factor of
the word a1 · · · ak as a subword of the word w and has the Parikh vector in the second diagonal
above the main diagonal.

There has been a number of studies establishing various properties of words based on the Parikh
matrix. In fact M−equivalence of words which requires the Parikh matrices of the words to



be the same, is an intensively investigated property. Another study is on obtaining properties
of Parikh matrices of words under certain mappings, called morphisms on words. Atanasiu [2]
considers Istrail morphisms and investigates amiability or ambiguity of image words, based on
M−equivalence and points out the use of Istrail morphism in the problem of “disambiguation”
of binary amiable words. Teh [19] provides a general investigation of this problem and proves
that no morphism can completely separate M−equivalent words. In [8, 18] certain properties of
Parikh matrices of morphic image words on two or three letters, under extensions [16, 11] of the
well-known [10] Thue morphism and the Fibonacci morphism, are obtained. Here we consider
the extension to three letters, introduced by Séébold [16], of the well-known Thue morphism on
two letters. We obtain several classes of binary words whose images are M−equivalent under
this extended morphism, which we call as the Séébold morphism.

2. Basic Definitions and Results
Basic notions and results [10, 13] needed for the study in the subsequent sections are first recalled.

An alphabet is a finite set of symbols. An ordered alphabet is an alphabet endowed with
an ordering, denoted by <, on its elements. For instance, the alphabet {a, b, c} with an ordering
a < b < c, is an ordered alphabet, which is written as {a < b < c}. We are mainly concerned
with alphabets with two or three symbols. A word is a finite sequence of symbols belonging to
an alphabet. For example the word aabbabb is over the binary alphabet {a, b} while the word
acbabcab is a word over the ternary alphabet {a, b, c}. The set of all words over an alphabet Σ
is denoted by Σ∗. A subword (also referred to as scattered subword) v of a given word w is a
subsequence of w. The number of subwords v in a given word w is denoted as |w|v. For example,
the number of subwords aab in a given word aabbabb over {a < b}, is |aabbabb|aab = 8.

The Parikh vector [14, 15] of a word w over an alphabet Σ = {a < b < c} is given by
(na(w), nb(w), nc(w)) where nx(w) is the number of occurrences of the symbol x in the word
w. For example, the Parikh vector of the word acbabcab over the alphabet Σ is (3, 3, 2). The
notion of Parikh matrix of a word w over an ordered alphabet Σ, introduced by Mateescu et al.
[13], is an extension of the notion of Parikh vector of w. We recall the notion of Parikh matrix
of a word restricting ourselves to only a binary or a ternary alphabet. For more details and a
formal definition of the Parikh matrix of a word over any ordered alphabet, we refer to [13]. If
Σ2 = {a < b} and Σ3 = {a < b < c} then the Parikh matrix M(u) of a word u over Σ2 and the
Parikh matrix of a word v over Σ3 are given by

M(u) =

 1 |u|a |u|ab
0 1 |u|b
0 0 1

 , M(v) =


1 |v|a |v|ab |v|abc
0 1 |v|b |v|bc
0 0 1 |v|c
0 0 0 1

 .

For example, the word u = aabbabb over {a < b} has three a′s, four b′s and ten subword ab. The
word v = acbabcab over {a < b < c} has three a′s, three b′s, two c′s and six subword ab, two
subword bc and three subword abc. Thus the Parikh matrices are

M(u) =

 1 3 10
0 1 4
0 0 1

 , M(v) =


1 3 6 3
0 1 3 2
0 0 1 2
0 0 0 1

 .

In fact instead of recalling the formal definition [13], we mention here the ingenious technique
of deriving the Parikh matrix described in [13]. For a binary ordered alphabet Σ2 = {a < b},



with each of a and b, a 3× 3 triangular matrix is associated as follows:

a 7→M(a) =

 1 1 0
0 1 0
0 0 1

 , b 7→M(b) =

 1 0 0
0 1 1
0 0 1

 .

For a word over Σ2, for example, u = aabbabb, the Parikh matrix M(u) is the matrix product

M(u) =M(a)M(a)M(b)M(b)M(a)M(b)M(b) =

 1 3 10
0 1 4
0 0 1

 .

Like wise, for a ternary ordered alphabet Σ3 = {a < b < c}, with each of a, b and c, a 4 × 4
triangular matrix is associated as follows:

a 7→M(a) =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , b 7→M(b) =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 , c 7→M(c) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Thus for v = acbabcab over Σ3 = {a < b < c},

M(v) =M(a)M(c)M(b)M(a)M(b)M(c)M(a)M(b) =


1 3 6 3
0 1 3 2
0 0 1 2
0 0 0 1

 .

Two words u, v are said to be M−equivalent (also called M−ambiguous or amiable) [13], de-
noted u ≡M v, if they have the same Parikh matrices i.e. M(u) = M(v). We note that the
words u = abaabbb, v = aabbabb over {a < b} have the same Parikh matrix M(u) = M(v) = 1 3 10

0 1 4
0 0 1

 and hence are M−equivalent.

We next recall a weak-ratio property considered in [17]. Two words u, v over {a < b < c} satisfy
a weak-ratio property, written u ∼wr v, if there is a constant k > 0, such that |u|a = k|v|a,
|u|b = k|v|b and |u|c = k|v|c. If the alphabet is {a, b}, u ∼wr v, if there is a constant k > 0, such
that |u|a = k|v|a and |u|b = k|v|b. We next recall the notion of a morphism [10] on words as a
mapping φ : Σ∗ → Γ∗, where Σ and Γ are two alphabets, such that φ(uv) = φ(u)φ(v), for words
u, v over Σ.

Lemma 1 [3] Let Σ, Γ be two finite ordered alphabets. Let α, β be two words over Σ in weak
ratio property and φ : Σ∗ −→ Γ∗ be a morphism. Then φ(α) ∼wr φ(β).

Thue morphism [10] (also called Thue-Morse morphism), is a well-known morphism extensively
investigated in different studies on combinatorics on words (see, for example, [16]). It is a
mapping µ on Σ∗, where Σ = {a, b} and is given by µ(a) = ab, µ(b) = ba. Séébold [16] introduced
a natural generalization of Thue morphism on n symbols, which we refer to as Séébold morphism.
We recall the definition of these Séébold morphism restricting the alphabet to three letters.
Unless stated otherwise, we denote the ordered alphabets {a < b} and {a < b < c} respectively
by Σ2 and Σ3.

Definition 1 The Séébold morphism σ : Σ∗
3 7→ Σ∗

3 is defined by σ(a) = ab, σ(b) = bc, σ(c) = ca.

We now recall needed known results.



Lemma 2 [3] Let Γ1,Γ2 be two ordered alphabets and f : Γ∗
1 −→ Γ∗

2 be a morphism. Then, for
all w ∈ Γ∗

1, and for all a ∈ Γ2, we have

|f(w)|a =
∑
r∈Γ1

|w|r · |f(r)|a.

Lemma 3 [3] Let f : Σ∗
3 −→ Σ∗

3 be a morphism. For x, y ∈ Σ3, w ∈ Σ+
2 , we have

|f(w)|xy =
∑
r∈Σ2

|w|r|f(r)|xy +
∑

r,t∈Σ2

|w|rt|f(r)|x|f(t)|y.

Lemma 4 [1] Let α, β be any two M−equivalent words over Σ2. Then

M(φ(α))−M(φ(β)) =


0 0 0 n
0 0 0 0
0 0 0 0
0 0 0 0


where φ : Σ∗

2 → Σ∗
3 is a morphism and n = |φ(α)|abc − |φ(β)|abc is an integer.

Lemma 5 [12] Let u, v be two words over Σ∗
3 satisfying

i) the weak-ratio property, namely, u ∼wr v and

ii) |u|a|u|bc = |u|ab|u|c and |v|a|v|bc = |v|ab|v|c.

Then the words uv, vu are M−equivalent i.e. M(uv) =M(vu).

Atanasiu and Teh [4] considered a restricted shuffle operator SShuf on two binary words
over Σ2 as follows: If u, v ∈ Σ+

2 such that u = a1a2 · · · an, v = b1b2 · · · bn for n ≥ 1, then
SShuf(u, v) = a1b1a2b2 · · · anbn where ai, bi ∈ Σ2, (1 ≤ i ≤ n). Properties on M−equivalence
in the context of such binary words SShuf(u, v) are obtained in [4]. We recall two of these
properties in the following lemmas.

Lemma 6 [4] If v1, v2, w1, w2 are binary words over Σ2, such that |v1| = |v2| and v1 ≡M

w1, v2 ≡M w2, then SShuf(v1, v2) ≡M SShuf(w1, w2).

Lemma 7 [4] Let v, w be two binary words over Σ2, such that |v| = |w|. Then SShuf(v, w) ≡M

SShuf(w, v) if and only if ψ(v) = ψ(w) where ψ(x) is the Parikh vector of the word x.

Remark 1 Results corresponding to Lemma 6 and Lemma 7 are not known. In fact it is pointed
out in [4] in Page 7, that these results cannot be immediately extended to the ternary alphabet.

An extension of the operator SShuff [4], denoted by Sm,n, is introduced in [5]. Informally
expressed, this shuffle operator Sm,n, m, n ≥ 1, in operating on a pair of binary words (u, v)
forms a binary word Sm,n(u, v) obtained by concatenating alternately consecutive factors of u
and v, with each factor in u of length m and in v of length n respectively. Here we recall this
extension operator but with m = n = 2.

Definition 2 Let u, v be two binary words over Σ2 such that u = u1u2 · · ·ul and v = v1v2 · · · vl,
where ui, vi ∈ Σ∗

2, |ui| = |vi| = 2, for 1 ≤ i ≤ l. The shuffle operator, denoted as S2,2 is defined
on the pair (u, v) as follows: S2,2(u, v) = u1v1u2v2 · · ·ulvl. In particular, when m = n = 1, we
have S1,1(u, v) = SShuf(u, v).



3. Main Results
Using the results in Lemma 2 and Lemma 3, we first obtain formulae which give the counts of
certain subwords in the image under the Séébold morphism σ of a word over Σ2. These formulae
are obtained in [18] but the proof given here is more precise and is given for completeness.

Theorem 1 [18] For a word w ∈ Σ∗
2,

(i) |σ(w)|a = |w|a, |σ(w)|b = |w|a + |w|b = |w|, |σ(w)|c = |w|b
(ii) |σ(w)|ab = 1

2 |w|a (|w|a + 1) + |w|ab
(iii) |σ(w)|bc = 1

2 |w|b (|w|b + 1) + |w|ab
where σ : Σ∗

3 7→ Σ∗
3 is the Séébold morphism.

Proof. Let w be a nonempty word over Σ2. By Lemma 3, we have |σ(w)|a =
∑

r∈Σ2
|w|r · |σ(r)|a

= |w|a as |σ(a)|a = 1 and |σ(b)|a = 0. Likewise, |σ(w)|b = |w|a + |w|b as |σ(a)|b = |σ(b)|b = 1
while |σ(w)|c = |w|b as |σ(a)|c = 0 and |σ(b)|c = 1. This proves (i).
By Lemma 3,

|σ(w)|ab =
∑
r∈Σ2

|w|r|σ(r)|ab +
∑

r,t∈Σ2

|w|rt|σ(r)|a|σ(t)|b

= |w|a + |w|aa + |w|ab = |w|a +
1

2
|w|a(|w|a − 1) + |w|ab =

1

2
|w|a (|w|a + 1) + |w|ab

since |σ(a)|a = |σ(a)|b = 1 and |σ(b)|a = 0, |σ(b)|b = 1. This proves (ii). The proof of (iii) is
similar.

We now consider certain special binary words over Σ2 and show that the Séébold morphism
retainsM−equivalence only when the binary word has an equal number of a′s and b′s.We make
use of Lemma 4.

Theorem 2 Let δ ∈ Σ∗
2 with an equal number of a′s and b′s. Then the word σ(abδba) is

M−equivalent to the word σ(baδab) where σ is the Séébold morphism.

Proof. The words α = abδba and β = baδab are M−equivalent with Parikh matrix 1 2 + |δ|a 2 + |δ|+ |δ|ab
0 1 2 + |δ|b
0 0 1

 .

Then by definition, σ(α) and σ(β) are M−equivalent if M(σ(α)) = M(σ(β)). Using Lemma
4, σ(α) and σ(β) are M−equivalent if |σ(α)|abc − |σ(β)|abc = 0. Now σ(α) = abbcσ(δ)bcab and
σ(β) = bcabσ(δ)abbc. By Lemma 1, |σ(δ)|a = |δ|a, |σ(δ)|c = |δ|b, and by hypothesis |δ|a = |δ|b
so that

|σ(α)|abc = 5 + |σ(δ)|abc + 2|σ(δ)|c + |σ(δ)|bc + |σ(δ)|a + |σ(δ)|ab + |σ(δ)|b

= 5 + |σ(δ)|abc + 2|σ(δ)|a + |σ(δ)|bc + |σ(δ)|c + |σ(δ)|ab + |σ(δ)|b = |σ(β)|abc.

This proves the result.

Remark 2 We note that the Theorem 2 does not hold for any binary word δ. For example, if
δ = aba, then |δ|a ̸= |δ|b and |σ(abδba)|abc = 20 while |σ(baδab)|abc = 21.

A more general situation on the M−equivalence of σ(α) and σ(β) for binary words α, β is given
in the following result.



Theorem 3 Let α, β be two words over Σ2 satisfying the following condition

(A) : |α|aab + |α|abb = |β|aab + |β|abb.

Then σ(α) and σ(β) are M−equivalent if and only if α, β are M−equivalent, where σ is the
Séébold morphism.

Proof. Under an application of σ to the word α, the subwords ab, aab, abb yield the subword abc
in σ(α). Thus |σ(α)|abc = 2|α|ab+ |α|aab+ |α|abb, |σ(β)|abc = 2|β|ab+ |β|aab+ |β|abb. Assume that
the binary words α, β are M−equivalent. Then we have |α|ab = |β|ab. Also, by Lemma 4, it is
enough to show that |σ(α)|abc = |σ(β)|abc, and this is true by hypothesis. Conversely, suppose
σ(α) and σ(β) are M−equivalent. Then by Theorem 1, |α|a = |σ(α)|a = |σ(β)|a = |β|a. Again
by Theorem 1, |α|b = |σ(α)|b− |α|a = |σ(β)|b− |β|a = |β|b. Also, by hypothesis and the equality
|σ(α)|abc = |σ(β)|abc we have |α|ab = |β|ab, thus proving the assertion.

Remark 3 The hypothesis in Theorem 3 is not vacuous in the sense that there are binary words
satisfying the condition (A). The words α = abaab and β = aabba are M−equivalent words over
Σ2. Also |α|aab + |α|abb = |β|aab + |β|abb = 4. In fact σ(α) = abbcababbc, and σ(β) = ababbcbcab
have the same Parikh matrix, namely,

1 3 10 12
0 1 5 7
0 0 1 2
0 0 0 1

 .

We now derive a sufficient condition on two binary words u, v so that the words σ(uv) and σ(vu)
are M−equivalent. We use Lemma 5 to obtain this condition.

Theorem 4 Let the words u, v ∈ Σ∗
2 be such that |u|a = |u|b and |v|a = |v|b Then M(σ(uv)) =

M(σ(vu)) so that σ(uv), σ(vu) are M−equivalent, where σ is the Séébold morphism.

Proof. Since |u|a = |u|b and |v|a = |v|b, the words u, v satisfy the weak-ratio property, which
implies, by Lemma 1, that σ(u) and σ(v) also satisfy the weak-ratio property. Also, using
Theorem 1 and the hypothesis, we have

|σ(u)|a|σ(u)|bc = |u|a
[
1

2
|u|b (|u|b + 1) + |u|ab

]

=

[
1

2
|u|a (|u|a + 1) + |u|ab

]
|u|b = |σ(u)|ab|σ(u)|c.

Likewise |σ(v)|a|σ(v)|bc = σ(v)|ab|σ(v)|c. Hence by Lemma 5, M(σ(uv)) =M(σ(vu)).

Remark 4 The condition in the hypothesis of Theorem 4 is only sufficient and is not necessary.
For example, consider u1 = babab, v1 = bbaaaabbbba. Although |u1|a ̸= |u1|b and |v1|a ̸= |v1|b,
the words σ(u1v1) and σ(v1u1) have the same Parikh matrix

1 7 59 198
0 1 16 76
0 0 1 9
0 0 0 1

 .

In the special case when two binary words u, v over Σ2 have the same Parikh vector, then the
conditions |u|a = |u|b and |v|a = |v|b are necessary and sufficient for M−equivalence of σ(uv)
and σ(vu) as shown in the following Theorem 5.



Theorem 5 Let the words u, v ∈ Σ∗
2 be such that u and v have the same Parikh vector but

not M−equivalent so that |u|a = |v|a, |u|b = |v|b and |u|ab ̸= |v|ab. Then σ(uv), σ(vu) are
M−equivalent if and only if |u|a = |u|b and |v|a = |v|b, where σ is the Séébold morphism.

Proof. In view of Theorm 4, it is enough to prove necessity. Assume that σ(uv), σ(vu) are
M−equivalent. Then M(σ(uv)) =M(σ(vu)) so that |σ(uv)|abc = |σ(vu)|abc. This implies that

|σ(u)|a|σ(v)|bc + |σ(u)|ab|σ(v)|c = |σ(v)|a|σ(u)|bc + |σ(v)|ab|σ(u)|c.

Using Theorem 1, we obtain |u|a
[
1
2 |v|b (|v|b + 1) + |v|ab

]
+ |v|b

[
1
2 |u|a (|u|a + 1) + |u|ab

]
=

|v|a
[
1
2 |u|b (|u|b + 1) + |u|ab

]
+ |u|b

[
1
2 |v|a (|v|a + 1) + |v|ab

]
. Using the hypothesis that |u|a =

|v|a, |u|b = |v|b, we obtain

|u|a|v|ab + |u|b|u|ab = |u|a|u|ab + |u|b|v|ab
which implies that

|u|a (|v|ab − |u|ab) = |u|b (|v|ab − |u|ab) .
By hypothesis, |u|ab ̸= |v|ab and so |u|a = |u|b. Likewise |v|a = |v|b.

We now consider the shuffle operator S2,2 which is a special case of the extended shuffle op-
erator Sm,n introduced in [5].

Theorem 6 If v1, v2, w1, w2 are binary words over Σ2, such that |v1| = |v2| and v1 ≡M w1,
v2 ≡M w2, then S2,2(σ(v1), σ(v2)) ≡M S2,2(σ(w1), σ(w2)), if

Σx∈{aab,abb}|SShuf(v1, v2)|x = Σx∈{aab,abb}|SShuf(w1, w2)|x.
Proof. It can be seen that

S2,2(σ(v1), σ(v2)) = σ(SShuf(v1, v2)), S2,2(σ(w1), σ(w2)) = σ(SShuf(w1, w2)).

By Lemma 6, we have SShuf(v1, v2) ≡M SShuf(w1, w2). Since by hypothesis

|SShuf(v1, v2)|aab + |SShuf(v1, v2)|abb = |SShuf(w1, w2)|aab + |SShuf(w1, w2)|abb,
it follows from Theorem 3 that
σ(SShuf(v1, v2)) ≡M σ(SShuf(w1, w2)) which proves S2,2(σ(v1), σ(v2)) ≡M S2,2(σ(w1), σ(w2)).

We illustrate Theorem 6 by considering v1 = abaabb, w1 = aabbab, v2 = bbabba, and
w2 = bbbaab so that σ(v1) = abbcababbcbc, σ(v2) = bcbcabbcbcab and so S2,2(σ(v1), σ(v2))
= abbcbcbcabababbcbcbcbcab. Likewise, S2,2(σ(w1), σ(w2))
= abbcabbcbcbcbcabababbcbc. The words S2,2(σ(v1), σ(v2)) and S2,2(σ(w1), σ(w2)) have the same
Parikh matrix 

1 5 34 101
0 1 12 47
0 0 1 7
0 0 0 1

 .

Theorem 7 Let v, w be two binary words over Σ2, such that |v| = |w|. Then S2,2(v, w) ≡M

S2,2(w, v) if ψ(v) = ψ(w) where ψ(x) is the Parikh vector of the word x and if
Σx∈{aab,abb}|SShuf(v, w)|x = Σx∈{aab,abb}|SShuf(wv, )|x.
Proof. As in the proof of Theorem 6, we have

S2,2(σ(v), σ(w)) = σ(SShuf(v, w)), S2,2(σ(w), σ(v)) = σ(SShuf(w, v)).

By Lemma 7,SShuf(v, w) ≡M SShuf(w, v). Also, by hypothesis

|SShuf(v, w)|aab + |SShuf(v, w)|abb = |SShuf(w, v)|aab + |SShuf(w, v)|abb.
It follows from Theorem 3 that σ(SShuf(v, w)) ≡M σ(SShuf(w, v)) which proves the result.



4. Conclusion
We have obtained properties related to subwords and Parikh matrices of the image words under
an extension of Thue morphism considered by Séébold [16]. In particular several classes of
binary words are obtained, whose images are M−equivalent under this extended morphism,
which we call as Séébold morphism. Investigating properties of Parikh matrices of special words
under specific morphisms as considered here, is of significance in bringing out the capability of
a specific morphism in preserving or not preserving M−equivalence of words. So it will be of
interest to construct other kinds of M− equivalent binary words whose images under special
morphisms on three or more letters are M−equivalent.
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