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Abstract—Robot assisted guiding is gaining increased interest
due to many applications involving moving in noisy and low
visibility environments. In such cases, haptic feedback is the
most effective medium to communicate. In this paper, we focus
on perturbation based haptic feedback due to applications like
guide dogs for visually impaired people and potential robotic
counterparts providing haptic feedback via reins to assist indoor
firefighting in thick smoke. Since proprioceptive sensors like
spindles and tendons are part of the muscles involved in the
perturbation, haptic perception becomes a coupled phenomenon
with spontaneous reflex muscle activity. The nature of this
interplay and how the model based sensory-motor integration
evolves during haptic based guiding is not well understood yet.
In this study, we asked human followers to hold the handle
of a hard rein attached to a 1-DoF robotic arm that gave
perturbations to the hand to correct an angle error of the follower.
We found that human followers start with a 2nd order reactive
autoregressive following model and changes it to a predictive
model with training. The post-perturbation Electromyography
(EMG) activity exhibited a reduction in co-contraction of muscles
with training. This was accompanied by a reduction in the
leftward/rightward asymmetry of a set of followers behavioural
metrics. These results show that the model based prediction
accounts for the internal coupling between proprioception and
muscle activity during perturbation responses. Furthermore, the
results provide a firm foundation and measurement metrics to
design and evaluate robot assisted haptic guiding of humans in
low visibility environments.

Index Terms—Haptics, Human-robot interactions, behavioural
metrics.

I. INTRODUCTION

In the case of human intervention in disaster response
operations like indoor fire fighting where the environment
perception is limited due to thick smoke, noise in the Oxygen
masks, and clutter, impairment of environmental perception
compounds distress. Haptic mode of communition offers a
good solution because it is the least affected perception in
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such cases. Our previous studies using human-human demon-
strations of haptic based guidance using a hard rein showed
that the guiders build a 3rd order predictive autoregressive
model whereas the naive blindfolded followers exhibit a 2nd
order reactive autoregressive model [1], [2]. In this paper we
implemented the identified predictive guiance policy on a 1-
DoF robotic arm to understand the interplay between muscle
activity and haptic perception and how model based sensori-
motor integration evolves during training.

Robotic guidance has been addressed in several physical
Human-Robot Interaction (HRI) scenarios such as search and
rescue, disaster response [3], human navigation [4], [5], [6],
and even during dance training [7]. In [8], authors report
a number of cases where computer controlled mechatronic
devices are used to provide remote haptic perception of real
environments. A human with perceptual limitations due to
physiological or environmental reasons would regain smooth
movements with guiding assistance. A robotic guide dog
called Rovi [9] to guide a human with limited environment
perceptions is an example.

When a robot guides a human in a low visibility environ-
ment using arm perturbations, it is important to understand
how humans perceive the arm perturbation. There are several
metrics used to assess the effectiveness of human-robot inter-
actions [10], [11]. In [10] authors present analysis of human-
robot co-operative load transport to adjust the robot’s urge to
complete the task based on the human feedback. In this study,
the authors introduce metrics that quantify mass and grasp.
Moreover, the study to understand the interaction patterns
involving two or more humans in the physical task, a confusion
matrix was used to classify some behavioural patterns [11].
Studies done in morphological computation [12] show that
perception and action are related through a shared embodiment
[13], [14]. When haptic perception is coupled with muscle
activation due their shared embodiment, the brain is posed with
the challenge of compensating for asymmetries in perception
of equal perturbations given in different directions due to
inherent asymmetry in muscle activation.

In this study, experiments were designed to understand
humans’ perception of external perturbations on the resting
hand. We implemented a previously identified 3rd order guid-
ing control policy on a planar 1-DoF robotic arm to guide
blindfolded subjects to reach a desired point. This paper
presents two experiments. The first experiment attempts to
study any symmetry in behavioural metrics such as Rise
Time (RT), best fit model order of the polynomial fitted to
the instantaneous error of the human’s position for a given
desired angle (N), and Steady State Variability (SSV) when the
extracted guiding control policy in human demonstration ex-
periments was implemented on a planar 1-DoF robotic arm to
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Fig. 1: Experiment 1: Experimental set up, A) The diagram for human-human demonstration (the guider and follower duo)
in our previous studies [1], [2]: the state is � and the action is ✓. � is the orientation difference between the guider and the
follower and ✓ is angle of the rein relative to the agent, B) The schematic diagram of human-robot interaction: The guiding
policy, extracted from human demonstrations in [1], [2] shown in Fig. 1A was implemented on the planar 1-DoF robotic arm,
and C) Human-robot experimental setup: The cord was attached to the waist belt of the blindfolded subjects and the encoder
on the robot to measure the relative error between the human and the motor shaft (�).

perturb the blindfolded subjects’ most dominant arm to guide
them in leftward/rightward directions. Next, the experiment
2 was designed to study muscle activation just after the arm
perturbation.

The structure of the rest of the paper is as follows. Section
II elaborates the experimental methodology to collect data of
subjects. Section III gives the experimental results of subjects.
Finally, section IV gives a conclusion and future works.

II. EXPERIMENTAL METHODOLOGY

A. Experimental protocol: human-robot interactions
In both experiments, the subjects were given the Oldfield

1971 handedness questionnaire [15] to avoid adding ambidex-
trous in to the analysis. Visual feedback to the subject was cut
off by blindfolding, while the auditory feedback was cut off
by playing a sound track of less than 70 dB (For example
noise in a cocktail party). The experimental protocol was
approved by the King’s College London Biomedical Sciences,
Medicine, Dentistry and Natural & Mathematical Sciences
research ethics committee.

Subjects were given an arm perturbation by a planar 1-DoF
robotic arm. Therefore, subjects’ movements were limited to
leftward and rightward movements from the home position
(the home position is shown in Fig. 1B). Leftward and
rightward angular position from home position were taken as
+�� and ��� respectively (Hereafter, +�� and ��� notation
will be used to leftward and rightward movements throughout
this paper). Since the robotic arm was mounted on a stationary
table, the subjects’ movement was limited to maximum 90�

and �90� angles in leftward and rightward movements. There-
fore, ±65� and ±25� were taken as maximum and minimum
desired angles to represent large and small initial errors to be
corrected by the robotic guider.

B. Experimental setup
The schematic diagram of replication of human-human

experiments in our previous studies in Fig. 1A were replicated

by human-robot experiments as shown in Fig. 1B. In Fig. 1B,
the angle (�) is the error of following (The angle between the
human’s current position and the desired position around the
motor axis), the angle (✓) is the robotic arm’s swing angle
on the horizontal plane. Moreover, the replicated physical
experimental setup is shown in Fig. 1C. In Fig. 1C, the guider’s
arm was replaced by planar 1-DoF robotic arm to generate the
swing arm action in horizontal plane. The cord was attached
to the waist belt of the blindfolded subject and the encoder on
the robot arm to measure the error between the human and the
desired position (�). The planar robot arm shaft was driven by
a Maxon EC60 (�) mm brush less 400 Watt with Hall sensors
motor. An EPOS2 50/5 digital position controller was used
to control the motor. Here, NI LabVIEW 2009 was used for
programming and communicating with other hardware devices
to control the robotic arm. The joint between the robotic arm
and the hard rein was a passive joint to behave like a guider’s
arm in human-human interaction experiments in Fig. 1A. The
other end of the hard rein was held by the human follower as
shown in Fig. 1C.

C. Subject’s training phase
Before starting the experimental trials, subjects were

trained to give an idea to move proportional to the
given tug force. For the training, the desired angles
were chosen different from experimental angles such as
�10�,�20�,�30�,+10�,+20�, and +30�. Blindfolded sub-
jects were asked to follow the arm perturbation without manip-
ulating any force and step to the new position from the initial
position of the subject. Here, the planar robot arm perturbed
subject’s most dominant arm with a single tug force in the
direction of the desired movement. The subjects performed 5
trials for each training angle. In the training phase, the subjects
were trained to move proportional to the perturbed tug force.

D. Experimental procedure
Experiment 1 and experiment 2 procedures are as follows.



1) Experiment 1: Study the humans’ behavior in human-
robot interaction: Eight (4-male, 4-female) naive and ten (5-
male, 5-female) trained right-handed subjects participated in
the experiment after giving informed consent for the exper-
iment 1. They were healthy and in the age group of 21 -
30 years. In any given trial, subjects started to move from
the home position to the direction of the arm perturbation as
shown Fig. 1B. Subjects were instructed to move proportional
to the force they felt and to the direction of the tug force.
The instantaneous error of the follower’s position relative to a
desired angle (�) was recorded by an encoder (Rotary encoder
SP Series: SP115669-360PPR).

Once the trial was started, the encoder read instantaneous
error of the follower’s position relative to a desired angle
(�). Then the robotic arm computed the commands to min-
imise the error between the human subject and the desired
angle within the 70s time based on the control policy we
previously indentified in [2]. During that time, 23 action
commands (iterations) were recorded. For a given desired
angle, same trial was repeated three times. Therefore, eighteen
trials were recorded during the experiment. Subjects were
given a five minutes break after every six trials to minimise
fatigue. In this experiment, we defined six desired angles (�):
�25�,�45�,�65�,+25�,+45�, and +65�. The order of the
reaching desired angles was selected pseudo randomly and it
was maintained consistently across all subjects.

2) Experiment 2: Study humans’ arm muscle spontaneous
responses immediately after the arm’s perturbation: Five
naive subjects (2-male, 3-female) and ten (6-male, 4-female)
trained subjects participated to the experiment 2. They were
healthy and in the age group of 21 - 28 years. The Experiment
2 was conducted to study humans’ arm muscle responses
when the subject’s arm is perturbed from leftward/rightward
directions. For simplicity, �45� and +45� were taken as the
desired angular positions and the subject’s most dominant
arm was perturbed by a single tug to study arm muscles
actuation immediately after the arm perturbation. Five trials
were recorded for each desired angles.

Surface EMGs were recorded by using the EMG (Noraxon,
USA) sensors from the following muscles of the blindfolded
subject’s most dominant arm: Anterior Deltoid(AD), Posterior
Deltoid (PD), Biceps (Bc), Median Triceps (MT), Brachio-
radialis (Br), Flexor Carpi Radialis (FCR), Extensor Carpi
Ulnaris (ECU), and Extensor Carpi Radialis (ECR). Before
attaching EMG electrodes, the skin was cleaned with alcohol.
The electrodes were 2 mm in diameter and 12 mm apart. EMG
records were carefully monitored for stimulus artefacts, noise,
and cross-talk by firmly attaching to the skin using double-
sided adhesive tape.

III. RESULTS

A. Model nature of the human follower in human-robot ex-
periments

Since the follower’s model order and the nature (reac-
tive/predictive) were extracted in our previous human demon-
stration experiments when the blindfolded human is guided
by another human via a hard rein, it would be interesting to
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Fig. 2: Experiment 1: Reactive and predictive model nature
(reactive/predictive) in reaching desired angles of ±65�, ±45�,
and ±25� :A) Average R2 for naive subjects’ model nature,
and B) Average R2 for trained subjects’ model nature.

Naive Subjects TrainedSubjects
Reactive Predictive Reactive Predictive

±25� 0.281 -0.041 -0.118 0.0295
±45� 0.190 -0.0489 -0.46 0.054
±65� -0.046 0.092 -0.042 0.067

TABLE I: Experiment 1: The gradient of R2 values of reactive
and predictive models in reaching ±65�, ±45�, and ±25�

desired angles over trials.

test the subjects’ model order and the nature in HRI. In our
previous experiments [2], it was found that on average the
naive follower used a 2nd order reactive model. Here, our aim
is to find out whether this would change with training for the
same guiding control algorithm.

1) Modeling the follower’s state transition policy : Here we
revisited the mathematical methods that we have been used in
our previous studies to find the model nature. First, we show
the brief description of the method that we have used in our
previous studies [1], [2].

We model the follower’s state transition policy by an Auto-
Regressive model (AR) as an N -th order discrete linear
controller. AR model gives us temporal (model nature) and
structural (model order) relationship. Our first attempt is to
find the model nature of the follower. Here, the order N
depends on the number of past states used to calculate the
current action. Let the state be the relative orientation between
the guider and the follower given by �, and the action be the
angle of the rein relative to the sensor on the chest of the guider
given by ✓ as shown in Fig. 1A. We model the follower’s state
transition policy as an N -th order action dependent discrete
linear controller to understand behaviour of the follower. The
order N depends on the number of past actions used to
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Fig. 3: Experiment 1: The behavioural metrics for reaching six desired angles for naive and trained subjects: a) Average Rise
time (RT) for naive subjects in transient response, b) Average Model order (N) for naive subjects: the best fit model order is
set by AIC, c) The average Steady State Variability (SSV) for reaching six desired angles across all naive subjects, d) Average
RT for trained subjects in transient response, e) Average N for trained subjects, and f) Average SSV for reaching six desired
angles across all trained subjects. The black dashed line is to show the home position and standard error is shown by red with
error bars from Fig. 3a to Fig. 3f.

calculate the current state. Then the linear discrete control
policy of the follower is given by

�f (k) =
N�1X

r=0

afRe
r ✓f (k � r) + cfRe (1)

if it is a reactive controller, and

�f (k) =
N�1X

r=0

afPre
r ✓f (k + r) + cfPre (2)

If it is a predictive controller, where, k denotes the sampling
step, N is the order of the polynomial, aRe

r , aPre
r , r =

0, 1, 2, · · · , N � 1 is the polynomial coefficient correspond-
ing to the r-th state in the reactive and predictive model
respectively, and cRe, cPre are corresponding scalars. These
linear controllers can be regressed with the experimental
data obtained the R2 values (coefficient of determination).
The behaviour of these coefficients for all human subjects
across the learning trials will give us useful insights as to
the predictive/reactive nature of the control policy. First Eq.
1 Eq. 2 were regressed to find the Coefficients of equations
(1) and (2) for reaching six desired angles (±65�, ±45�, and
±25�).

Here the Eq. 1 and Eq. 2 were used to find the R2 values
for reactive and predictive models respectively. We use the R2

value to quantify the fraction of the variation of experimental
data explained by the fitted model. i.e. If R2 value is 0.9,
the model explains 90% of the experimental relationship
between the dependent and independent variables. Therefore,
an increase in the R2 value for a predictive model across
trials means that the followers’ behavior increasingly become
a predictive policy (a map from inputs (robot’s commands) to
outputs (movement)).

To test that, the gradient of R2 values of reactive and
predictive models in reaching ±65�, ±45�, and ±25� desired
angles over trials are shown in Table. I. Polyfit in Polynomial
curve fitting (MATLAB 2014a) was used to fit the linear
curves to find the gradients. On average the positive trend
in reactive model in naive subjects shows that, naive subjects
emphasize more on reactive than predictive following behav-
iors. However, after training the positive gradient for predictive
model shows that trained subjects give more emphasis on pre-
dictive nature than reactive as shown in Table. I. Moreover, by
selecting reactive/predictive nature, we summarize the model
nature in reaching ±65�, ±45�, and ±25� desired angles for
naive and trained in Fig. 2A and Fig. 2B respectively. In
general, there were not much improvement in R2 values for
naive subjects as shown in Fig. 2A. However, R2 values in 2B
for trained subjects were improved. Both naive and trained
subjects have mixed reactive and predictive nature in reaching



desired angles as shown in Fig. 2. However, naive subjects
have more dominant reactive nature as shown in Fig. 2A.
Interestingly trained subjects’ most dominant model nature is
predictive as shown in Fig. 2B. From the fact that all subjects
use a mixed strategy with an increasing bias to use a predictive
approach with training, we can also deduce that whenever
possible, subjects take a predictive approach even before the
training. For example, naive and trained subjects show more
predicting model nature moving to ±65� as shown in Fig. 2.
However, they become more predictive for all error correction
levels after training and is more pronounced in reaching higher
angles as shown in Fig. 2B. In general, the results in Fig. 2
show that subjects have intrinsic tendency to be predictive
when ever possible.

Therefore the results show that the predictive nature is
more dominant than reactive after training. In general, naive
subjects’ dominant model nature is reactive and they have a
mixed model nature before and after training phase. The model
nature changes could come from various reasons. Next we
are interested to test the possible causes for the model nature
changes after the training. To test that, we move into study
subjects’ behaviour in reaching six desired angles.

B. Experiment 1: behavioral metrics in left and right arm
perturbations

Here, we present the behavioural metrics such as Rise Time
(RT), best fit model order of the polynomial fitted to the
instantaneous error of the humans’ position for a given desired
angle (N), and Steady State Variability (SSV) for naive and
trained subjects to understand how those metrics relate with
subjects model nature selection strategies. We are interested to
test whether subjects are going to optimize their behavioural
metrics RT, N, or SSV in reaching.

1) Rise time (RT): Here we are interested to see how
fast the human subject could respond and settle down in the
desired angular position in transient response for naive and
trained subjects as shown in Fig. 3a and Fig. 3d respectively.
In this regard, the RT is considered as measured number of
robotic arm commands to reach from 10% to 90% of the
desired angles. We see that average rise time increases with
training. This can come from a predictive model that develops
a critically damped response as opposed to a fast reactive
response with higher settling time.

2) Model order (N): Here Akaike Information Criterion
(AIC) is used to find the best fit order of the reaching curves
of the polynomials [16] as shown in Fig. 3b and Fig. 3e
for naive and trained subjects respectively. The results show
that the follower’s behaviour fits a 2nd order polynomial
when the desired angles are �25�, and +25� for the naive
subjects and �45�, �25�, +25�, and +45� for the trained
subjects as we observed in human demonstration experiments
for the follower. Therefore, the test results shows that when
the subjects are trained, the model order is more consistent as
shown in Fig. 3e.

3) Steady State Variability (SSV): For a stable controller,
steady state response should be as close as possible to the
desired angular position. Therefore, the last 10% (steady state)

of experimental recordings of the instantaneous error of the
subject’s position relative to the desired angle/target point (�)
is taken for steady state analysis as shown in Fig. 3c and Fig. 3f
for naive and trained subjects respectively. The naive subjects’
steady state variability is comparatively high as shown in Fig.
3c. However, after training subjects were able to bring low
steady state variability in reaching desired angles as shown
in Fig. 3f. Moreover, standard error reduction in reaching is
noticed in Fig. 3f for trained subjects for SSV. This again
confirms damped nature in moving without overshooting. This
smoothness in settling is characteristic of a internal model
based predictive movement [17], [18].

Next, we moved to test whether there is a behavioural
symmetry in moving leftward and rightward directions after
arm perturbation in RT, N, and SSV. The ratio in moving
leftward/rightward directions in reaching desired angles for
RT, N, and SSV were taken. Our argument is, if the subjects
move leftward and rightward symmetrically, the ratio, M ⇡ 1.
The average ratios (M) and Standard deviation (STD) of ratios
are shown in Table II. However, none of the M values in
RT, N, and SSV are equal to 1. Since the distributions of
behavioural metrics are not symmetric, one tailed t-test was
performed to test whether there is a statistically significant
difference between the distribution of each metric in leftward
vs rightward movements. We used a significance level of
P = 0.05. Table II shows that the behavioural metrics in
leftward and rightward movements are asymmetric (P < 0.05
for the null hypothesis that M is not equal to 1). The M and P
values in Table II show that the asymmetry in moving leftward/
rightward directions (M 6= 1, and P ⇥ 0.05). Moreover, it
is noticed that there is a reduction in that asymmetry when
subjects are trained as shown in Table II by ⇤. Here, all
significance values for trained behavioural metrics are dropped
as shown in Table II. The possible cause for the drop of
significance values for the trained subjects could come from
subjects being predictive after the training. Next we move on
to study the subjects’ arm muscle activation just after the arm
perturbation to test if there is any significance difference in
muscle activation in leftward/rightward arm perturbation.

C. Experiment 2: Spontaneous muscle response immediately
after the given a single tug

The experiment 2 was conducted to test whether the asym-
metry of perception noticed in behavioural metrics come from
different activation of muscles in leftward and rightward arm
perturbation, based on the hypothesis that haptic perception
depends on how muscles are activated by restoring reflex
after the perturbation. When the arm is perturbed, the muscle
lengthens and muscle spindles are stretched. This contraction
in muscle tension provides different degrees of pull on the
tendon. Therefore, arm muscles’ spontaneous responses were
tested in EMG in experiment 2 immediately after the arm
perturbation (Note that, in this experiment a right-handed
group different from experiment 1 have participated to the
experiment 2).

EMG is a non-invasive method to quantify the relation-
ship between a specific movement and the activation of the



Desired Angles
25� 45� 65�

Rise Time (RT)
N

M: 0.648
STD: 0.421
P: 0.316

M: 0.672
STD: 0.167
P: 0.931

M: 0. 674
STD: 0.200
P: 0.559

T
M: 0.532
STD: 0.302
P: 0.157⇤

M: 0.454
STD: 0.225
P: 0.852⇤

M: 0. 690
STD: 0.170
P: 0.417⇤

Model order (N)
N

M: 0.666
STD: 0.516
P: 0.858

M: 0.550
STD: 0.300
P: 0.467

M: 0. 666
STD: 0.408
P: 0.619

T
M: 0.570
STD: 0.476
P: 0.174⇤

M: 0.696
STD: 0.330
P: 0.253⇤

M: 0. 625
STD: 0.252
P: 0.181⇤

Steady State Variability (SSV)
N

M: 0.568
STD: 0.278
P: 0.749

M: 0.509
STD: 0.307
P: 0.786

M: 0. 614
STD: 0.274
P: 0.184

T
M: 0.562
STD: 0.293
P: 0.701⇤

M: 0.399
STD: 0.312
P: 0.744⇤

M: 0. 485
STD: 0.242
P: 0.109⇤

TABLE II: Experiment 1: The asymmetry testing: M: the average ratio reaching desired angles in leftward/rightward directions,
STD: the average standard deviation of the M, and P: p value of the significance rest results for moving leftward and rightward
in desired angles (one tailed t test) for behavioural metrics RT, N, and SSV for Naive (N) and Trained (T) subjects.

underlying muscle groups. Therefore, the EMG signals in
arm flexion/extension just after the single arm perturbation
were studied in moving 45� in leftward/rightward directions as
shown in Fig. 4A. Since arm muscles are activated differently,
the EMG recordings were normalized as shown in Fig. 4B and
4C for naive and trained subjects respectively. The normalized
average total number of peaks occurred during the arm flex-
ion/extension is presented in Fig. 4B and Fig. 4C for naive and
trained subjects respectively. Our method was consisted with
other research [19] that focused on peaks in EMG to study
limb patterns during the multi-joint movements. Here, EMG
recording across the arm muscles of Anterior Deltoid (AD),
Posterior Deltoid (PD), Biceps (Bc), Median Triceps (MT),
Brachioradialis (Br), Flexor Carpi Radialis (FCR), Extensor
Carpi Ulnaris (ECU), and Extensor Carpi Radialis (ECR) in
anti clock wise direction across all subjects. Butterworth filter
(MATLAB 2012b) was used for subtracting noise from low
magnitude surface EMG [20].

In general, the total number of peaks occurred in flexion
and extension are different as shown in Fig. 4B and Fig.
4C for naive and trained subjects. Since the data are not
normally distributed, the Mann-Whitney U test was used to
test the significance in arm flexion and extension. Significance
was noticed between arm flexion and extension for both
naive (p = 0.0172) and trained (p = 0.0001) subjects.
The results show that on average the muscle activation is
significantly different just after the leftward/rightward arm
perturbations. Moreover, the drop in p-values significance from
naive to trained subjects again confirm reduction in muscle
co-contraction due to the predictive model after training.
Therefore, the results confirm that asymmetry in behavioural
metrics could accompany difference in muscle activation as
noticed in Fig. 4. Therefore, we conclude that the drop in
the behavioural asymmetry could come from the reduction in
muscle co-contraction due to the predictive model.

Next, we tested what behavioral criteria subjects try to
optimize by being predictive in reaching desired angles as

shown Fig. 2. To test that, the behavioural metrics RT, N,
and SSV results were compared to reaching �65�, �45�,
�25�, +25�, +45�, and +65� for naive and trained subjects
as shown in Fig. 3. Interestingly, trained subjects take more
time than naive subjects as shown in Fig. 3d and Fig. 3a
respectively. The higher RT comes from damped reaction and
lower RT comes from undamped reaction with overshooting.
Moreover, after training, a consistent model order (N = 2)
was noticed in trained subjects in Fig. 3e. The higher RT,
and model consistency after training could come from steady
movements of the subjects than overshooting in undamped
movements. Furthermore, the SSV variability is reduced after
the training for reaching all desired angles as shown in Fig. 3f.
Therefore, in summary the results in behavioural metrics show
that by being predictive, subjects achieve higher RT, lower
SSV, and consistent model order (N) after training whereas
naive subjects have inconsistent model order, higher SSV, and
lower RT as shown Fig. 3.

IV. CONCLUSION

This paper presents metrics that can be used to monitor
the change of control mechanisms of human followers during
haptic-based guidance training. Experimental results show that
the subjects develop a predictive behavior accompanied by a
reduction in muscle co-contraction with training. This taken
together with the reduction in the asymmetry of behavioral
indexes show that the model based prediction accounts for
the internal coupling between proprioception and muscle ac-
tivity during perturbation responses. These findings provide a
valuable basis to design training protocols for robot assisted
guiding. Theoretical and psychophysical studies in reaching
movements have suggested that humans learn novel dynamic
environments by building specific internal models in reaching
movements symbolized by improved smoothness of move-
ments and reduction in muscle co-contraction [17], [18].

Our results on the asymmetry of behavioural indexes to-
gether with difference in muscle activation patterns for the
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Fig. 4: Experiment 2: A) Experimental set up. The desired angle is 45� in leftward and rightward directions from the home
position, B) Naive subjects’ EMG activation: The average normalized total number of peaks occurred in EMG recordings across
all naive subjects for eight different arm muscles, and C) Trained subjects’ EMG activation. Here the average normalized total
number of peaks occurred in EMG recordings across all trained subjects for eight different arm muscles, in Fig. 4B and Fig.
4C, the extension and flexion of the arm are shown by blue and brown colours respectively. The standard error for extension
and flexion are shown by black and red. The arm muscles were chosen as Anterior Deltoid(AD), Posterior Deltoid (PD), Biceps
(Bc), Median Triceps (MT), Bra- chioradialis (Br), Flexor Carpi Radialis (FCR), Extensor Carpi Ulnaris (ECU), and Extensor
Carpi Radialis (ECR).

perturbations given in leftwards vs rightwards show that
perception of external perturbations are coupled with the
resulting spontaneous muscle activation reflexes. When the
arm is perturbed the muscle lengthens and muscle spindle is
stretched. This contraction in muscle tension provides different
degrees of pull on the tendon in the arm muscles of the
humans. Therefore, in the experiment 2, we hypothesize that
haptic perception depends on how muscles are activated by
restoring reflex after the arm perturbation. Since a significant
difference was noticed in arm flexion and extension for both
naive (p = 0.0172) and trained (p = 0.0001) subjects and the
drop in the difference of EMG between extension/flexion from
naive to trained subjects, here we conclude that the drop in
EMG could come from reduction in muscle co-contraction due
to the predictive model. Recent studies on manual soft tissue
palpation to identify hard nodules have found that human
subjects use muscle co-contraction variation to gain haptic in-
formation [21]. Experiments on soft robotic counterparts to do
the same palpation task have found that stiffness control in the
body in fact plays an important role in uncertainty reduction
in haptic perception [22]. The findings in this paper further
confirm that muscle co-contraction and haptic perception are
intrinsically coupled. Moreover, we found that development
of model based predictive control with training help to reduce
asymetry of perception present in naive subjects by reducing
antagonistic muscle co-contraction to develop a more isotropic
post-perturbation spontaneous muscle activation. Therefore, to
the best of our knowledge, this is the first time to report

that training leads to changes in both perception and muscle
activation. Therefore, the experimental findings reported in this
paper provide new evidence to show the importance of treating
perception and action as a coupled phenomenon [23] in living
beings that cannot be easily separated as often practiced in
traditional control theory.

The new insights into how physical embodiment, the com-
mon infrastructure to perception and action in living beings,
enables us to design better robotic systems that interact with
human counterparts using physical perturbations. The behav-
ioral metrics presented in this paper to quantify the effect of
model based predictive controllers will also provide a new
basis to monitor the quality of training in a human-robot
interaction scenario. One candidate application is haptic-based
guidance via a hard rein in low visibility conditions such as
in-door fire fighting and disaster response applications.
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