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Infrastructure, which is used to extract, transport, store, and transform resources into products or services to meet

our utility needs faces numerous challenges caused by the agency of the various actors in the system. To understand

these challenges, we propose it is necessary to move beyond considering each utility system as a distinct silo. In this

paper, a conversion points approach is developed to characterize multiutility systems at any scale and for any spe-

cific or theoretical location. The story is told of the development of a conversion points approach and its application

is examined using an agent-based model. Transport, energy, water, waste, and telecommunications systems are gov-

erned and run independently but in practice are highly interdependent. A way to represent all utility systems in an

integrated way is described and the benefits of this representation are applied to UK household consumers. VC 2014

Wiley Periodicals, Inc. Complexity 19: 30–43, 2014
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1. INTRODUCTION
‘‘

I
nfrastructure refers to the physical assets underpinning

the UK’s networks for transport, energy generation and

distribution, electronic communications, solid waste

management, water distribution and waste water treat-

ment’’ [1]. However, the physical assets create numerous

management challenges for all national governments [2,3],

and many international bodies such as the European Union

and United Nations [4,5]. The UK National Infrastructure

Plan [6] identified: Obsolescence, Globalization, Growing

Demand, Climate Change, and (unplanned for) Interde-

pendence as the five major challenges for future infrastruc-

ture provision in the UK. These challenges arise because of

the agency of owners, operators, regulators, government,

and users and need resolving as effective infrastructure is

required by society to provide a basis for economic growth

[7], public good and environmental sustainability.
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In response to these challenges and to the disciplinary

focus of particular utility system technologies, it is neces-

sary to move beyond considering each utility as a distinct

silo providing a single utility product, an approach that has

dominated UK infrastructure thinking since utility privati-

zation began in the 1980s. In its place is required an inter-

utility, utility services, and future technology perspective,

based upon characterizing the whole system as a network

of conversion points, each of which can be defined at vari-

ous scales. When considered holistically, the interaction

between different infrastructure types, infrastructure opera-

tors, policy makers and a range of end customers (domes-

tic, commercial, industrial, etc.) is a complex system: it is

coevolutionary and has emergent properties, both desirable

and otherwise. We propose that the principles of complex-

ity science and agent-based modeling (ABM) can provide

valuable insights into the socio-technical-economic growth

of infrastructure systems while providing a means to extend

uses of complexity science in national infrastructure which

have mostly focussed on identification of vulnerabilities

which lead to (usually) cascading failures in interconnected

infrastructure networks (e.g., [8]).

Our paper examines the hypothesis that ‘‘by redesigning

interutility conversion points in the context of future tech-

nology and with a services focus, that transformational

improvements can be identified and modeled, and options

selected for action which address the efficiency and resil-

ience challenges of national infrastructure.’’ We present the

development of an approach which focusses on the notion

of a conversion point, an abstract component which carries

out a conversion, each instance of which connects with

some other instances of conversion points to represent the

physical, technological, social, and economic aspects of

national infrastructure systems. By doing this, our overall

goal is to demonstrate that changes to any existing conver-

sion point or points for a specific utility product, have con-

sequences for other conversion points and systemic

properties, such as sustainability, adaptability, and resil-

ience. Planned changes, particularly in the context of

emerging technologies and a service-user focus, should con-

sider the dynamical effects upon the conversion system, to

improve economic, environmental, and societal outcomes.

By describing the components of the infrastructure sys-

tem using conversion points, we can judge the true scale

of resources consumed, production and distribution ineffi-

ciencies, and technological opportunities in the system.

The effects of changes on resource availability, production

capacity, technological innovation, and demand response

can be assessed, through application of ABM as a tool to

examine how individual conversion points reconfigure

within different policy scenarios, such as:

� Temporary subsidies to incentivise use of renewable

sources and technologies;

� Incentives to outsource energy demanding services

(heating, washing, cooking, etc.) to third parties;

� Caps on consumption of water, heat, and electricity;

� Removing so called hidden and ‘‘perverse’’ subsidies

and injecting them into more sustainable energy

generation technologies;

� Taxing nonrenewable, polluting, and carbon inten-

sive energy extraction, generation, distribution, and

consumption systems and potentiality types (so

called tax shifting).

This reconfiguration results in a change to the emer-

gent properties of the complex infrastructure system

which are captured through the modeling of the interutil-

ity conversion points. However, before application of

ABM, a flexible conceptual framework for characterization

of any infrastructure system is required.

Beginning from the perspective of individual utility

conversion points, this paper develops a flexible concep-

tual framework applicable to any infrastructure system.

There are four stages to the development of the frame-

work, (a) identification of the value of a conversion point

which is broader than energy conversion, (b) development

of a classification typology, (c) development of a process

framework for conceptualization of interutility conver-

sions, and (d) specification and coding of the agent

descriptions which implement the interutility framework.

The conceptualization and modeling offer a number of

advantages:

� They allow the current state of complex infrastruc-

ture systems to be mapped.

� They capture waste, capacity limits, institutional and

demand responses.

� They are applicable at any scale of detail and can be

used to facilitate discussion among infrastructure

stakeholders to identify:

� The least resilient areas of the infrastructure system.

� Possible alternative methods for the provision of

goods and services required by society.

� Areas where action is required to improve infra-

structure provision.

� Additionally, they provide a system representation [9]

from which complex infrastructure systems can be

modeled using ABM, to allow simulation of future pol-

icy decisions, new technologies and assess the expected

impacts of these on the infrastructure system.

Further details are then provided of how this ABM is

being developed with the aim of producing a tool to

inform and support decision makers interested in explor-

ing the implications and effects of: (1) new, emerging, and

innovative technologies, (2) consumers’ behaviors, and (3)

policy measures; on building more sustainable, adaptable,

and resilient UK infrastructure.
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2. INFRASTRUCTURE AND CONVERSION POINTS
All complex infrastructure systems are comprised of

numerous interconnected conversion points. We define a

conversion point as ‘‘a plant or device or distribution

channel which operates upon one or more utility resource

or product, converting them in some way from extraction

or capture of a resource through to end user service con-

sumption.’’ No two conversion points are the same; each

is a unique combination of geographical location, physical

assets, technological configuration, production efficien-

cies, consumption and demand patterns, and associated

institutions. Ref. 3 proposed a conceptual model of the

operational interdependencies in infrastructure systems

(see Figure 1). In this model, conversion points are

implicit in each utility node and in each interconnection.

At each utility node, various suites of technologies are

used to convert both renewable and nonrenewable resour-

ces into utility products, represented by the nodes ‘‘Oil,’’

‘‘Electric Power,’’ ‘‘Natural Gas,’’ and ‘‘Water.’’ ‘‘Transporta-

tion’’ and ‘‘Telecom’’ are different in that they provide an

immediate service—mobility and communicated informa-

tion; unlike the others, they are continuous conversion

points with a capacity for service provision per distance of

infrastructure. Other than for ‘‘Oil,’’ discrete utility-bound

distribution systems exist to transport ‘‘Electric Power,’’

‘‘Natural Gas,’’ and ‘‘Water.’’ Interconnections (the dashed

lines in Figure 1) describe the service demands of each

utility on other utilities, for example, Water for Cooling

Power Generation; Power for Gas Compression. Signifi-

cantly, conversion points are also present beyond the

boundaries of Figure 1 at the point of consumption.

Another perspective upon integrated infrastructure sys-

tems based upon resource life cycle is provided by The

European Parliament [10]. Each subsystem, in Figure 2, is a

conversion point that occurs at specific geographical loca-

tions, making use of assets such as buildings, machinery

and materials, using specific technologies, and resources

such as gas and water. The representation is of a string of

subsystems required to deliver a service from a resource

(reading Figure 2 from right to left, respectively). The sub-

system for distribution is a node like every other node.

Water can be represented in similar subsystem format:

from use of primary resources, their abstraction or blend-

ing (e.g., from a reservoir), conversion (multiple steps to

remove impurities), distribution through water mains,

water conversion (e.g., using a boiler to generate hot water

from cold water), and service (e.g., hygiene through show-

ering). Waste/sewage and solid waste can equally be rep-

resented, but in reverse insomuch as subsystems are

driven by the collection of waste. Transportation and Tele-

communications are similar in that resources are required

for the maintenance and provision of routes (e.g., tarmac

FIGURE 1

Conceptual model of the operational interdependencies between
common infrastructure systems (reproduced from Ref. 3).

FIGURE 2

Energy systems (reproduced from Ref. 10).
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for road surface replacement, and power for telecommuni-

cations switches), and services are continuously provided

based on the volume demanded by users.

It follows that the national infrastructure can be con-

ceptualized as a collection of interacting subsystems, a

system of conversion points, which convert resources into

service. Therefore, a method to accurately conceptualize

conversion points and the interactions between these is

an essential tool when taking an holistic overview of any

infrastructure system. The following sections present an

account of our conceptual development of the notion of

conversion points. The outcomes are a simple and refined

classification for the conceptualization of infrastructure

systems as collections of conversion points.

3. A SIMPLE CONVERSION POINT CLASSIFICATION
Our initial classification of conversion points was into

three types: product conversion, distribution conversion,

and final consumption conversion. It conflates the life

cycle view [10] into a typology which is orthogonal.

3.1. Type 1: Product Conversion
Type 1 is the conversion of one product/resource/

energy carrier into another product/resource/energy car-

rier. This type of conversion is undertaken at all utilities,

and can be based upon renewable or nonrenewable

inputs. For example, the conversion of coal to electricity,

the conversion of ‘‘raw’’ water into potable water, the con-

version of crude oil into a range of petroleum products,

and the conversion of wind energy into electricity. Type 1

conversions involve efficiency losses, the consumption of

other utility products, and the possible creation of by-

products. The by-products produced from type 1 may be

‘‘desirable,’’ that is, new resources suitable for further con-

versions, for example, waste heat from power generation

becoming usable heat from Combined Heat and Power

plants; or ‘‘undesirable,’’ that is, waste products such as

carbon dioxide emissions, nuclear residue, sewage sludge,

and so forth.

3.2. Type 2: Distribution Conversion
Type 2 is the relocation of a product/resource/energy

carrier. Type 2 conversions can take place either before or

after a type 1 conversion, to supply the input to a type 1

conversion (such as coal from a mine to a power station)

or distribute outputs from type 1 to the next point of use.

Type 2 conversions may be co-ordinated on the national

scale such as the national gas grid and the national elec-

tricity grid, or be based upon localized assets such as gas

or water supply pipes. Type 2 conversions may involve

efficiency losses such as leakage or degradation in utility

products as a result of transit; and the consumption of

other utility products, for example, electricity to pump

water providing distributed potable water.

3.3. Type 3: Final Consumption Conversion
Type 3 is the conversion of a product/resource/energy

carrier into a state which can deliver a service. The recipi-

ent of the service may be domestic, commercial, indus-

trial, or another infrastructure provider. For example, the

conversion of petrol or diesel in the combustion engine to

create mobility for passengers, or the conversion of elec-

tricity into the mechanical energy used by a forklift truck

to move goods, or the conversion of gas into heat for

cooking food. Type 3 conversions may also involve effi-

ciency losses, the consumption of other utility products

and the creation of by-products, both ‘‘desirable’’ and

‘‘undesirable,’’ for example, heat created during cooking

can reduce space heating demands, and petrol consumed

while driving creates carbon monoxide, harmful to health.

User behavior is critical to consumption, for example,

driving behavior influences distance achieved from each

liter of petroleum.

A number of general themes apply across all conver-

sion point types such that all conversion points, regardless

of classification, can be characterized with regard to five

basic rules/properties as follows:

a. A device, appliance, or physical asset at the conver-

sion point performs the conversion, essential features

include: capacity, efficiency, cost profile, age, reliability.

b. All conversion points are based upon a prevailing

technology, typically chosen at the time the conversion

point was installed.

c. A proportion of various products/resources/

energy carriers must be provided as an input to any

conversion point.

d. A quantity of a desired product/resource/energy

carrier will be an output from the conversion point, as

well as a proportion of by-products, both ‘‘desirable’’

and ‘‘undesirable.’’

e. The operation of the specific conversion point

will depend on the skills and behaviors of the person

using or managing the conversion point, that is, some

instances of conversion points will be more efficient

than others.

It follows, that all conversion points within any com-

plex infrastructure system can be defined as type 1, 2, or

3, and assigned a set of behavioral/performance rules

linked to the rules a–e. Therefore, the simple classification

of conversion points allows each conversion point to be

considered as an ‘‘agent’’ following a clearly defined set of

performance rules, and the entire complex infrastructure

system to be defined as a series of interacting agents.

However, while providing a simple method to concep-

tualize the components of a complex infrastructure
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system, this conceptualization is an oversimplification of

the interactions and interdependencies taking place within

that system. Therefore, any agent-based model based

upon the above may fail to accurately represent the extent

of interdependence between agents, and therefore gener-

ate erroneous conclusions regarding the emergent proper-

ties of any complex infrastructure system.

The primary reason for this shortcoming is a lack of

flexibility in the conceptualization. Each agent can be rep-

resented as one of the three types: Producer, Distributor,

and Consumer, whereas in reality each conversion point/

agent performs multiple actions across these types. For

example, a nuclear power plant is primarily a type 1 ‘‘pro-

ducer’’ agent, however the smooth functioning of the con-

version point also requires type 3 ‘‘consumer’’ behavior;

the conceptualization fails to represent this. Similarly, a

household is primarily a type 3 ‘‘consumer’’ agent but

with increased availability of microgeneration technology

can also become a type 1 ‘‘producer’’ agent or prosumer

[11]. Any system that fails to represent these subtleties at

the conversion point level will produce an incomplete rep-

resentation of the infrastructure system.

A number of secondary reasons apply:

First, the simple typology fails to recognize the dynam-

ics of the systems and in particular ignores time. It

assumes resources can be produced, distributed, and con-

sumed instantly. In particular, this highlights the gap in

the typology of interim storage, in which peak demand for

electricity can be met by hydro-powered plants which

pumped water when electricity was cheap, to provide

electricity at peak prices.

Second, the constraints and opportunities of legisla-

tion, regulation, policy, and so on, are not explicitly recog-

nized. Changes in these exogenous factors will influence

the behavior of consumption decisions about resources

(e.g., use of shale gas), and will drive new technologies to

be developed (e.g., clean coal technologies).

In the following section, the conceptual model is refined

to consider each conversion point as a collection of activities.

4. REFINED CONVERSION POINT CLASSIFICATION
In producing a conceptualization to represent the com-

plexity of an entire infrastructure system, it is important

to not oversimplify the representation of each conversion

point. Therefore, each conversion point should be concep-

tualized not as an individual activity, rather as an inte-

grated assembly of the key activities undertaken at the

conversion point. Based upon this insight, we propose

that all activities can be classified into one of four groups

and that various combinations of these groups will take

place at each conversion point (see Figure 3).

� Extract—analogous to a product conversion—it rep-

resents the conversion of one product/resource/

energy carrier into a form suitable for transforma-

tion into a service.

FIGURE 3

Key activities/services underpinning a conversion point.
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� Transform—analogous to a final consumption con-

version—it represents the conversion of a product/

resource/energy carrier into a service.

� Deliver—analogous to a distribution conversion—it

represents the movement of a product/resource/

energy carrier from one location to another.

� Store—represents the storage of a product/resource/

energy carrier at a conversion point. This could take

the form of an electric battery or a store of a fuel

supply prior to an extract activity, for example.

Given that each conversion point is now a collection of

activities, it is necessary to define a rule set for each activ-

ity within a conversion point. For this reason rules a–e

used to govern conversion point behavior in the simple

model are replaced by the Input-Control-Output-

Mechanism (ICOM) syntax [from 12].

The IDEF0 modeling language (semantics and syntax),

and associated rules and techniques, are a standard for

developing structured graphical representations of a sys-

tem or enterprise. Where, based upon adaptation of the

standard for our purposes:

� Inputs are the product/resource/energy carrier used

in an activity to produce outputs.

� Controls are the standards, regulations, and legisla-

tion that govern how any activity is performed.

� Mechanisms are the resources (technologies, devices,

and assets) and skills (human capital) underlying

any activity.

� Outputs are the product/resource/energy carrier out-

put produced through an activity based upon the

Input, controls, and mechanisms applied.

This allows all conversion points to be represented as a

collection of the activities shown in Figure 3.

IDEF0 was originally developed in the 1970s as part of

a U.S. Air Force Integrated Computer Aided Manufacturing

program to give a system engineering approach and a

structured representation of the functions, activities, or

processes within a modeled system or subject area. There-

fore, application of elements of the IDEF0 method, in the

context of conversion points, can be used to support a

concise yet flexible approach to conceptual modeling of

complex infrastructure systems. Examples of IDEF0

include: representation of a rubber goods production line

to assess reasons for variable product quality; a road con-

struction company processes to check standards compli-

ance; customer training processes with feedback loops to

training development for lessons learnt [13].

A distinct advantage of using the IDEF0 modeling lan-

guage is that it allows each conversion point to be repre-

sented at different levels of detail. Figure 4 gives an

example for a household conversion point. The top level

context diagram (A-0) conceptualizes the inputs required,

and outputs arising from provision of a full suite of house-

hold services, as well as the controls (regulation and legis-

lation) and mechanisms (technologies) shaping household

consumption of services. The second level diagram (A0)

identifies each individual service consumed within a

household and the ICOM elements linked to each service.

In Figure 4, the A0 diagram is indicative rather than defin-

itive because other household services can be identified

such as cooking or drying clothes. When producing an A0

diagram to represent a conversion point it is important to

capture details of all services required at that conversion

point. The A3 diagram represents that each service can be

broken down into a combination of the four fundamental

activities of a conversion point: Extract, Transform, Store,

and Deliver, as defined earlier.

Using this method, any infrastructure systems can be

viewed as a collection of conversion points; each repre-

sented by a top level context diagram (A-0), and can also

be broken down into a series of fundamental activities that

underpin the services taking place at the conversion point.

4.1. Characterizing Inputs and Outputs as Potentialities
A conceptual model of an infrastructure system must

not overlook or oversimplify the interrelationships between

key elements of the system, because these elements of the

system need to be understood if complexity in the system

as a whole is to be understood. This is particularly true if

the conceptual framework is to be used as a foundation for

creation of an agent-based model of an infrastructure sys-

tem. If key interrelationships are not conceptualized accu-

rately in the conceptual framework, emergent properties of

the system may be missed or inaccurately identified. At

present, the proposed refined conceptual framework does

not focus on the origin or type of inputs into the four key

activities, or make explicit reference to the possibility that

waste outputs from one activity have the potential to

become inputs into another activity.

Therefore, inputs and outputs must be considered in

more detail. We propose that the inputs and outputs

(product/resource/energy carrier) for each of the four key

activities at a conversion point (Figure 3) are regarded as

potentialities because they have the potential to fulfil a

user need through the provision of a service or product.

These potentialities can be classified as four types, where

type 0 is most desirable:

� Type 0: sun energy, biomass, wind, tide energy, wave

energy, geothermal;

� Type 1: electricity, water, and heat;

� Type 2: gas, coal, nuclear; and

� Type 3: waste (water, solid, nuclear, heat, carbon

dioxide).

The four key activities can use inputs from these

groups and produce outputs from these groups (Figure 5).
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FIGURE 4

Household conversion point��example.
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However, not all potentiality types can be inputs into the

four key activities, and potentiality type 0 is never an out-

put from any of these activities.

Consideration of potentialities is important because at

the micro scale of user demand fulfilment the potentiality

used and its associated technology is a significant charac-

teristic of the system. For example, the demand for a

warm house can be met in a number of different ways,

each based upon extraction of the potentiality that resides

in one of the four potentiality types. A type 0 example is

heating based upon solar panels, a type 1 example is heat-

ing based upon electric heaters, a type 2 example is gas

heaters, and a type 3 example is the use of wood-burning

stove. These examples are intended to be indicative of the

numerous ways in which a demand can be fulfilled by dif-

ferent potentiality-technology combinations. This level of

detail can be lost if the conceptual model is oversimpli-

fied. It follows that an oversimplified conceptual model

will provide an inadequate foundation for an agent-based

model designed to identify emergent properties from

interactions in the system.

Additionally, consideration of potentialities makes clear

the distinction between the key activities Extract and Trans-

form. Extract is used to ‘‘extract’’ potentiality type 1 [water,

heat, and electricity (energy), recognized as ‘‘basic’’ human

needs] by using any combination of potentialities of types

0, 1, 2, and/or 3. Whereas, Transform activities use water,

heat, and electricity (energy) to fulfil immediate user needs

(clean clothes, hot meals, cleaning, drinking, etc.)

4.2. User Behavior
Standards, regulations, and legislation are all forms of

control which constrain or liberate action at the agent

level. Controls are changed infrequently or not at all. Con-

trols determine typical user behavior. Liberation of con-

trols and rebound effects [14] are examples of triggers

which change user behaviors and which need definition.

Mechanisms are the availability of resources and tech-

nologies that are required to complete the process. This

includes machines and other tools but may also include

people with particular skills.

Users at each conversion point will be constrained by

controls and mechanisms. Other traits of agents include

the location of a user which defines the availability of

potentiality (e.g., the amount of sun hours per day or

year), wealth, environmental empathy, and relevant skills

(or technological know-how).

Controls, mechanisms, and agent traits define how an

agent behaves within a particular scenario.

4.3. Summary of Key Points from the Refined Classification

� Infrastructure should be regarded as a complex sys-

tem comprised of interacting conversion points.

� Conversion points are unique geographically located

aggregations of four key activities (Extract, Trans-

form, Store, and Deliver).

FIGURE 5

Key activities/services underpinning a conversion point are formulated.
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� A set of rules based upon ICOM syntax (inputs, con-

trols, outputs, and mechanisms) can be assigned to

all activities at a conversion point.

� Dependent on the ICOM elements of the conversion

point, the same service can be delivered in a num-

ber of different ways.

� A change to any of the ICOM elements of an activ-

ity, will change the characteristics of a conversion

point. A change to any conversion point will have an

impact on the infrastructure system. Therefore,

infrastructure systems are coevolutionary systems

shaped by the interaction of conversion points.

� Each conversion point can be represented at a high

level A-0 or in more detail A3.

� The classification system permits four distinct con-

version point groups: households, business custom-

ers, industrial customers, and infrastructure players,

allowing each conversion point to be represented as

an agent for inclusion in an ABM.

� Even within similar conversion point classes no two

conversion points are the same because agent traits

make the dynamics and operation of the conversion

point unique.

� One of the prime benefits of our representation of

infrastructure as conversion points is that interde-

pendencies are made explicit. This means that our

database of conversion points can be interrogated

for interdependencies. The identification of spatial

interdependency (through shared zones of similar

longitude and latitude) is a key opportunity to assess

locational risks such as those that might arise from

floods or attacks. Technological interdependencies

may be identified through the dependence of many

or large conversion points using the technology.

Resource interdependency is recognized by many or

large conversion points using the same resource,

such as gas. Governance interdependency can be

established through the use of the same controls by

many or large conversions.

The next section specifies the ABM framework.

5. ABM FRAMEWORK
It is helpful to build upon an existing typology of agent-

based models which has been developed in the context of

transition of utility systems. We use the Chappin and Dij-

kema [9] framework as their focus is on energy system tran-

sitions which require changes in technological components,

effecting a change in performance, leading to new policy

design and implementation which effect actor behavior,

leading to more technological change. The transitions pro-

cess embraces innovation of both technical systems and of

policies, regulations, R&D, and investment.

Transitions in complex systems are the coevolutionary

consequences of multiple aspects including user behaviors

[15]. In all coevolutionary systems, there are three funda-

mental needs [16]:

1. to introduce novelty into the system, a mechanism

must exist to create variants of existing structures;

2. selection pressures need to be consistent, so new

variants need to be created more frequently than

new selection criteria otherwise the evolutionary

process would not bring about new trial and error

structures that are better adapted;

3. a retention mechanism must be present that trans-

mits structures from the present to the future, oth-

erwise new developments could not build on

previous adaptive achievements.

Chappin and Dijkema [9] define five components to an

agent-based model for energy transition: (1) system represen-

tation, (2) exogenous scenarios, (3) design of transition

assemblage, (4) system evolution, and (5) impact assessment.

System representation requires a definition of the

agents, components and subsystems which represent that

part of the infrastructure system which is to be modeled

at an appropriate scale. The system representation is con-

ceptual. Each element is implemented into the model for-

malizing the identity and rules of each agent and the

properties and performances of each object, such as a dis-

tribution network. Communications protocols are also

defined in the system representation and permit social

and physical networks to be described.

Exogenous scenarios are necessary to exclude those

parts of the system which are unaffected by the model.

Exogenous scenarios are defined by global variables. The

addition of each new variable creates an exponential effect

on the number of model iterations and so few global vari-

ables are preferred. The model itself uses the variables but

does not update them.

Transition assemblages can be modeled with increasing

sophistication to suit the needs of the model. Transition

assemblages allow controls from the IDEF0 framework to

be modeled. If controls themselves become endogenous

to the model, then the model will show how policy and

regulation might change and thus assesses regulatory

adaptability. Mechanisms from the IDEF0 framework such

as the availability of particular technologies are also tran-

sition variables.

System evolution is a consequence of the behavior of

the agents to both exogenous and endogenous parts of

the system. Micro and macro validation is necessary to

ensure the validity of the model [17].

Impact Assessment is the final stage of the Chappin

and Dijkema framework. System level measures need to

be established as well as thorough testing strategies and

robust analysis of results.

The use of this framework is implemented in the creation

of the Agent-Based Model described in the next section.
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6. AGENT-BASED MODEL FOR CONVERSION POINTS
In developing our understanding of an interutility

infrastructure system, we have taken three steps: first, we

formed a simple conceptual classification, a typology

which represents types (of utility conversion activity)

rather than empirical cases [18]; second, we revised the

simple classification noting that each utility conversion

was not an individual activity but an integrated ensemble

of activities which could be unbundled to represent differ-

ent scales, noting that resources themselves could be clas-

sified into potentialities which were both inputs and

outputs of a conversion point, which itself was subject to

controls (such as policies) and mechanisms (such as tech-

nologies); third, we selected an agent-based model frame-

work which allowed us to define scenarios, and which

provided a link to mechanisms and controls through the

notion of transition variables.

6.1. Conversion Levels
We envision the Utility Conversion model to have three

levels:

6.1.1 Level 1: Provision

Infrastructure-type (I-type) agents represent entities

involved in energy generation and distribution, solid waste

management, water distribution, waste water treatment,

transportation, tele-communications, and any other utility

conversion. Infrastructure-type agents will be modeled

with certain availability and reliability characteristics to

capture real-world situations of technology failure. When,

for example, an electricity generator fails to produce elec-

tricity (or the quantity he is expected to produce) due to

some unexpected (or even expected) outage, he will need

to purchase replacement energy for his lost output to

meet his contractual obligations. This energy may come

from another I-type agent within the system or may be

bought from outside the boundary of the system (an agent

of last resort) which may have further implications on the

competitiveness of this agent, for example, The National

Grid impose penalties when other agents are required to

supply the short-fall.

I-type agents will provide potentialities of type 1 to

Consumer-type (Houshold for the purposes of our exam-

ple and so H-type) agents who will be represented at the

highest level of activity (A-0) with fixed block elements

inside. H-type agents will vary in terms of their service

needs and their demanded product quantities of gas,

water, electricity, waste, mobility, and information. These

needs and quantities may change every tick (time-step in

the model) based on behavior which reduces demand and

information which makes cheaper alternatives preferable.

Supply of utility product quantities by I-type agents will

change to reflect the uncertainty and differences (mainly

in efficiency) between I-type agents. The time unit is

quarterly (length of every tick is three months) which

allows us to capture seasonality effects (changes in

demand and supply by season). The duration of the total

simulation run will be the period 2012–2050. This is taken

from the UK’s legally binding policy to reduce CO2 emis-

sions by 80% (and arguably 90% to be effective) by 2050

compared to 1990 levels [19].

6.1.2. Level 2: Service

This level will build upon the Provision level by unfold-

ing the H-type agents from fixed black box (highest level

representation) to a level where their heterogeneous needs

and technologies (appliances) used to fulfil those needs

will be modeled. This allows H-type agents to propose

improvement requests, install and operate different tech-

nologies (even becoming producers and/or suppliers of

electricity, heat, for other agents, etc.), and even to out-

source some of their ‘‘needs’’ (i.e., removing some of their

existing blocks entirely) to specific service providers (e.g.,

washing, cleaning, cooking, etc.).

6.1.3. Level 3: Demand/Behavior

This level builds upon the previous two levels. In addi-

tion to functionalities provided by these levels, this level

will aim to capture the demand behavior of H-type agents.

This level focuses on resource conservation as opposed to

resource efficiency [20]. The difference between these two

strategies is that resource efficiency aims to improve the

ratio between resource related services and resource

inputs without compromising the quality of services; while

resource conservation aims to reduce resource consump-

tion by lowering the quality of resource related services.

This may come from capping the amount of resources

available to consumers which implies lower quality serv-

ices (e.g., changing the degree to which a household:

bathes or takes showers, turns off lights, fills dishwashers

or washing machines, regulates indoor temperatures or

cooks).

6.2. Conversion Subprocesses
The agent-based model has five subprocesses for the

Level 1—Provision model: Wiring, Formulating Improve-

ment Requests, Deciding Improvements Selecting Tech-

nologies and updating the System State.

We expect these subprocesses to become more elabo-

rate as we move to Levels 2 and 3.

6.2.1. Subprocess 1: ‘‘Wiring’’ H-type Agents with
I-type Agents

By wiring H-type agents with I-type agents for their util-

ity and other household needs (electricity, gas, water, waste

water), we mean connecting these two groups of agents

together. The connection for level 1 is made in conceptual

space, in which business/transactional relationships
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between I-type and H-type agents happen, rather than by

representation of hard or physical connection via infra-

structure (cables, pylons, gas and water pipes, sewage, etc.).

Wiring of H-type agents to the physical landscape of the

infrastructure in a geographical landscape is possible when

supply and demand needs specific verification. In any

event, checks can be made on the availability of particular

potentialities in the geographical space of the H-type agent.

Real selection and business relationship will be made in

conceptual space where I-type agents will be represented

with the capacity to supply certain amounts of utilities

under certain cost and other (e.g., CO2) conditions, and H-

type agents will be represented with their utility demands

(quantity and type) and conditions they are prepared to buy

them (e.g., price, ‘‘greenness’’ of source, etc.). Hence, selec-

tion of a supplier (an I-type agent) by a consumer (an H-

type agent) will be based on their cost/price and ‘‘green-

ness’’ attributes of their offer which in turn may reflect a

certain ‘‘value, attitude and belief’’ system of a consumer

and will be done every tick. Selection frequency may be

dependent on many things but we use current legislation

which allows utility customers to change their supplier

every three months (1 tick).

6.2.2. Subprocess 2: Formulating Improvement
Requests by I-type Agents

Infrastructure agents are motivated to improve to opti-

mize their efficiency.

We have envisioned two types of improvement requests

that can be placed by an I-type agent1:

� Type 1—improve output of a key activity block: this

will focus on the match between the output poten-

tialities with real demand (e.g., reducing overproduc-

tion and/or waste of type 3). If the fitness function

concerned only minimizing costs, then minimizing

the waste of overproduction may be more important

(and consequently shape an agent’s attitude towards

improvement request in that direction) than mini-

mizing waste potentialities which leave a big carbon

footprint (e.g., waste water or nuclear waste) as

would be the case where the fitness function con-

cerned minimizing the carbon footprint.

� Type 2 improve efficiency with which inputs are con-

verted into output potentialities: this focuses on replac-

ing or significantly improving a technology input of the

block/activity. For example, if the fitness function is

about cost minimization, then a technology which is

more efficient than one which may be more environ-

mentally friendly may be proposed by the agent.

The formulation of improvement requests will be moti-

vated and informed by the prevailing fitness function

(cost, CO2, and resilience) which will vary by value for

each I-type agent.

There are two further functionalities that need to be

defined: (1) life—creating new agents as in the case of Sub-

process 1 where the system agent may decide to put, for

example, additional energy and water I-type agent to bal-

ance demand with supply and (2) death—for unsuccessful

agents. The ‘‘market’’ or system agent may also ‘‘step in’’ in

situations where economically (or environmentally or resil-

ience) ‘‘unhealthy’’ agents exist by proposing they change

and adopt a new technology/block which is in line with the

prevailing fitness function (e.g., from solar to coal if the fit-

ness function is to minimize cost, or vice versa if the fitness

function is to minimize carbon footprint).

6.2.3. Subprocess 3: Collecting, Categorizing, and
deciding on Improvement Requests

The invisible hand of the market [21] will operate

through the implementation of a system agent which

will consider improvement requests by categorization of

requests using cluster analysis into two broad groups by:

(1) potentiality (gas, water, and electricity) and (2) key

activity type (Extract, Transform, Store, and Deliver).

Selection of an improvement request(s) can be decided

through system variables, choices might include:

� Random selection (from the pool of clustered

improvement requests);

� Select the most frequent request in the cluster;

� Select the least frequent request in the cluster;

� Make a proposal that is a combination of all the

improvement requests submitted;

� Combination of all the above, selecting randomly at

each tick.

Once the system agent decides on the new technology

release, we need to instruct the model about the time that

needs to pass before this release becomes available to I-

type agents for adoption since potential solutions may lie

in the dynamics of real-world innovations.

6.2.4. Subprocess 4: I-type Agents Deciding
Whether to Adopt the New Technology Release

At least three approaches can potentially be used by an

I-type agent when deciding whether to adopt the new

release proposed by the market (the system agent). The

approaches are:

1As an I-type agent may be characterized by several differ-

ent Extract, Transform, Store, and Deliver activities which in

turn may be spread over several different levels, we need to

instruct the agent where to start his search for potential

improvements. Namely, what level and/or activity type offer

the greatest room for improvement? We see at least three

scenarios here: (1) search by level, (2) search by activity

type, and (3) combined level and activity type search.
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1. calculate (Euclidian) distance;

2. adoption based on disposition to innovation adop-

tion; and

3. adoption based on facility/plant age and future

business goals.

The first approach aims to calculate the distance (e.g.,

Euclidian) between the I-type agent’s improvement

request and the new release. The smaller the distance

between the two, the more likely the I-type agent is to

adopt the release. The second approach is based on Dif-

fusion Theory and it aims to establish the I-type agent’s

disposition to adopt the new release. The less radical the

release, compared to I-type agent’s existing attributes

(relative advantage, compatibility, observability, trialabil-

ity, and complexity), the more likely the agent will be to

adopt it. Finally, the third approach can be defined as a

function of existing facility/plant age and future business

goals of the I-type agent. Namely, at some point (e.g.,

when an agent realizes that ‘‘conventional’’ improvements

are not delivering the expected benefits/returns or when a

stage is reached where things can only deteriorate and get

worse) the I-type agent will have to start thinking about

what will happen after the plant reaches its useful operat-

ing life and needs to be decommissioned, if the agent still

wants to be in the business. Therefore, we can model long-

term goals of an I-type agent which will shape its attitude

toward, both, formulating improvement requests and

adoption of new releases. In a way, we can even use the

first approach stated above to calculate the distance

between the recent release and how it fits with the agent’s

long-term goals. Hence, we need to define those goals and

equip the agent with the ability to estimate potential

future consequences of its current decisions.

6.2.5. Subprocess 5: Update to New System State

Just before the start of each simulation iteration (tick)

we can expect some changes in the state of I-type agents.

At least three are envisioned here:

� Life (creation of a new agent) and death (removal of

existing agent) which should have an impact at least

on the market representation by means of impacting a

number of potential locations to place a new agent;

� Adoption of a new release of technology by an exist-

ing agent—change in its internal block structures,

that is, changes to cost and performance attributes

the adoption entails;

� Non-linear deterioration of agents’ cost and per-

formance attributes as we proceed further in time.

All these changes will affect the cost and performance

attributes of I-type agents which will then be used to cal-

culate the new levelised electricity generation cost, and its

water and gas counterparts to reflect the new state. Once

this is updated, we should be able to see its effects on

cost/price of electricity, gas, and water in the new round

of selecting I-type agents by H-type agents.

The new overall state of the model is defined by Total

resource consumption (of which some is satisfied exter-

nally, classified by potentiality), cost (annualized cost of

infrastructure in the system), CO2 (via costs), resilience,

and so forth.

6.3 Conversion transitions
Transition Assemblages [9] which formulate policy, reg-

ulation, and taxation controls might include:

� Existing policies (baseline);

� Temporary subsidies to incentivize use of renewable

sources (potentialities type 0) and technologies;

� Incentives to outsource energy demanding services

(heating, washing, cooking, etc.) to third parties;

� Cap consumption of water, heat, and electricity;

� Removing so called hidden or ‘‘perverse’’ subsidies

and injecting them into more sustainable energy

generation technologies;

� Taxing nonrenewable, polluting, and carbon inten-

sive energy extraction, generation, distribution, and

consumption systems and potentiality types (so

called tax shifting);

� Any combination of the above.

6.4 Conversion Scenarios
Scenarios (ibid) may depend on perceptions of

growth rates of demand, economy, investment, local-

ism, or using existing scenarios identified in interutility

research such as [22]. Scenarios may be implemented

using

� A real-world representation of infrastructure and

household type agents in a city or region, or an

abstracted representation of the UK population.

� Economic growth/contraction patterns over the

period of the model.

� Infrastructure investment (private and governmental).

� The extent of centralization vs. localism.

6.5 Conversion attributes
Every agent or conversion point should be cap-

tured in terms of key activities (Extract, Transform,

Store, and Deliver) and necessary levels underpinning

that conversion point. Apart from this, for each con-

version point we also need to represent the following

information:

� Subtype (e.g., in terms of household agents, we can

have rented, owned, prosumers, ‘‘green’’ households,

etc.; whereas infrastructure agents can be classified
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according to their ‘‘themes,’’ e.g., water, gas, electric-

ity, waste; disposition to innovation, long-term busi-

ness goals, etc.);

� Longitude and latitude (location);

� Availability of resource potentiality;

� Input: Potentiality type(s) and quantity(ies) (for each

block/activity);

� Technology used by the block (and its cost and per-

formance attributes, see below);

� Output: Potentiality type and/or service and quantity

(for each block/activity);

� Cost and performance attributes (for every technol-

ogy/key activity block) of I-type agents (at level 1);

� Cost and performance attributes could be modeled

either on high, medium, and low levels or stochasti-

cally which for well-understood technologies can repre-

sent variations across sites; while for new technologies

the variations may represent the uncertainties.

� Disposition to innovation adoption (so called inno-

vation Diffusion Theory [23] can be used in Subpro-

cess 4 to inform an I-type agent’s decision to adopt

a new release. According to the theory adopters can

be categorized in five groups: (1) innovators (2.5% of

adopters), (2) early adopters (12.5%), (3) early major-

ity (35%), (4) late majority (35%), and (5) laggards

(15%).

7. APPLICATIONS
The model is viable for simulating specific geographical

locations, such as towns or cities, or more broadly at

national level. Scaling using the IDEF0 framework will

apply. Alternative scenarios can be created, for example,

the use of carbon capture storage from nonrenewable gen-

erators; or capture of local resources such as solar and

wind. Resilience and security evaluation can be assessed,

as can short-falls in meeting demand (e.g., from a supplier

of last resort). Applications are endless as the design is not

utility centric, but activity centric and scalable.

An agent-based model2 has been developed using

AnyLogic to consider the effects of domestic renewable

technology adoption upon UK national infrastructure. In

2011, the UK domestic sector was responsible for 26% of

the total energy consumption [24] so an area likely to

bring changes to interdependent infrastructures would be

a large-scale adoption of household generation technolo-

gies such as photo voltaic, solar thermal, or gray water

recycling.

Agents (H-types) are connected to the national infra-

structure agents (I-types) to meet their service demands,

for example, mobility, electrical power. H-type agents can

then decide whether to connect to a household genera-

tion technologies (a local I-type agent) based on their

H-type profile and network connections. Agent behavior

is dependent on multiple variables which do not interact

linearly and it is through the conversion point ontology

that this interaction is realized in the model. When

agents replace a service delivered by a national I-type

conversion point with a local I-type, they reduce demand

for any or all of gasoline, electric power, gas, water sup-

ply, and waste disposal from national infrastructure

I-type agents. Subprocesses 3 and 4 are not implemented

in this model as a predetermined set of up to seven alter-

native technologies is available.

The overall consumption of natural resources, elec-

tricity consumption, carbon emissions, costs and tech-

nology adoption is evaluated after testing and validation

of the model. Conclusions are that in the context of cur-

rent technology mix used in the UK for the generation of

electricity and plans to change that mix in the future,

large-scale adoption of household generation technolo-

gies can only make things worse when interdependen-

cies are fully considered. The characteristics of

household generation technologies and/or the mix of UK

generation technologies would need to change to iden-

tify improvements.

8. SUMMARY
This paper presented an approach to define an agent-

based model for interutility infrastructure which has poten-

tial to generate insights into policy options and into the

coevolution of infrastructure and consumer agents. The

Level 1 model is developed albeit without the automatic

generation of technologies. The model has implemented

the utilities’ conversion point ontology using the ICOM ele-

ments. This facilitates a description of the multiple resour-

ces used and generated by each utility conversion. We have

demonstrated through the application of the utilities’ con-

version point ontology that it is possible to redesign interu-

tility conversion in the context of future technology and

with a services focus. Our results show that for the given

household generation technologies and the current mix of

UK generation technologies, transformational changes can

be identified although they are currently undesirable. Effi-

ciencies are measured by losses in the conversion (from

resource extraction/capture to service consumption) while

resilience is measured by the adoption of household gener-

ation technologies. We have thus tested our hypothesis in

one detailed case study. Limitations of the modeling

include the use of generic I-type agents, omission of

decommissioning of infrastructure, and demand for

2Grubic, T.; Varga, L.; Varga, S. How critical are household

generation technologies for the UK national infrastruc-

tures?. Energy Policy, submitted (12/9/2013).
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heating. However, the conversion points approach is

described fully. Next steps are to apply the model to other

situations and to develop code for subprocesses 3 and 4

and levels 2 and 3 as described in section 5.
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