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ABSTRACT 13 

Purpose: Most of rehabilitation programmes for Anterior Cruciate Ligament (ACL) injury focus 14 

on quadriceps-hamstrings activation imbalances and less is known about kinetically linked 15 

muscles. Study investigated electromyographic activity of selected trunk, core, and thigh 16 

muscles during common rehabilitation exercises for ACL injury.  17 

Subjects and Methods: Twelve active female volunteers participated in this cross-sectional 18 

laboratory study. Surface EMG was used to compare activation of eight trunk, hip/core, and 19 

lower limb muscles: Erector Spinae (ES), Rectus Abdominis (RA), Gluteus Maximus (GM), 20 

Vastus Lateralis (VL), Rectus Femoris (RF), Vastus Medialis (VM), Biceps Femoris (BF), and 21 

Semitendinosus (ST) during Forward Lunge, Double Leg Raise, Glute Bridge, Sit-Up, and 22 

Squat.  23 

Results: Forward lunge produced significantly higher activation in the VM (61.1±19.4), VL 24 

(59.2±12.9), and RF (32.0±2.6). Double leg raise generated highest activity in the RF (26.6±2.8) 25 

and RA (43.3±4.4); and Glute Bridge in the GM (44.5±19.0) and BF (22.4±4.3). Sit-up produced 26 

the highest activation in the RF (36.6±4.7) followed by RA (18.9±3.8). Squat produced a higher 27 

activation in VL (55.0±12.9), VM (51.5±18.2), and ES (40.4±18.3).  28 

Conclusion: Study provide further evidence for developing training programmes for ACL injury 29 

prevention and rehabilitation. A combination of exercises to reinstate quadriceps-hamstrings 30 

activation balance and enhance core stability is recommended.  31 

Keywords: Electromyography; Activation Balance; Neuromuscular Function  32 
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INTRODUCTION 33 

The anterior cruciate ligament (ACL) is a common site for sport injury often occurring during a 34 

non-contact twisting movement such as pivoting once slowing down or landing1). ACL injury 35 

involves 20% of all sports-related knee injuries with an annual incidence of 81 injuries per 36 

100,000 people leading to functional deficits and knee joint instability during sporting 37 

activities2). Female athletes are 5.4 to 7.8 times more likely to sustain ACL injury than male 38 

athletes3). Increased Q angle and higher joint laxity in females have been linked to abnormal 39 

knee kinematics by means of inward rotation of the tibia and placing high levels of stress on the 40 

ACL4). In terms of neuromuscular characteristics, imbalanced hamstring-to-quadriceps strength 41 

and activation ratios have been suggested as potential risk factors in female athletes5,6). 42 

Electromyography (EMG) is widely used in the field of sports medicine for investigating 43 

potential alterations in the muscle activation patterns in pathologic conditions in order to 44 

facilitate the development of evidence-based training and rehabilitation programmes. EMG has 45 

however produced conflicting reports regarding ACL injuries: “Quadriceps impairment, as 46 

assessed by EMG, has been reported by some researchers while others have reported no 47 

impairment7-9). Likewise for hamstrings, despite reports of increased activity in ACL injury, 48 

some others found no difference in their activity between patients and controls7-9). Recently, 49 

gathering knowledge suggests that altered quadriceps and hamstrings activation in ACL injury 50 

may only exist in the presence of knee instability as part of an adaptation strategy to support 51 

joint stability i.e. inhibited quadriceps activity with concurrent increased activity of both 52 

quadriceps and hamstrings9). 53 

Deficits within the muscular function (strength and activation) are commonly associated with 54 

knee instability in ACL injury leading to the altered joint biomechanics and development of 55 

aberrant movement patterns. Quadriceps weakness, in particular, has been associated with these 56 

alterations and strength deficits reported between 5%-30%5,10). It has been reported that 57 

disproportionate activity of the quadriceps and hamstring muscles results in muscle imbalance 58 

and increased strain over the ACL. Appropriate hamstrings activity is essential to counterbalance 59 
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quadriceps contraction in order to constrain anterior displacement of the tibia5,11). Hence, many 60 

ACL injury prevention and rehabilitation programmes attempt to reinstate quadriceps-61 

hamstrings activation balance12). 62 

In addition to quadriceps and hamstrings, kinetically and functionally linked muscles such as 63 

gluteus maximus, rectus abdominis, and erector spinae may also be affected following ACL 64 

injury as a result of coping strategies. The gluteus maximus contributes greatly to the core 65 

stability, postural alignments, and functional abilities essential for normal gait. Weakness of this 66 

muscle may lead to abnormal gait cycle and affect the movement mechanics at both hip and knee 67 

joints13,14). It is suggested that gluteus muscle weakness contributes to ACL injury due to 68 

increased hip internal rotation and adduction as well as the dynamic knee valgus movements 69 

which in turn place additional stress on the knee joint1,5). Rectus abdominis and erector spinae 70 

contribute to the core stability and to the controlling of trunk posture during whole-body sports 71 

activities15). It has been reported that enhanced activity of rectus abdominis and erector spinae 72 

during stability-enhancing exercise programmes leads to significant enhancement in cooperative 73 

spine/core muscle activity and stability16). Furthermore, both rectus abdominis and erector spinae 74 

contribute to the normal gait by generating and controlling the motion between the trunk and 75 

pelvis17,18). Hence sufficient activation of these muscles is important in decreasing body’s 76 

vertical displacement (involving knees) and producing a smoother trajectory for the centre of 77 

mass during the gait cycle17). 78 

Both closed and open kinetic chain exercises (CKC and OKC, respectively) are commonly 79 

recommended for rehabilitation of ACL injury with a primary focus on restoring normal range 80 

of motion and strengthening selected lower extremity and core muscle groups and reducing 81 

anterior-posterior (A-P) tibial displacement. Due to weight-bearing nature of CKC exercises a 82 

compressive joint load is produced which in turn forces the articular surfaces together in order 83 

to eliminate anteroposterior displacement of the tibia relative to the femur8). It is suggested that 84 

CKC exercises are more effective in enhancing knee arthrokinematics than OKC exercises by 85 

means of producing a smaller magnitude of anterior tibial translation and enhance activation of 86 
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lower extremity muscles (hamstrings-quadriceps in particular) to support knee stability8,19). 87 

Hence, it is important to explore exercises with an optimal effect on the restoration of 88 

hamstrings-quadriceps activation balance.  89 

While the majority of ACL injury prevention and rehabilitation programmes aim to concurrently 90 

activate hamstrings and quadriceps to constrain tibial translation, there is limited data on the 91 

activity of selected core and trunk muscles during such exercises as the majority of previous 92 

studies primarily examined lower extremity (i.e. thigh) muscle activations. With a kinetic chain 93 

approach, the present study aimed to investigate activity of selected lower extremity, hip/core, 94 

and trunk muscles contributing to the knee joint stability and mobility during five commonly 95 

prescribed exercises for ACL injury to provide rationalised evidence-based recommendations. 96 

Considering that commonly used therapeutic exercises would have different impact on core and 97 

lower extremity muscle activations, study aimed to identify exercises that support balanced 98 

activations. 99 

SUBJECTS AND METHOD 100 

The study aimed to determine the electromyographic (EMG) activation of eight muscles of thigh, 101 

core/hip, and trunk during common lower extremity exercises in order to provide further 102 

knowledge for the development of training, injury prevention, and rehabilitation strategies 103 

particularly in athletes at high risk of ACL injuries. The percent of maximum voluntary isometric 104 

contractions (MVCs) for each muscle was determined and compared across the five exercises 105 

using repeated-measures analysis of variance (ANOVA) in order to determine whether exercise 106 

condition had a significant effect on mean activity of each muscle tested. 107 

Twelve healthy and physically active female participants with no history of lower extremity or 108 

back problems participated in this study in a university research laboratory. Those with a history 109 

of lower extremity and low back pain or surgery, neurological disorders, and severe systematic 110 

diseases were excluded from the study. The mean age, height, weight and BMI of participants 111 

were; 20.10±1.10 years, 165.90±4.77 cm, 63.50±6.22kg, and 23.06 ± 2.17, respectively. The 112 
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study received ethical approval from the Institutional Review Board and all participants gave 113 

written informed consent prior to partaking in the experiments.  114 

Five common exercises were performed by each subject; Squat, Sit-Up, Forward Lunge, Glute 115 

Bridge, and Double Leg Rise. Subjected performed 10 repetitions of each exercise of 60 beats 116 

per minute on a metronome. Participants received instructions as how to perform each exercise: 117 

1) Forward Lunge: Participants stood with their feet near each other and hands on their hips, a 118 

forward step (with dominant limb) was taken in the sagittal plane and lowering into 90° of hip 119 

and knee flexion while the trunk was maintained in an upright position; 2) Squat: Participants 120 

stood with feet shoulder-width apart. Hip, knees and ankles were flexed in a squatting motion 121 

until reaching 90° of knee flexion (parallel to the horizontal). Participants were instructed to 122 

keep their chest up, weight over the heels and not to allow their knees fall into a valgus position; 123 

3) Sit-Up: In a supine position on the floor with flexed knees, participants lifted their torso up to 124 

approximately 45° at which their torso was in a V position with thighs and then lowered the torso 125 

back to the starting position in a controlled manner guided by the metronome; 4) Glute Bridge: 126 

Participants laid supine with both knees flexed to 90° and feet flat on the floor. Hips were raised 127 

off the floor (pushing through the heels) until a straight line was made between their shoulders 128 

and knees. Subjects then lowered their hips back to the starting position in a controlled manor; 129 

5) Double Leg Raise: In a supine position with hands by sides or under gluteus (whichever was 130 

preferred) and keeping knees in extended position, participants slowly raised both legs until a 131 

hip flexion angle of ~75o and held the contraction before lowering both legs according to the 132 

metronome. 133 

Signal acquisition, processing and analysis were performed using a wireless TeleMyo 2400 G2 134 

Telemetry System (Noraxon Inc., Arizona; USA) with synchronised video recording. The 135 

bipolar self-adhesive Ag/AgCL surface electrodes (Noraxon Inc., Arizona, USA), with a 20mm 136 

inter-electrode distance, were placed in parallel to the muscle fibre orientation20). EMG signals 137 

were collected from eight muscles on the dominant side: Vastus Lateralis (VL: two-thirds of the 138 

thigh length from the greater trochanter on the lateral side of the thigh), Rectus Femoris (RF: 139 
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midway between the anterior inferior iliac spine and the patella on the anterior side of the thigh), 140 

Vastus Medialis (VM: three-fourths of the thigh length from the anterior inferior iliac spine on 141 

the medial side of the thigh), Semitendinosus (ST: midway between the ischial tuberosity and 142 

the medial condyle of the femur on the posterior side of the thigh Iliac crest of the right leg), 143 

Biceps Femoris (BF: midway between the ischial tuberosity and the lateral condyle of the femur 144 

on the posterior side of the thi), Gluteus Maximus (GM: 50% on the line between the sacral 145 

vertebrae and the greater trochanter), Erector Spinae (ES: three centimetres lateral to the L3 146 

spinous process), and Rectus Abdominis (RA: above the anterior superior iliac spine)21,22). 147 

EMG signals from 10 exercise cycles were differentially amplified (Common Mode Rejection 148 

Ratio-CMRR>100 dB; input impedance>100 Mohm; gain 500 dB), digitized at a sampling rate 149 

of 3000Hz and band‐pass filtered at 10‐500Hz. This was followed by full-wave rectification and 150 

smoothing at 100ms to determine EMG amplitudes by means of root mean square (RMS). 151 

Exercise EMG amplitudes were then normalized to the EMG during MVIC for individual 152 

muscles: VL- in the sitting position with 90° hip flexion and 90° knee flexion and resistance 153 

applied to the distal leg just above the ankle during knee extension; RF- in a sitting position with 154 

extended knee and resistance applied to the anterior part of the ankle directed toward the knee 155 

flexion; VM- in the sitting position with the knee flexed be- tween 45° to 60° and resistance 156 

applied just above the ankle; ST- in a prone position with 90° knee flexion and resistance applied 157 

to the posterior part of the ankle in the direction of the knee extension; BF- in a prone position 158 

with knee flexion at 45° and resistance applied above the ankle; GM- in the prone position, with 159 

the knee flexed to 90° and the hip extended and resistance applied above the knee; ES- in a prone 160 

position and resistance applied across the posterior deltoids to resist spinal extension; and RA- 161 

a partial curl-up with the feet secured and resistance applied at the shoulders. The maximum 162 

EMG signal amplitude (RMS) during the MVIC of each muscle represented 100% muscle 163 

activity. The muscle activity recorded during the exercises was then expressed as a percentage 164 

of the MVIC and the average amplitudes from 10 exercise repetitions were taken into analysis. 165 
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A one-way repeated measures analysis of variance (ANOVA) was applied to determine whether 166 

exercise conditions had a statistically significant effect on mean EMG activity (%MVIC) of each 167 

muscle tested (within exercise differences). Significance was set at the 0.05. A Bonferroni post‐168 

hoc test was then applied for the comparative pair‐wise analysis of mean normalized EMG (% 169 

MVIC) to detect significant differences in the activation of muscles when differences were 170 

observed. SPSS (IBM Corp. Released 2013. IBM SPSS Statistics, Version 22.0, NYC) was used 171 

for statistical analysis. 172 

RESULTS 173 

Table1 and Figures1-2 summarise and compare the mean activation of muscles during exercises:  174 

Forward lunge created significantly higher muscle activation in the VL compared to double leg 175 

raise, glute bridge, and sit-up (p<0.001). The RF activation was also considerably higher than 176 

glute bridge and sit-up (p<0.001). Forward lunge generated significantly higher activity in the 177 

VM compared to double leg raise and glute bridge (p<0.05); and in the BF compared to double 178 

leg raise and sit-up (p<0.05). Squat was associated with a significantly higher activation in the 179 

VL compared to double leg raise, glute bride and sit-up (p<0.001). The RF and VM both were 180 

activated significantly higher than glute bridge (p<0.05) and p<0.001, respectively); and ES had 181 

a significantly higher activation compared to double leg raise and forward lunge (p<0.05). Glute 182 

Bridge produced significantly higher activation in BF and GM compared to double leg raise and 183 

sit-up (p<0.05); and in the ST compared to double leg raise (p<0.05). Sit-Up generated markedly 184 

higher activation in the RA (p<0.001) compared to forward lunge, glute bridge, and squat; and 185 

in the RF compared to glute bridge (p<0.05). Double Leg Raise was associated with a 186 

significantly higher activation in the RA than in forward lunge, glute bridges and squat 187 

(p<0.001); and there was a markedly in the RF compared to the glute bridge (p<0.05).  188 

DISCUSSION  189 

Findings of this study provide further evidence, by means of muscle activation and 190 

strengthening, for optimal prescription of training and rehabilitation exercises in athletes with 191 

ACL injury. EMG signal amplitude has been shown to have both linear and non-linear 192 
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relationship with the force produced by the muscle23,24). and hence, has been widely used to 193 

underpin potential rehabilitation exercises by means of enhancing strength, endurance, and 194 

stability. It is generally accepted that for strength gains to occur muscle activation should reach 195 

the 40% MVC threshold during therapeutic exercises in order to accomplish strengthening 196 

adaptation25,26) as such the greater the muscle activation the greater the gains27). The use of 197 

exercises with moderate activity, which fail to reach the threshold for strength gains, may instead 198 

be used as a high repetition exercise to enhance muscle endurance26,28). 199 

One of the strategic aims of the current ACL rehabilitation programmes is to correct aberrant 200 

muscle activation patterns of the lower extremity muscles, the quadriceps and hamstrings in 201 

particular, following ACL-injury and ACL-reconstruction. These altered activations have been 202 

linked to compensatory adaptations in response to arthrogenic muscle inhibition in the 203 

quadriceps and/or muscle strength deficits associated with ACL injury (both pre-operatively and 204 

following ACL reconstruction)10,29). 205 

While the quadriceps function is key for appropriate positioning of the body’s centre of mass 206 

during communal athletic movements such as running, jump, landings, and cutting 207 

manoeuvres30) strong uncontrolled quadriceps forces can lead to anterior translation of the tibia 208 

and increase the risk of ACL injury31). It is noted that training the quadriceps disproportionately 209 

to the hamstrings may impair hamstrings activation, reduce joint stability, increase anterior tibial 210 

translation in response to strong quadriceps forces and potentially increase the incidence of ACL 211 

injury30). Hence prescribed exercises should have elements of hamstrings training to 212 

counterbalance quadriceps activation (restore hamstrings-to-quadriceps activation balance) and 213 

support knee ligamentous function in maintaining joint stability and balancing articular surface 214 

load distribution31). 215 

In addition to the lower extremity muscles, the majority of sporting movements also place large 216 

demands on trunk/core musculature as they control the body’s centre of mass in response to the 217 

forces generated from distal body parts32,33). As a result, training of trunk/core muscles should 218 

be considered in the training and rehabilitation programmes in order to restore core strength and 219 
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stability, improve lower extremity alignment, enhance landing quality, and reduce risk of ACL 220 

injury by reducing valgus force to the knee32,34,35). Hence, in addition to hamstrings and 221 

quadriceps muscles, the present study also measured activity of selected trunk and core muscles, 222 

which may directly or indirectly contribute to the knee joint alignment, stability, and mobility, 223 

during some commonly prescribed exercises to further support evidence-based training and 224 

exercise prescription for the prevention and rehabilitation of ACL injury.  225 

The present study found significant differences in the mean activation (i.e. an estimate of 226 

exercise intensity) of all muscles across the five exercises indicating their contributions to the 227 

potential effectiveness of these rehabilitative exercises. With regard to activation of quadriceps 228 

(VL, VM, and RF), forward lunge (32%-61%MVIC) and squat (25%-55% MVIC) appeared to 229 

be the optimal exercises and may be considered for enhancing strength and function of this 230 

muscle group. This is consistent with that of Ebben et al.36) who reported the highest activation 231 

of RF, VL, and VM during squat and forward lunge. Bryanton et al.37) investigated the impact 232 

of squat depth on relative muscular effort (RME) and reported increased RME of Knee and hip 233 

extensors with greater squat depth. Ayotte et al.25) investigated activation of VM during several 234 

weight-bearing exercises and reported considerable activation (sufficient for muscle 235 

strengthening) during the wall squat. Ekstrom et al.28) reported activation levels greater than 45% 236 

MVIC in the VM during lunge exercises and recommended it for strengthening of the muscle. 237 

Pincivero et al.38) also found very high levels of EMG activity for VM and VL during the lunge 238 

exercise (150% to 175%MVIC). In terms of different squat exercises, Contreras et al.39) 239 

measured mean and peak EMG amplitude of the GM, BF, and VL during front, full, and parallel 240 

squats in resistance-trained females and reported similar EMG activity of muscles. 241 

Regarding hamstrings, the forward lunge and glute bridge produced considerably higher 242 

activation of BF and ST compared to other exercises supporting their integration into the training 243 

and rehabilitation programmes for enhancing hamstring function, endurance in particular. It has 244 

been shown that hamstrings and ACL act synergistically to limit anterior tibial translation during 245 

quadriceps contraction. It has also been suggested that in the presence of ACL injury concurrent 246 
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increase in hamstring activity and quadriceps inhibition may happen as part of adaptation 247 

strategy to resume functional stability40). In a study of BF and ST muscle activation during 248 

forward lunge, Pincivero et al.38) demonstrated a significant increase in BF activation while no 249 

significant increase was found for ST. Ekstrom et al.28) investigated EMG activity of hamstrings 250 

during glute bridge exercise and reported a similar activation level of that to the present study. 251 

Begalle et al.5) reported a very high quadriceps-hamstrings ratio during the lunge exercises. 252 

Considering high activity of quadriceps during forward lunge and associated detrimental 253 

increase in quadriceps–hamstring activation ratio, the glute bridge may be more advantageous 254 

for facilitating a more balanced activation. Farrokhi et al.41) investigated the effect of changes in 255 

trunk position on lower limb muscle activity during forward lunge exercises and found that 256 

performing a lunge with a forwarded trunk increased the GM and BF activity compared to when 257 

it performed with extended trunk. 258 

Emerging data supporting the important role of the muscles acting upon the hip joint, GM in 259 

particular, during athletic movements has led to an increasing number of EMG studies aiming 260 

to identify optimal training and rehabilitation exercises for athletes with lower extremity 261 

injuries25,28). Furthermore, a significant muscle activation deficit has been reported in patients 262 

undergoing ACL reconstruction compared to healthy controls42). In the present study GM was 263 

activated the greatest during glute bridge (44%MVIC) and forward lunge (40%MVIC) 264 

supporting their effective contribution to enhancing core strength and stability. In an EMG study 265 

of common exercises, Ekstrom et al.28) reported markedly increased GM activity (36%MVIC) 266 

during forward lunge compared to several other exercises and a moderately increased activity 267 

during glute bridge (25%MVIC). Some other studies, have however reported significant increase 268 

in GM activity during squat-based exercises25,43). 269 

The greatest muscle activity for RA and ES was produced during the double leg raise 270 

(43%MVIC) and squat (40%MVIC), respectively. While many sporting performances require 271 

efficient contribution from the core and trunk muscles for maintaining correct posture and 272 

establishing core stability, there is limited data on the activity of RA and ES during lower 273 
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extremity exercises. As part of lower extremity training and rehabilitation programme, it is 274 

critical to maintain the appropriate activity levels and strength of these muscles to enable optimal 275 

function and reduce the risk of re-injury. In their study of various core and lower extremity 276 

rehabilitation exercises, Ekstrom et al.28) and Comfort at al.44) reported the highest RA activity 277 

during prone bridge (40%MVIC and 0.454 Root Mean Square-RMS[V] , respectively). These 278 

studies did not however include the double leg raise exercise. Comfort et al.44) reported a 279 

significant increase in the ES activity during front squat (1.010 RMS[V]) suggesting that such 280 

dynamic exercise may be beneficial for strengthening the muscle. The study however did not 281 

report normalised EMG activity data that would allow direct comparisons. 282 

While performing exercises in different planes may influence the kinetics and activation of the 283 

muscles, the forward lunge was only measured with the trunk in one plane and squat only to 90° 284 

of parallel flexion. Furthermore, study included only two exercises for the true RA activity. 285 

Considering emerging evidence to support the employment of more dynamic and criteria-based 286 

progression exercises following ACL reconstruction45,46), some exercises included in the present 287 

study such as sit-up and double leg raise may have limited effect on ACL rehabilitation.  288 

Findings of this study provide further evidence for optimal prescription of training and 289 

rehabilitation exercises in athletes with ACL injury. In terms of muscle activation, study 290 

demonstrated that the forward lunge and squat are the best exercises for the quadriceps; the glute 291 

bridge and forward lunge for the GM and hamstrings; double leg raise and sit-up for the RA; and 292 

squat for the ES. These exercises may be recommended for enhancing muscle activation patterns 293 

and muscle endurance. In terms of strengthening (reaching 40%MVIC for strength gain), we 294 

recommend squat and forward lunge for the quadriceps, Glute Bridge for the GM, double leg 295 

raise for the RA, and squat for the ES. Clinical outcome studies on the efficacy of these exercises 296 

in enhancing lower extremity function and in athletes with ACL injury are needed to further 297 

support their integration into training and rehabilitation plans. 298 

Conflict of interest: None. 299 
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Table Legends 420 

Table1. Comparison of mean (±SEM) muscle activation (%MVIC) for individual muscles 421 

during five rehabilitation exercises 422 

VL: Vastus Lateralis; RF: Rectus Femoris; VM: Vastus Medialis; BF: Bicep Femoris; ST: Semitendinosus; RA: 423 
Rectus Abdominis; GM: Gluteus Maximus; ES: Erector Spinae. 424 
 *- p<0.05 425 
a: Significantly higher than Double Leg Raise, b: Significantly higher than Forward Lunge; c: Significantly higher 426 
than Glute Bridge; d: Significantly higher than Sit-Up; e: Significantly higher than Squat 427 


