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Key points summary 31	  

• Continuous high-intensity constant-power exercise is unsustainable, with maximal 32	  

oxygen uptake (V̇O2max) and the limit of tolerance attained after only a few minutes. 33	  

• Performing the same power intermittently reduces the O2 cost of exercise and 34	  

increases tolerance. The extent to which this dissociation is reflected in the 35	  

intramuscular bioenergetics is unknown.  36	  

• We used pulmonary gas exchange and 31P magnetic resonance spectroscopy to 37	  

measure whole-body V̇O2, quadriceps phosphate metabolism and pH during 38	  

continuous and intermittent exercise of different work:recovery durations. 39	  

• Shortening the work:recovery durations (16:32 s vs. 32:64 s vs. 64:128 s vs. 40	  

continuous) at a work rate estimated to require 110 % peak aerobic power reduced 41	  

V̇O2, muscle phosphocreatine breakdown and muscle acidification, eliminated the 42	  

glycolytic-associated contribution to ATP synthesis, and increased exercise 43	  

tolerance.  44	  

• Exercise intensity (i.e. magnitude of intramuscular metabolic perturbations) can be 45	  

dissociated from the external power using intermittent exercise with short 46	  

work:recovery durations.  47	  

  48	  



	  
 

Abstract 49	  

Compared with work-matched high-intensity continuous exercise, intermittent exercise 50	  

dissociates pulmonary oxygen uptake (V̇O2) from the accumulated work. The extent to which 51	  

this reflects differences in O2 storage fluctuations and/or contributions from oxidative and 52	  

substrate-level bioenergetics is unknown. Using pulmonary gas-exchange and intramuscular 53	  

31P magnetic resonance spectroscopy, we tested the hypotheses that at the same power: 54	  

ATP synthesis rates are similar; but peak V̇O2 amplitude is lower in intermittent vs. 55	  

continuous exercise. Thus, we expected that: intermittent exercise relies less upon 56	  

anaerobic glycolysis for ATP provision than continuous exercise; shorter intervals would 57	  

require relatively greater fluctuations in intramuscular bioenergetics than in V̇O2 compared 58	  

with longer intervals. Six men performed bilateral knee-extensor exercise (estimated to 59	  

require 110% peak aerobic power) continuously and with three different intermittent 60	  

work:recovery durations (16:32; 32:64; 64:128s). Target work duration (576s) was achieved 61	  

in all intermittent protocols; greater than continuous (252±174s; p<0.05). Mean ATP turnover 62	  

rate was not different between protocols (~43mM·min-1 on average). However, the 63	  

intramuscular PCr component of ATP generation was greatest (~30mM·min-1), and oxidative 64	  

(~10mM·min-1) and anaerobic glycolytic (~1mM·min-1) components lowest for 16:32 and 65	  

32:64s intermittent protocols, compared with 64:128s (18±6, 21±10 and 10±4mM·min-1, 66	  

respectively) and continuous protocols (8±6, 20±9 and 16±14mM·min-1, respectively). As 67	  

intermittent work duration increased towards continuous, ATP production relied 68	  

proportionally more upon anaerobic glycolysis and oxidative phosphorylation, and less upon 69	  

PCr breakdown. However, performing the same high-intensity power intermittently vs. 70	  

continuously reduced the amplitude of fluctuations in V̇O2 and intramuscular metabolism, 71	  

dissociating exercise intensity from the power output and work done.   72	  



	  
 

Abbreviations 73	  

31P, phosphorus; MRS, magnetic resonance spectroscopy; ATP, adenosine triphosphate; 74	  

FIDs, free induction decays; H+, hydrogen; L-, blood lactate; LT, lactate threshold; MR, 75	  

magnetic resonance; NADH+, nicotinamide adenine dinucleotide; P:O, oxygen cost of ATP 76	  

resynthesis; P:W, ATP cost of force production; PCr, phosphocreatine; Pi, inorganic 77	  

phosphate; pHi, intramuscular pH; PO2, partial pressure of oxygen; RF coil, radiofrequency 78	  

coil; RIT, ramp-incremental test; V̇O2, oxygen uptake; V̇O2max, maximal oxygen uptake; 79	  

V̇O2peak, peak oxygen uptake; V̉O2SC, slow component of oxygen uptake. 80	  
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Introduction  82	  

The coupling of internal (capillary-to-myocyte) to external (capillary-to-alveolus) O2 exchange 83	  

during dynamic exercise is dependent on muscular oxidative ATP synthesis, the dynamics of 84	  

the circulation, and volume of the intervening O2 stores, predominantly in the form of 85	  

oxyhaemoglobin in the venous blood. At the onset of continuous constant-power exercise, 86	  

the kinetics of pulmonary oxygen uptake (V̇O2) are supplemented by contributions to energy 87	  

transfer from utilisation of O2 stores and, proportionally more significant, from substrate-level 88	  

phosphorylation (phosphocreatine (PCr) breakdown, glycolysis/glycogenolysis accumulating 89	  

lactate); termed the O2 deficit. The O2 deficit is associated with accumulation of products 90	  

linked to muscle fatigue, such as intramuscular inorganic phosphate (Pi) and H+ (Allen et al., 91	  

2008), and hence V̇O2 kinetics are strongly associated with exercise tolerance (Whipp & 92	  

Ward 1992; Burnley & Jones, 2007; Sperandio et al., 2009; Murgatroyd et al., 2011): a fast 93	  

response proffering greater exercise tolerance (Murgatroyd & Wylde, 2011; Rossiter, 2011). 94	  

 95	  

V̇O2 kinetics are intensity dependent (Özyener et al., 2011). Critical power (the asymptote of 96	  

the relationship between power and tolerable duration, which occurs between ~60-80 % 97	  

V̇O2max; Poole et al., 1988; van der Vaart et al., 2014) marks the individual threshold in the 98	  

rate of metabolic power production below which the bodily demands for ATP resynthesis are 99	  

met by wholly-aerobic energy transfer (Poole et al., 1988; Jones et al., 2008). During 100	  

continuous exercise exceeding critical power, V̇O2 continues to rise (through the action of the 101	  

slow component; V̇O2SC), and intramuscular PCr breakdown and Pi and H+ accumulation are 102	  

progressive (Poole et al., 1988; Jones et al., 2008; Vanhatalo et al., 2010). During constant 103	  

power exercise above critical power, where duration exceeds ~ 2 min (Hill et al., 2002), the 104	  

limit of tolerance is commonly associated with the attainment of V̇O2max, a minimum 105	  

intramuscular [PCr] and pHi and maximum [Pi] (Jones et al., 2008; Vanhatalo et al., 2010). 106	  

This limits the volume of work that can be accumulated during constant power exercise 107	  

above critical power (Monod & Scherrer, 1965; Moritani et al., 1981), where exercise can 108	  



	  
 

only be continued once a reduction in power to a value equal or below critical power is made 109	  

(Gaesser & Poole, 1996; Coats et al., 2003; Ferguson et al., 2010).  110	  

 111	  

Intermittent exercise, in which periods of supra-critical-power work are interspersed with 112	  

periods of recovery, dissociates the work done from systemic (V̇O2 and blood lactate, [L-]) 113	  

responses. Thus, the volume of work tolerated is increased, and the associated metabolic 114	  

strain is reduced, using intermittent compared with continuous exercise (Astrand et al., 1960; 115	  

Margaria et al., 1969; Turner et al., 2006; Combes et al., 2017). The magnitude of this 116	  

mechanical-to-metabolic dissociation is dependent on the work:recovery duration, and is 117	  

greatest when the work periods are short (e.g. 10-30 s; Turner et al., 2006; Combes et al., 118	  

2017). The effect is that homeostasis of V̇O2 and blood [L-] is less disturbed during 119	  

intermittent compared to continuous exercise performed at the same power and 120	  

accumulating the same volume of work. By the same notion, intermittent exercise can be 121	  

used to provide a greater volume of supra-critical power work in a given duration (Chidnok et 122	  

al., 2013). This approach has been used in an attempt to enhance the stimulus for 123	  

physiological adaptations by exercise training (e.g. Kemi et al. 2005; Helgerud et al. 2007; 124	  

Wisløff et al. 2007; MacInnis et al. 2017). 125	  

 126	  

It remains unclear the extent to which the systemic mechanical-to-metabolic dissociation by 127	  

intermittent exercise (e.g. as frequently observed in pulmonary V̇O2; Turner et al., 2006; 128	  

Guiraud et al., 2010; Chidnok et al., 2012; Combes et al., 2017) is matched by a similarly 129	  

attenuated response of intramuscular phosphate metabolism. For example, intermittent 130	  

exercise with short work bouts (10-30 s) and a low work:recovery ratio is hypothesised to 131	  

have a relatively greater reliance on depletion of oxymyoglobin and venous oxyhaemoglobin 132	  

O2 stores compared to exercise with longer work bouts (Astrand et al., 1960). This, coupled 133	  

with a limb-lung vascular transient delay, temporally dissociates cardiac output and O2 134	  

extraction responses at the lung, damping the response amplitude compared to the active 135	  

muscles (Barstow & Mole, 1987; Barstow et al., 1990; Rossiter, 2011; Benson et al., 2013). 136	  



	  
 

This infers that intramuscular oxidative phosphorylation and PCr breakdown, and thus the 137	  

intramuscular bioenergetic strain, would be increased (in comparison to the pulmonary V̇O2 138	  

response) in short vs. longer intermittent work bouts or continuous exercise at the same 139	  

power. However, this contradicts our knowledge of the progressive decrease in work 140	  

efficiency during long intermittent or continuous exercise during which a V̇O2SC is observed, 141	  

consequent to greater PCr breakdown resulting from increases in both intramuscular ATP 142	  

cost of force production (P:W) and O2 cost of ATP production (P:O) (Rossiter et al., 2002; 143	  

Krustrup et al., 2003; Turner et al., 2006; Bailey et al., 2010; Cannon et al., 2014). 144	  

 145	  

We aimed to investigate the coupling dynamics of intramuscular bioenergetics to pulmonary 146	  

gas exchange during continuous and intermittent exercise at the same power. We used 31P 147	  

magnetic resonance spectroscopy (MRS) to measure intramuscular phosphate responses 148	  

during bilateral knee-extensor exercise in continuous and intermittent exercise of different 149	  

work:recovery durations in comparison to pulmonary V̇O2; each performed at the same 150	  

power. We hypothesised that: (1) ATP synthesis rates are similar in intermittent and 151	  

continuous exercise at the same power; but (2) the peak pulmonary V̇O2 amplitude will be 152	  

lower in work-matched intermittent vs. continuous exercise. Thus, we expect that: (3) 153	  

intermittent exercise relies less upon anaerobic glycolysis for ATP provision than continuous 154	  

exercise, and is associated with greater exercise tolerance; despite (4) short intervals 155	  

requiring relatively greater fluctuations in intramuscular bioenergetics than in systemic 156	  

pulmonary gas exchange compared with longer intervals.  157	  

 158	  

Materials and methods 159	  

Ethical approval 160	  

Liverpool Hope Faculty of Sciences and Social Sciences Research Ethics committee and 161	  

the University of Liverpool Committee on Research Ethics approved the study, and all 162	  

procedures complied with the latest version of the Declaration of Helsinki. Prior to 163	  

participating all volunteers provided written informed consent.   164	  



	  
 

 165	  

Participants  166	  

Six healthy men (mean ± SD: age 24 ± 5 yr; height: 176 ± 7 cm; weight:  80 ± 12 kg) 167	  

volunteered to participate. All participants regularly undertook exercise, and any 168	  

contraindications that would have precluded involvement in the study, including 169	  

contraindications to MRS, were identified using a pre-exercise assessment questionnaire.  170	  

 171	  

Exercise protocols 172	  

Ergometry. All exercise tests were performed on a computer-controlled electromagnetically 173	  

braked MR compatible bilateral knee-extension ergometer (MRI Ergometer Up/Down, Lode 174	  

BV, Groningen, The Netherlands). As described previously, this ergometer was customised 175	  

for use in a Siemens 3T MR scanner using extended carbon-fibre lever arms (Cannon et al., 176	  

2014). Participants lay prone with their feet secured into plastic stirrups using Velcro straps. 177	  

The stirrups were connected to the extended ergometer lever arms and attached to a drive 178	  

crank for the electromagnetically braked flywheel. To isolate the work to the quadriceps 179	  

Velcro strapping was also used to secure participants’ hips to the patient bed, minimising 180	  

contributions from the hip flexors and extensors. Using this ergometer the external 181	  

resistance is only applied during knee-extension. The only work during knee-flexion is that 182	  

required to lift the mass of the lower leg. The range of motion is limited by the scanner 183	  

dimensions to between ~30 degrees flexion and full extension. Participants were familiarised 184	  

with performing a constant knee-extension frequency of 90 kicks·min-1 set using a 185	  

metronome. This kick frequency also allowed the flywheel speed to be maintained above the 186	  

minimum operating speed and aligned MR scanner acquisitions with muscle contractions.  187	  

 188	  

Familiarisation. The exercise protocols were completed in two phases – familiarisation and 189	  

testing. The familiarisation phase took place in a temperature-controlled human physiology 190	  

laboratory. All exercise protocols began with a period of rest (~1-3 min) and then knee-191	  



	  
 

extension exercise at 5 W (~2-4 min), with each of these phases continued until a steady 192	  

state was attained.  193	  

 194	  

Participants first completed a ramp-incremental exercise test (RIT; 3 W·min-1) to the limit of 195	  

tolerance; defined as the point at which the participant was unable to maintain the full range 196	  

of motion at the target kicking frequency (90 kicks·min-1) or when the flywheel speed 197	  

decreased below the minimum operating speed, despite strong verbal encouragement. 198	  

Participants were familiarised with the protocol by repeating it until the performance (power 199	  

and duration) and physiologic responses (V̇O2 etc.) were reproducible between visits 200	  

(minimum of 3 repeats performed). Once familiarised, the power corresponding to 110 % of 201	  

RIT peak power was calculated and used in all subsequent exercise protocols. Comparison 202	  

of V̇O2peak at the limit of RIT and continuous exercise was used to confirm V̇O2max (Poole & 203	  

Jones, 2017). Continuous and intermittent protocols were also repeated until reproducible 204	  

physiological responses were obtained (typically requiring 2 repeats).  205	  

 206	  

Testing. The collection of pulmonary gas exchange data for matching to MRS data was 207	  

performed in the same temperature-controlled human physiology laboratory as the 208	  

familiarisation phase.  Following a period of rest and warm-up at 5 W, for the continuous 209	  

exercise protocol, power was instantaneously applied at the power equivalent to 110 % of 210	  

RIT peak, and the participants were required to continue the exercise to the limit of 211	  

tolerance. Intermittent protocols comprised periods of work at a power equivalent to 110 % 212	  

of RIT peak, and periods of recovery at 5 W. The three intermittent protocols performed by 213	  

all participants had work:recovery durations of 16:32 s, 32:64 s and 64:128 s. These 214	  

durations were chosen to align with MRS data acquisition, there being one 31P spectrum 215	  

acquired every 8 s. Each intermittent protocol was continued until a total of 576 s of work 216	  

was accumulated (at a 1:2 work:recovery duty cycle this corresponded to a total duration of 217	  

28 minutes 48 seconds, allowing 216 complete 31P spectra to be collected), or to the limit of 218	  



	  
 

tolerance, whichever was the shorter. Only one exercise protocol was performed on a given 219	  

day, with at least 24 hr between visits, and protocols were performed in a random order. 220	  

 221	  

Subsequently, continuous and intermittent exercise protocols were repeated inside the bore 222	  

of a 3T superconducting magnet for measurement of intramuscular phosphate responses by 223	  

31P MRS using the same ergometer and the same exercise protocol as used for pulmonary 224	  

gas exchange data collection.  225	  

 226	  

Pulmonary gas exchange 227	  

Participants breathed through a facemask for measurement of respired gases (Zan 600, 228	  

Geratherm, Germany). Volume and flow rates were sampled at 125 Hz and measured using 229	  

a pneumotach; with O2 and CO2 gas concentrations measured using electrochemical cell 230	  

and infrared gas analysers, respectively. Using BlueCherry software, gas concentration and 231	  

volume signals were time-aligned for online calculation of breath-by-breath pulmonary gas 232	  

exchange and ventilatory variables.  233	  

 234	  

Prior to each test the flow sensor and gas analysers were calibrated according to the 235	  

manufacturers’ guidelines. The pneumotach was calibrated using a 3 L syringe across a 236	  

range of flow rates, with the gas analysers calibrated using certified gas mixtures that 237	  

spanned the expected inspired and expired ranges of both O2 and CO2. 238	  

 239	  

31P Magnetic Resonance Spectroscopy 240	  

Relative concentrations of intramuscular phosphates (ATP, PCr, Pi) were measured using a 241	  

3T superconducting magnet (Magnetom Trio, Siemens AG, Erlangen, DE), and pHi was 242	  

calculated from the chemical shift of Pi to PCr (Moon & Richards,1973). A one-pulse 31P 243	  

MRS acquisition was employed using a dual-tuned (1H, 15 cm diameter; 31P 18 cm diameter) 244	  

surface RF coil (RAPID Biomedical GmbH, Rimpar, Germany) placed under the knee 245	  

extensors of the right leg and positioned halfway between the hip and knee. This provided a 246	  



	  
 

metabolic signal from a mid-thigh slice of the rectus femoris, vastus medialis, vastus 247	  

intermedialis and vastus lateralis (Cannon et al., 2014). Once in the correct position, the 248	  

participants’ hips were secured to the scanner bed using non-distensible Velcro straps. 249	  

Participants were then moved inside the bore of the magnet and the scanning procedure 250	  

commenced.  251	  

 252	  

Sagittal and coronal gradient-recalled echo images of the thigh were taken to confirm 253	  

placement of the RF coil in relation to the knee extensors. 1H shimming was performed to 254	  

optimise magnetic field homogeneity. Subsequently, a fully relaxed high-resolution 255	  

unsaturated spectrum and 32-scan spectrum (repetition time of 10 s) were obtained, with 256	  

this used as the reference baseline spectra. Throughout the protocol 31P free induction 257	  

decays (FIDs) were collected every 2 s, with four FIDs used to provide a spectrum every 8 s. 258	  

The continuous and intermittent exercise protocols were aligned to ensure that each 259	  

spectrum did not straddle work-recovery transitions.  260	  

 261	  

Data Analyses 262	  

All breath-by-breath V̇O2 responses were filtered to remove any erroneous breaths (defined 263	  

as those occurring outside the 99 % prediction limits of the local mean) resulting from sighs, 264	  

coughs or swallowing etc. (Lamarra et al., 1987). For the RIT, lactate threshold (LT) was 265	  

estimated non-invasively using standard ventilatory and pulmonary gas exchange criteria 266	  

(Whipp et al., 1986). In both RIT and continuous constant-power exercise V̇O2peak was 267	  

identified as the greatest 12-breath (~20 s) moving average prior to the limit of tolerance.  268	  

 269	  

For the intermittent responses, breath-by-breath data were linearly interpolated to provide a 270	  

value every second. V̇O2 data were then phase-aligned to PCr to account for the limb-lung 271	  

vascular transit delay (Rossiter et al., 1999), and then averaged to provide a datum every 8 272	  

s – i.e. to match the intervals of 31P data collection. Intermittent exercise was characterised 273	  

by an expected transient phase where the amplitude of the work-recovery fluctuations in V̇O2 274	  



	  
 

were climbing (in this study, the first 192 s), and a subsequent periodic steady-state phase 275	  

where the amplitude of V̇O2 fluctuations stabilised between exercise and recovery phases. 276	  

For this reason, to analyse the time course of the intramuscular and pulmonary responses to 277	  

intermittent exercise, the first 192 s were eliminated and the subsequent V̇O2 and phosphate 278	  

data sorted into time-bins of 384 s each, resulting in a total of 4 repeats (or bins) of 279	  

intermittent work-recovery phases (Figure 1). Within each time-bin, like transitions were 280	  

aligned to the onset of work at 110 % of RIT peak power and averaged to increase the 281	  

signal:noise (Lamarra et al., 1987; Rossiter et al., 2000). The peak, nadir and peak-to-nadir 282	  

amplitude of fluctuations in each variable were identified within each bin. All data were then 283	  

normalised to the amplitudes measured during continuous exercise between 5 W (0 %) and 284	  

peak (100 %).  285	  

 286	  

Kinetic analysis of 31P MRS data 287	  

This has been described in detail elsewhere (Cannon et al., 2014). Briefly, PCr kinetics were 288	  

modelled using non-linear least-squares regression (implemented in Excel, Microsoft Office 289	  

2016). The rate of ATP turnover was estimated from the contributions of PCr breakdown (D), 290	  

oxidative phosphorylation (Q) and glycogenolysis (L), which were determined from the PCr, 291	  

Pi and pHi data acquired during exercise and recovery, using methods explained in detail 292	  

elsewhere (Kemp, 2015; Kemp, 2016). To improve the signal:noise ATP turnover was 293	  

calculated as a mean rate throughout the work phases of the protocols (i.e. mean of the 4 294	  

bins).  295	  

 296	  

Estimating ATP turnover using 31P MRS in vivo relies on some assumptions, particularly in 297	  

relation to the estimated contribution of oxidative phosphorylation (Q) (discussed in detail 298	  

elsewhere; Kemp, 2015; Kemp, 2016). However, sensitivity analysis suggests that none of 299	  

the calculations used depended substantially on any particular assumption. Using initial PCr 300	  

breakdown rate (D) as a measure of initial ATP turnover, and initial recovery PCr resynthesis 301	  

as a measure of end-exercise supra-basal oxidative ATP synthesis rate (Q) depends on only 302	  



	  
 

the most general of assumptions about closed-loop feedback control of oxidative ATP 303	  

synthesis; the use of the relationship between Q and [ADP] established by analysis of 304	  

recovery kinetics to ‘predict’ Q during exercise assumes only one of several possible modes 305	  

of mitochondrial feedback control (Kemp, 2015), which each provide very similar results 306	  

during exercise of this kind. Finally, the calculated contribution of glycolytic ATP production 307	  

is small in the present study, and depends on uncontroversial models of cellular pH 308	  

buffering, and assumptions of approximately linear pH-dependence of acid efflux to which 309	  

the detailed results are rather insensitive (Kemp, 2015; Kemp, 2016). 310	  

 311	  

Statistics 312	  

Metabolic perturbations (peak, nadir and peak-to-nadir amplitude) were initially compared 313	  

among the four time-bins using a one-way repeated measured ANOVA, to investigate the 314	  

effect of time on metabolic disturbances. Subsequently, peak continuous exercise values, 315	  

and final time-bin values for all intermittent protocols were compared using a one-way 316	  

repeated measures ANOVA to investigate the effect of exercise protocol (continuous and 3 317	  

intermittent protocols) on metabolic disturbances. Finally a two-way repeated measured 318	  

ANOVA was used to compare the relative amplitude of change (V̇O2 vs. PCr), and 319	  

investigate how this changed between intermittent protocols (16:32 vs. 32:64 vs. 64:128 s). 320	  

Post hoc Tukey-corrected pairwise comparisons were performed where appropriate. 321	  

Statistical significance was set at p < 0.05.  All values are reported as mean ± SD.  322	  

 323	  

Results 324	  

Ramp incremental responses 325	  

The estimated LT was 1.46 ± 0.26 L·min-1 (72 ± 2 % V̇O2peak), with the tolerable limit attained 326	  

at a V̇O2peak of 2.04 ± 0.36 L·min-1 and peak power of 34 ± 7 W.  327	  

 328	  

ATP turnover and exercise tolerance during continuous and intermittent exercise 329	  



	  
 

Continuous constant-power exercise at 110 % RIT peak power (38 ± 7 W) was sustained for 330	  

252 ± 174 s, and V̇O2peak at the limit of tolerance (2.03 ± 0.26 L·min-1) was not different from 331	  

RIT V̇O2peak, confirming V̇O2max (p = 0.891). The mean rate of ATP turnover during 332	  

continuous exercise performed to the limit of tolerance was 44.7 ± 18.4 mM·min-1, with large 333	  

contributions from anaerobic glycolysis (L; 33 ± 19 %) and oxidative phosphorylation (Q; 50 334	  

± 23 %) compared with and PCr breakdown (D; 17 ± 6 %) (Table 1 and Figure 2). At 335	  

intolerance in continuous exercise PCr declined to 38 ± 13 % of baseline and pHi reached a 336	  

nadir of 6.67± 0.07 (cf. 7.07 ± 0.04 at rest). 337	  

 338	  

In all intermittent protocols the 576 s target of work at 110 % RIT peak power was 339	  

accumulated. This equated to 327 ± 180 % more work done during intermittent exercise than 340	  

with continuous exercise at the same power. Mean ATP turnover was not different among 341	  

continuous and the work phases of intermittent exercise protocols (p > 0.05; Table 1). 342	  

Following removal of the initial kinetic phase (first 192 s), the 4 binned-repeats of the work-343	  

recovery phases of intermittent exercise did not differ (p > 0.05) within the 16:32 s or 32:64 s 344	  

intermittent protocols. In other words, the V̇O2, PCr and pHi fluctuation peak, fluctuation 345	  

nadir and fluctuation amplitude were constant following the removal of the initial 192 s kinetic 346	  

phase (Figure 3). However, for the 64:128 s intermittent protocol peak metabolic disturbance 347	  

(PCr; p < 0.05) and fluctuation amplitude (V̇O2; p < 0.05) increased between time-bins 1 and 348	  

4. For these reasons, the V̇O2, PCr and pHi peak values used for all subsequent analyses 349	  

were those from the final bin of intermittent exercise in all protocols (i.e. the values 350	  

measured in the 4th time-bin of Figure 1). 351	  

 352	  

Absolute bioenergetic and pulmonary responses during continuous and intermittent exercise 353	  

Comparing within variables across the four different exercise protocols, the absolute V̇O2 354	  

increase, PCr breakdown and pHi fall were less during short work:recovery intermittent 355	  

exercise versus long work:recovery duration exercise (p < 0.05; Table 2, Figure 3). The peak 356	  

values of the disturbance in V̇O2, PCr and pHi during the 16:32 s intermittent protocol did not 357	  



	  
 

reach those seen during continuous exercise (p < 0.05). Similarly, the peak values of the 358	  

disturbance in V̇O2 and pHi during the 32:64 s intermittent protocol were less than those 359	  

during continuous (p < 0.05), although peak PCr was not different (p = 0.07). However, the 360	  

absolute peak value of the disturbance of V̇O2 (p = 0.06), PCr (p = 0.72) and pHi (p = 0.08) 361	  

during 64:128 s intermittent exercise were not different to those at the limit of tolerance in 362	  

continuous exercise (Table 2, Figure 3).  363	  

 364	  

Relative fluctuations in intramuscular bioenergetics and pulmonary V̇O2 during intermittent 365	  

compared with continuous exercise 366	  

In order to compare the relative excursion between intramuscular and pulmonary variables, 367	  

responses were normalised between 5 W baseline and peak values of continuous exercise. 368	  

Comparing between V̇O2 and PCr during intermittent exercise, the relative peak to nadir 369	  

amplitude of V̇O2 and PCr fluctuations increased with work bout duration (p < 0.05; Table 3), 370	  

with a strong inverse relationship between PCr breakdown and V̇O2 (r2 = 0.88; p < 0.05). 371	  

However, the amplitude of the V̇O2 fluctuation was less than that of PCr for 16:32 and 32:64 372	  

s protocols (p < 0.05; Table 3; Figure 3). The relative contribution of PCr breakdown to 373	  

intramuscular ATP production was greatest during the short intermittent cycles (16:32 and 374	  

32:64 s). At the longer cycles (64:128 s and continuous) the contributions from oxidative 375	  

phosphorylation (Q) and anaerobic glycolysis (L) were at their greatest (p < 0.05; Figure 2).  376	  

 377	  

Discussion 378	  

The major finding of this study was that the metabolic strain of exercise (V̇O2, intramuscular 379	  

PCr breakdown, pHi) is dissociated from the external power and cellular demand for ATP 380	  

production by performing the exercise intermittently. While continuous constant-power 381	  

exercise at 110 % peak RIT power could only be sustained for ~ 4 minutes, our findings are 382	  

consistent with previous reports that exercise tolerance was increased by at least 3-fold, and 383	  

a greater volume of work accumulated, when the same power is performed intermittently 384	  

(Astrand et al. 1960; Margaria et al. 1969; Turner et al. 2006; Chidnok et al. 2013; Skiba et 385	  



	  
 

al. 2014). We found that mean ATP turnover during the work phases were not different for 386	  

both continuous and intermittent exercise at the same external power (Table 1), such that 387	  

alterations in work efficiency could not explain the differences in tolerance. Nevertheless, the 388	  

magnitude of intramuscular metabolic fluctuations was attenuated during intermittent 389	  

exercise. This dissociation was greatest when the work:recovery durations were shorter 390	  

(Figure 3), despite the work:recovery duty cycle (1:2) and power output remaining constant 391	  

for all intermittent protocols.  392	  

 393	  

These data support our hypotheses that ATP synthesis rates would be similar in intermittent 394	  

and continuous exercise at the same external power (110 % peak RIT power; hypothesis 1), 395	  

despite pulmonary V̇O2 fluctuations being lower in intermittent exercise (hypothesis 2). We 396	  

also found, contrary to some suggestions (Rossiter et al. 2002; Krustrup et al. 2003; Cannon 397	  

et al. 2014), that the small fluctuations in pulmonary V̇O2 during the shorter vs. longer 398	  

work:recovery durations, were not mirrored in the intramuscular responses. As intermittent 399	  

work interval duration increased towards matching the continuous protocol, the mean ATP 400	  

production relied increasingly upon anaerobic glycolysis and oxidative phosphorylation and 401	  

less upon PCr breakdown (hypothesis 3). On the other hand, during short work:recovery 402	  

intermittent exercise, the relative amplitude of the V̇O2 fluctuations were damped compared 403	  

to those of intramuscular PCr (hypothesis 4): The ratio between relative amplitudes of  V̇O2 404	  

and PCr fluctuations were 53 % during 16:32 s, 69 % during 32:64 s, rising to 90 % during 405	  

64:128 s (Figure 3; Table 3). This is consistent with proportionally greater contributions to 406	  

the ATP turnover from PCr hydrolysis and suggests proportionally greater stored O2 usage 407	  

during short work:recovery intermittent exercise than longer work:recovery intermittent 408	  

exercise or continuous constant-power exercise (Figure 2; cf. Turner et al. 2006). It also 409	  

suggests that the capacitance of the intervening energy and O2 stores has a significant 410	  

impact in damping the external (pulmonary) respiratory responses to intermittent exercise 411	  

relative to the internal (intramuscular) bioenergetics. 412	  

 413	  



	  
 

Intermittent exercise tolerance 414	  

At the onset of continuous exercise, the ability of intramuscular oxidative phosphorylation to 415	  

meet the cellular ATP requirement is dependent on its kinetics, with any shortfall 416	  

compensated for by substrate-level phosphorylation (O2 deficit). This non-oxidative ATP 417	  

supply is capacity-limited, and propagates a ‘fatigue cascade’ (Murgatroyd & Wylde, 2011). 418	  

This cascade leads to the accumulation of fatigue-related metabolites, exercise inefficiency 419	  

(reflected in the V̇O2SC), intramuscular PCr depletion and, ultimately, exercise intolerance 420	  

(Jones et al. 2008; Vanhatalo et al. 2010). Consequently, the rate at which intramuscular 421	  

oxidative phosphorylation responds to alterations in ATP demand (V̇O2 kinetics) is a key 422	  

determinant of high-intensity exercise tolerance (Whipp & Ward, 1992; Jones & Burnley, 423	  

2009; Murgatroyd et al. 2011). Mean ATP turnover was not different between protocols 424	  

(Table 1), and therefore the initial rate of V̇O2 change was the same at the onset of both 425	  

continuous and intermittent exercise regardless of work:recovery duration (DiMenna et al. 426	  

2010). Consequently, the amplitude of the intramuscular V̇O2 fluctuation, and requirement for 427	  

substrate-level phosphorylation, was determined by the intermittent work duration. While 428	  

shortening the intermittent duration resulted in a relatively greater proportional contribution 429	  

by PCr breakdown to overall ATP synthesis, it also resulted in increased system stability and 430	  

exercise tolerance. That is, V̇O2, PCr and pHi fluctuations were small and there was no 431	  

measurable cellular contribution to the exercise task from anaerobic glycolysis. Indeed, the 432	  

V̇O2 fluctuations during the shortest intermittent protocol remained below the estimated 433	  

lactate threshold throughout. This cellular bioenergetics response is consistent with the 434	  

observations that exercise was better sustained, and more work done, during intermittent 435	  

compared with continuous exercise.  436	  

 437	  

Damping of pulmonary respiration by cellular bioenergetics 438	  

During short work:recovery intermittent exercise the peak fluctuation in V̇O2 vs. PCr (17.0 ± 439	  

6.9 vs. 32.1 ± 20.6 %) suggests that the relative intramuscular metabolic strain is greater 440	  

than that extrapolated from the V̇O2 measured at the mouth. The dissociation between 441	  



	  
 

muscle V̇O2 (inferred from PCr) and pulmonary V̇O2 (measured) during short work bouts is 442	  

likely due to rapid transients in intramuscular and venous O2 storage. The ~10 s delay after 443	  

the onset of high-intensity exercise in the appearance of deoxygenated myoglobin 444	  

(Richardson et al. 2015) suggests that venous haemoglobin deoxygenation (Turner et al. 445	  

2006) bears the brunt of this damping process (cf. Astrand et al. 1960), and may result in a 446	  

narrowing of the capillary-to-myocyte PO2 driving pressure. This finding is also consistent 447	  

with slow activation of muscle oxidative phosphorylation at exercise onset (e.g. Korzeneiski 448	  

& Rossiter, 2015). Given that the V̇O2 in this study was measured at the mouth without use 449	  

of an algorithm to estimate alveolar gas exchange, there is also the potential for a 450	  

contribution from changes in pulmonary O2 stores (Beaver et al. 1981; Aliverti et al. 2004; 451	  

Wüst et al. 2008). While the degree of this effect is unknown, any changes in end-expiratory 452	  

lung volume are anticipated to be small during this prone exercise task.  453	  

 454	  

Dissociating exercise intensity from power output 455	  

The phrases ‘exercise intensity’ and (relative) ‘power output’ are commonly used 456	  

interchangeably. The finding that intensity and power output can be completely dissociated 457	  

depending on the work:recovery duration highlights the importance of providing these two 458	  

terms with distinct definitions. The dissociation here occurred to the degree that a severe 459	  

intensity exercise bout (where V̇O2 exceeded critical power) could be reduced to moderate 460	  

intensity (where V̇O2 remained below the lactate threshold) through shortening the duration 461	  

of work intervals, despite the power output and total work done remaining constant. Thus, 462	  

the term power output refers to a rate of energy transfer from the skeletal muscle to perform 463	  

external work (mechanical power), while the intensity that a given power output engenders 464	  

depends on the peak magnitude of the metabolic fluctuation(s) evoked during the task. By 465	  

shortening the work:recovery durations, intensity (including the requirement for anaerobic 466	  

glycolysis to contribute to the ATP turnover) is minimised and exercise better sustained.  467	  

 468	  



	  
 

In our study the fluctuation in the V̇O2 response to intermittent exercise was considerably 469	  

damped compared to intramuscular PCr. Nevertheless, in the short-duration intermittent 470	  

protocol (16:32 s), where the magnitude of this effect was greatest, there remained a large 471	  

dissociation between the external power and the intramuscular metabolic strain. This was 472	  

achieved by terminating the work bout before intramuscular PCr substantially decreased, 473	  

and allowing PCr to increase during the intervening recovery interval. During the shortest 474	  

work:recovery duration of intermittent exercise we found that the peak and nadir of the V̇O2 475	  

and PCr fluctuations remained below values associated with the lactate threshold and there 476	  

were no net contributions from anaerobic glycolysis to meet the cellular demands for ATP 477	  

turnover, despite power exceeding that achieved at V̇O2max in the RIT. This bioenergetics 478	  

behaviour is consistent with responses observed during continuous exercise at far lower 479	  

powers that are termed moderate intensity (Wasserman et al. 1967; Rossiter et al. 2002). 480	  

The accumulation of lactate and the associated intramuscular acidosis occurs relatively 481	  

slowly after exercise onset, e.g. glycolysis itself is not activated for ~10-15 s after exercise 482	  

onset (Conley et al. 1998; Walsh et al. 2008). However, any delayed activation of glycolytic 483	  

flux is unlikely to be a major contributor to the relative preservation of muscle pHi and lack of 484	  

muscle acidification in this protocol because the 16 s exercise bout was repeated many 485	  

times over the ~30 minute protocol; which would certainly be sufficient to identify any 486	  

activation of glycolytic flux. The strong probability is that any cytosolic redox challenge 487	  

consequent to increased glycolytic flux was met either by intramitochondrial transport of 488	  

accumulated pyruvate (effectively reversing any lactate formation during the work bout), or 489	  

of NADH+, during the recovery phases of the intermittent bouts. Because sustained energy 490	  

provision was not required, the very short work bouts and interspersed recovery intervals 491	  

allowed aerobic energy provision to remain below the lactate threshold and the substrate-492	  

level contributions to the exercise energetics in short intermittent work bouts appear to be 493	  

essentially limited to PCr breakdown (Figure 2). 494	  

 495	  



	  
 

We also observed (Figure 3) that during the work phases of intermittent exercise pHi 496	  

increases while PCr is falling (as H+ is sequestered in the Lohmann reaction: ADP + PCr + 497	  

H+ ←→ ATP + Cr). This means that during short intermittent bouts, the lowest pHi occurs 498	  

during recovery where PCr is greatest and the muscle is alkalotic during the work phase 499	  

when PCr is lowest. This is unlike during longer duration intermittent bouts (64:128 s) or 500	  

continuous exercise where PCr and pHi are both low during the muscular activity. Whether 501	  

this alkalinising effect during short intermittent exercise is protective of muscle fatigue is 502	  

currently unclear, but clearly the lesser magnitude of PCr breakdown (and Pi accumulation) 503	  

is associated with increased exercise tolerance and a prolongation of work capacity. 504	  

Furthermore, the influence of this effect on the cellular transduction of training responses is 505	  

currently unknown (see Implications below).  506	  

 507	  

Extending the work:recovery durations predictably increased the intramuscular metabolic 508	  

strain. In the 32:64 s protocol, the peak V̇O2 fluctuation (1.54 ± 0.36 L·min-1) exceeded the 509	  

estimated lactate threshold (1.46 ± 0.26 L·min-1), which was associated with a cellular 510	  

acidosis (pHi; 6.84 ± 0.12), and an increased contribution from anaerobic glycolysis to ATP 511	  

turnover. These features are consistent with heavy-intensity exercise (where metabolic 512	  

power production is between the lactate threshold and critical power). The sustained 513	  

decrease in pHi in the 32:64 s protocol demonstrates that the O2 deficit accumulated during 514	  

the work phase to the extent that anaerobic glycolysis became a necessary contributor to 515	  

the energy transfer (Figure 2). The magnitudes of the intramuscular energetic strain and 516	  

acidosis are consistent with those in continuous exercise at a power just below critical power 517	  

(estimated to be ~60-80 % peak aerobic power during cycle ergometry; Wasserman et al. 518	  

1967; Rossiter et al. 2002; Jones et al. 2008). Again, the peak intramuscular acidosis 519	  

occurred during recovery, rather than during the work phase of the intermittent exercise. Our 520	  

data emphasise that it is not the mean metabolic response during intermittent exercise, but 521	  

rather the peak of the metabolic perturbation that is likely important in determining the 522	  

intramuscular metabolic strain: The mean V̇O2 during the 32:64 s intermittent protocol was 523	  



	  
 

below the lactate threshold (1.18 ± 0.17 vs. 1.46 ± 0.26 L·min-1), which reflects an average 524	  

of the entire work:recovery cycle. 525	  

 526	  

We would expect the sustained metabolic acidosis during the 32:64 s intermittent protocol to 527	  

be associated with a slow component in both V̇O2 and PCr. However, there was no 528	  

progressive increase in V̇O2 and decrease in PCr between time bins during either 16:32 s or 529	  

32:64 s protocols. This, together with a mean ATP turnover rate among protocols that was 530	  

not different, suggests that there was no change in either the efficiency of force production 531	  

(P:W) or mitochondrial efficiency (P:O) during the acidifying heavy-intensity intermittent 532	  

protocol. This has implications for work efficiency and the mechanisms contributing to the 533	  

V̇O2sc. Work efficiency is typically assumed constant during the early transient (e.g. first 60 s) 534	  

of either sub- or supra-LT exercise. However, findings in stimulated dog muscle (Wust et al., 535	  

2011) and in some human studies (Bangsbo et al., 2001; Koppo et al., 2004) suggest that 536	  

work efficiency may be initially high and rapidly decline over the first ~15-30 s of contraction 537	  

before rebounding and levelling out after ~1-2 min. For exercise above LT, a second decline 538	  

in work efficiency is observed after ~2 min as the V̇O2sc develops. Our data that ATP 539	  

turnover appeared greater at 16:32 s compared with 32:64 s (albeit non-significant) may 540	  

reflect some effect of rapid changes in work efficiency in the very early transient. 541	  

Subsequently, for the longer intermittent and the continuous protocol, work inefficiencies 542	  

associated with the V̇O2sc became increasingly evident. We speculate that, as the peak of 543	  

the metabolic fluctuation in the 32:64 s protocol only exceeded the LT for a few seconds (~8 544	  

s, on average) at the end of each work phase, the intervening recovery was sufficient to 545	  

constrain any transient fatiguing processes that contribute to the V̇O2sc. Without the 546	  

accumulation of muscle fatigue, the drive for progressive work inefficiency in the form of a 547	  

V̇O2 or PCr slow component was absent (Cannon et al. 2011; Grassi et al. 2015; Keir et al. 548	  

2016). While prolonging the work:recovery duration increased the magnitude of metabolic 549	  

perturbations and exercise intensity above that seen during 16:32 s, there was still a clear 550	  



	  
 

dissociation between the external mechanical power and the exercise intensity 551	  

(intramuscular metabolic strain).  552	  

 553	  

During exercise with the longest work:recovery (64:128 s) protocol there was an increase in 554	  

the intramuscular strain (Figure 2, 3). The peak intramuscular responses during the 64:128 s 555	  

intermittent protocol were consistent with those during continuous exercise above critical 556	  

power (Jones et al. 2008). A progressive reduction in work efficiency was present, with the 557	  

V̇O2 and PCr fluctuations in the final work phases (bin 4; Figure 1, 3) exceeding those of the 558	  

first work phase (bin 1; p < 0.05). Despite this, we did not observe this effect in the ATP 559	  

turnover rate during the 64:128 s intermittent protocol. This may be influenced by the 560	  

necessity to calculate ATP turnover as the mean rate of the work phases to increase 561	  

signal:noise, which also reduced the ability to detect an inefficiency by this method. The 562	  

reduction in work efficiency (as reflected in the V̇O2 and PCr responses; Figure 3) is likely to 563	  

be consequent to an increase in the ATP requirement to maintain power production (Cannon 564	  

et al. 2014). While the mechanism(s) responsible for a progressive reduction in work 565	  

efficiency during the V̇O2sc remain controversial, the prevailing suggestion during voluntary 566	  

exercise is that progressive recruitment of motor units innervating low oxidative and/or type 567	  

II muscle fibres may be responsible (Pringle et al., 2003; Krustrup et al., 2004). Although a 568	  

reduction in the mitochondrial P:O has yet to be completely ruled out (Cannon et al. 2014), 569	  

this seems unlikely (Korzeneiski & Rossiter, 2015). In the 64:128 s protocol the contribution 570	  

of cellular anaerobic glycolysis to ATP production became increasingly evident (Figure 2), 571	  

and pHi fell during the exercise (unlike in the shorter intermittent protocols). This fall in pHi 572	  

during the work phase is consequent to a metabolic acidosis and associated lactate 573	  

accumulation, and appeared to become more pronounced as the ~30 minute intermittent 574	  

exercise progressed. Although this long duration intermittent protocol led to a more extreme 575	  

cellular energetic strain, the intervening recovery bouts damped the magnitude of cellular 576	  

energetic swings, thus prolonging exercise tolerance and increasing the volume of work 577	  

accumulated (compared with continuous exercise at the same power output).  578	  



	  
 

Implications 579	  

Although the 64:128 s protocol was sustainable for the target duration and total accumulated 580	  

work, the intramuscular and systemic metabolic responses suggest that participants were 581	  

close to intolerance by the end of this protocol: peak V̇O2 and PCr response were not 582	  

different from continuous exercise (Table 2, Figure 3). This greatly contrasts the 16:32 and 583	  

32:64 s intermittent protocols, where systemic and intramuscular response were of moderate 584	  

and heavy intensity respectively, and exercise could likely be sustained far beyond the ~30 585	  

minute protocol. This was despite accumulating the same amount of total work, in the same 586	  

amount of time, in all three intermittent protocols. Thus, during shorter duration 587	  

work:recovery bouts the internal and external bioenergetic homeostasis was better 588	  

maintained, and intensity reduced, during work- and duration-matched exercise.  589	  

 590	  

The dissociation between power output and bioenergetic function may have important 591	  

implications for understanding the variability in the physiologic adaptations to intermittent 592	  

exercise, or for tailoring intermittent exercise training protocols to target specific 593	  

physiological adaptations. While intermittent exercise can be superior to traditional 594	  

continuous moderate-intensity exercise for increasing whole-body V̇O2max, muscle oxidative 595	  

capacity, angiogenesis or stroke volume (e.g. Kemi et al. 2005; Helgerud et al. 2007; Wisløff 596	  

et al. 2007; MacInnis et al. 2017), other studies find no difference between the training 597	  

interventions (e.g. Gibala et al. 2006; Burgomaster et al. 2008; Bartlett et al. 2012; Ellingsen 598	  

et al. 2017). In instances of no difference between training approaches, the specific power 599	  

and intermittent duration of the protocols used may not optimise the intramuscular energetic 600	  

response to promote remodelling (assuming intramuscular biogenic adaptations are a goal 601	  

of the training). Our data emphasise that, for example, intermittent exercise at 60 % of peak 602	  

aerobic power with a 60:60 work:recovery duration is likely to induce a greater intramuscular 603	  

bioenergetics homeostatic challenge than a protocol using 110 % of peak aerobic power and 604	  

a 15:15 s work:recovery intermittent protocol (cf. Gayda et al. 2012).  605	  

 606	  



	  
 

Given the protocol dependence of the dissociation between the external power and 607	  

intramuscular metabolic strain, intermittent exercise allows a greater mechanical power to be 608	  

achieved during training interventions than would otherwise be possible during continuous 609	  

exercise. This dissociation also ameliorates the ventilatory demands and perceived exertion 610	  

from the metabolic requirement of this mechanical power that would otherwise be associated 611	  

with high-intensity exercise. Given the mechanical load on the skeletal muscle is, in and of 612	  

itself, an important signal for driving skeletal muscle adaptation in the absence of a 613	  

metabolic challenge (Hellsten et al. 2008; Høier et al. 2010) our data have implications for 614	  

the optimisation of rehabilitation in clinical populations. For example, a high relative power 615	  

with short work:recovery durations would provide a high mechanical strain without the 616	  

associated metabolic response. This allows for a functional improvement by overcoming 617	  

pathological pulmonary or cardiovascular system limitations that would normally limit the 618	  

external power output that could be achieved during training. Conversely, the relative 619	  

importance of metabolic signalling (e.g. by AMPK) in driving beneficial muscular adaptations 620	  

means that the stimulus during short work bouts may not be sufficient to optimise the 621	  

training stimulus. Thus, our findings of dissociating muscle metabolic responses from 622	  

mechanical power require further systematic investigation in relation to intermittent exercise 623	  

training protocols.  624	  

 625	  

Conclusion 626	  

Performing dynamic knee-extensor exercise at the same high-intensity power intermittently 627	  

reduces the O2 cost and the intramuscular metabolic strain of performing the same power 628	  

during continuous exercise. Mean intramuscular ATP production rates are not different in 629	  

intermittent and continuous exercise at the same power output. Despite this, pulmonary V̇O2 630	  

increases less during short intermittent exercise (work:recovery 16:32 s), than during longer 631	  

intermittent exercise (32:64 s or 64:128 s), and PCr contributes relatively more to ATP 632	  

production during short vs. longer intermittent or continuous exercise. The latter suggests 633	  

proportionally greater stored O2 usage during short work:recovery intermittent exercise than 634	  



	  
 

longer intermittent or continuous exercise. In addition, as intermittent exercise work bout 635	  

duration increases towards becoming continuous, relative ATP production relies increasingly 636	  

upon anaerobic glycolysis and oxidative phosphorylation and less upon PCr breakdown. Our 637	  

data are also consistent with V̇O2 kinetics being an important determinant of exercise 638	  

tolerance, through the rate of O2 deficit accumulation; even during intermittent exercise. The 639	  

extent we could dissociate power output and exercise intensity was greatest at the shortest 640	  

work:recovery durations and was observable within the intramuscular bioenergetics.  641	  

  642	  
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Tables 870	  

Table 1. Mean ATP turnover, and contributions from phosphocreatine breakdown (D), 871	  

oxidative phosphorylation (Q), and anaerobic glycolysis (L) during continuous and 872	  

intermittent bilateral knee-extension exercise. Continuous exercise was performed to the 873	  

limit of tolerance (252 ± 174 s). Intermittent exercise was performed with work:recovery 874	  

durations of 16:32 s, 32:64 s and 64:128 s, each for a total duration of 28 minutes 48 875	  

seconds.  876	  

Protocol 

 

ATP 

mM·min-1 

D 

mM·min-1 

Q 

mM·min-1 

L 

mM·min-1 

Continuous 44.7 ± 18.4 8.3 ± 5.7(2,3) 19.9 ± 8.8(2,3) 16.4 ± 14.4(2,3) 

16:32 45.0 ± 19.5 34.4 ± 15.7(1,4) 10.5 ± 4.8(1,4) 0.1 ± 0.0(1) 

32:64 34.8 ± 8.8 25.3 ± 6.1(1) 8.5 ± 2.5(1,4) 1.0 ± 1.7(1) 

64:128 49.1 ± 17.5 17.5 ± 6.1(2) 21.4 ± 9.8(2,3) 10.2 ± 4.3 

Values are presented as mean ± SD. (1)p < 0.05 vs. continuous; (2)p < 0.05 vs. 16:32 s 877	  

intermittent exercise; (3)p < 0.05 vs. 32:64 s intermittent exercise; (4)p < 0.05 vs. 64:128 s 878	  

intermittent exercise. 879	  

  880	  



	  
 

Table 2. Absolute and relative [normalised between 5 W baseline (0 %) and the limit of 881	  

tolerance during continuous exercise (100 %)] peak metabolic responses during continuous 882	  

and intermittent exercise at 110 % of ramp incremental peak power. Continuous exercise 883	  

was performed to the limit of tolerance (252 ± 174 s). Intermittent exercise was performed 884	  

with work:recovery durations of 16:32 s, 32:64 s and 64:128 s, each for a total duration of 28 885	  

minutes 48 seconds.  886	  

  Continuous  Intermittent exercise 

  exercise 16:32 32:64 64:128 

V̇O2 
L·min-1 2.03 ± 0.26 1.28 ± 0.24(1, 3, 4) 1.54 ± 0.36(1, 2, 4) 1.80 ± 0.31(2, 3) 

% Continuous 100 ± 0 45.1 ± 7.0(4) 63.7 ± 14.8(4) 83.6 ± 13.1(2, 3) 

PCr 
% Baseline 38.2 ± 13.0 73.1 ± 16.2(1,4) 55.8 ± 16.5 45.0 ± 15.8 

% Continuous 0 ± 0 54.4 ± 27.2(3, 4) 29.9 ± 21.7(2) 9.6 ± 25.3(2) 

pHi 
 6.67 ± 0.07 6.92 ± 0.07(1, 4) 6.84 ± 0.12(1) 6.77 ± 0.12(2) 

% Continuous 100 ± 0 38.4 ± 11.3(4) 60.0 ± 23.8 77.5 ± 31.2 

Values are presented as mean ± SD. (1)p < 0.05 vs. continuous; (2)p < 0.05 vs. 16:32 s 887	  

intermittent exercise; (3)p < 0.05 vs. 32:64 s intermittent exercise; (4)p < 0.05 vs. 64:128 s 888	  

intermittent exercise. 889	  

  890	  



	  
 

Table 3. The relative amplitudes of V̇O2, PCr and pHi fluctuations during intermittent bilateral 891	  

knee-extension exercise compared with continuous exercise. Values are normalised 892	  

between 5 W baseline (0 %) and the limit of tolerance during continuous exercise (100 %). 893	  

Power is 110 % of ramp incremental peak power. Continuous exercise was performed to the 894	  

limit of tolerance (252 ± 174 s). Intermittent exercise was performed with work:recovery 895	  

durations of 16:32 s, 32:64 s and 64:128 s, each for a total duration of 28 minutes 48 896	  

seconds.  897	  

work:recovery duration V̇̇O2 (%) PCr (%) pHi (%) 

16:32 17.0 ± 6.9 32.1 ± 20.6(1) 21.3 ± 7.7 

32:64 41.3 ± 15.0(a) 60.2 ± 12.5(1; a) 48.3 ± 23.9(a) 

64:128 77.2 ± 18.1(a, b) 85.7 ± 21.3(a, b) 74.4 ± 30.3(a, b) 

Values are presented as mean ± SD. (1)p < 0.05 between V̇O2 and PCr in the same exercise 898	  

protocol. Within variables (i.e. within V̇O2, PCr or pHi): (a)p < 0.05 from the 16:32 s 899	  

intermittent protocol; (b) p < 0.05 vs. both 16:32 and 32:64 s intermittent protocols.  900	  
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Figures 903	  

Figure 1. Schematic of the intermittent exercise protocols and time-bins used for V̇O2 and 904	  

31P MRS measures. Following a warm-up at 5W, intermittent exercise with work phases 905	  

performed at 110 % of ramp-incremental peak power was initiated with work:recovery 906	  

durations of either 16:32 s (top), 32:64 s (middle) or 64:128 s (bottom). The first 192 s of 907	  

each test was eliminated (grey box) to exclude a kinetic transient phase that preceded the 908	  

stabilisation of V̇O2 and 31P MRS fluctuations, with like transitions in each time-bin time-909	  

aligned to exercise onset and data averaged to improve signal:noise.  910	  

 911	  

 912	  
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Figure 2. Contributions from phosphocreatine breakdown (D), oxidative phosphorylation (Q), 914	  

and anaerobic glycolysis (L) to the mean ATP turnover rate at 110 % of ramp-incremental 915	  

peak power during continuous and intermittent exercise comprising work:recovery durations 916	  

of 16:32 s, 32:64 s and 64:128 s. Upper: Absolute energetic system contributions to mean 917	  

ATP turnover. Lower: Relative energetic system contributions to mean ATP turnover.  918	  
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Figure 3. V̇O2, PCr (top row) and pHi (bottom row) responses to work:recovery durations of 16:32 s (first column), 32:64 s (second column), 922	  

64:128 s (third column) or continuous exercise (forth column). Also displayed is the lactate threshold (LT) from the ramp-incremental exercise 923	  

test (dotted line), and the V̇O2max (top row, dashed line) and pHi (bottom row, dashed line) attained at the limit of tolerance of the continuous 924	  

exercise protocol. Grey areas indicate the exercise period performed at 110 % of ramp incremental peak power. Note in the 16:32 s protocol 925	  

that V̇O2 never exceeds the LT, and there are only minor changes in pHi, consistent with the 16:32 s intermittent protocol being moderate-926	  

intensity. The peak V̇O2 amplitude exceeds the LT in 32:64 and 64:128 s intermittent protocols and during continuous exercise, with this 927	  

accompanied by a metabolic acidosis (decline in pHi), consistent with a greater exercise metabolic strain in these protocols. 928	  

929	  


