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Abstract: 76 

Despite widespread recognition that landforms are complex Earth systems with process-77 

response linkages that span temporal scales from seconds to millennia and spatial scales from 78 

sand grains to landscapes, research that integrates knowledge across these scales is fairly 79 

uncommon.  As a result, understanding of geomorphic systems is often scale-constrained due 80 

to a host of methodological, logistical, and theoretical factors that limit the scope of how Earth 81 

scientists study landforms and broader landscapes.  82 

This paper reviews recent advances in understanding of the geomorphology of beach-dune 83 

systems derived from over a decade of collaborative research from Prince Edward Island (PEI), 84 

Canada.  A comprehensive summary of key findings is provided from short-term experiments 85 

embedded within a decade-long monitoring program and a multi-decadal reconstruction of 86 

coastal landscape change. Specific attention is paid to the challenges of scale integration and 87 

the contextual limitations research at specific spatial and/or temporal scales imposes. 88 

A conceptual framework is presented that integrates across key scales of investigation in 89 

geomorphology and is grounded in classic ideas in Earth surface sciences on the effectiveness 90 

of formative events at different scales.  The paper uses this framework to organize the review 91 

of this body of research in a 'scale aware' way and, thereby, identifies many new advances in 92 

knowledge on the form and function of subaerial beach-dune systems.   93 

Finally, the paper offers a synopsis of how greater understanding of the complexities at 94 

different scales can be used to inform the development of predictive models, especially those 95 

at a temporal scale of decades to centuries, which are most relevant to coastal management 96 
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issues. Models at this (landform) scale require an understanding of controls that exist at both 97 

‘landscape’ and ‘plot’ scales.  Landscape scale controls such as sea level change, regional 98 

climate, and the underlying geologic framework essentially provide bounding conditions for 99 

independent variables such as winds, waves, water levels, and littoral sediment supply.  100 

Similarly, an holistic understanding of the range of processes, feedbacks, and linkages at the 101 

finer plot scale is required to inform and verify the assumptions that underly the physical 102 

modelling of beach-dune interaction at the landform scale. 103 

104 
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1. Introduction and purpose 105 

Despite widespread recognition that landforms are complex systems with process-106 

response linkages that span temporal scales from seconds to millennia and spatial scales from 107 

sand grains to landscapes, research that integrates knowledge across these scales is fairly 108 

uncommon (Bauer and Sherman, 1999).  Our understanding of Earth surface systems is often 109 

scale-constrained due to a host of methodological, logistical, and theoretical factors that limit, 110 

either explicitly or implicitly, the span of what can be (or is being) studied (Sherman, 1995). As 111 

such, it is not surprising that traditional geomorphic research was incapable of providing critical 112 

insights into the conceptual bridges between fundamental process-response dynamics (studied 113 

at micro or meso scales) and long-term processes and controls that govern landform evolution 114 

over centuries and longer.  This remains a key challenge for many Earth scientists and it is 115 

particularly true for aeolian-coastal geomorphology research that focuses on the evolution and 116 

maintenance of beach-dune systems that straddle the highly dynamic terrestrial-marine 117 

interface (Short and Hesp, 1982). 118 

This paper reviews recent advances in understanding of beach-dune systems derived from 119 

over a decade of extensive and collaborative research that began in 2002 at the Greenwich 120 

Dunes on Prince Edward Island (PEI), Canada.  The paper provides a comprehensive summary of 121 

findings from several short-term experiments embedded within a decade-long monitoring 122 

program and a longer-term (multi-decadal) reconstruction of coastal landscape change.  123 

Furthermore, the review situates the results from this specific research collaboration in a 124 

broader (global) context with research from elsewhere to draw attention to the challenges 125 
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associated with scale integration in geomorphology. In particular, emphasis is placed on the 126 

constraints that neighboring (smaller and larger) scale perspectives impose on the 127 

understanding of knowledge derived at the scale of the event-based, instrumented field (plot 128 

scale) experiment.  For example, measurements of net accretion along the toe of a coastal 129 

foredune using traditional cross-shore topographic profiles at monthly or seasonal intervals 130 

cannot reveal information about whether there was a gradual accumulation of sand through 131 

time, or deposition from a single event.  Similarly, such survey data do not provide any 132 

information about potential intervening events that may have caused foredune erosion via 133 

wave scarping, nor can these data be used to extrapolate to long-term scenarios of dune 134 

maintenance and evolution without knowledge of the erosion-deposition tendencies over 135 

seasons, years and decades.  Thus, without appropriate context, such survey data are of limited 136 

utility, revealing only what happened at a particular place and time. 137 

Section 2 of the paper presents a conceptual framework based on classic ideas in Earth 138 

surface sciences that guide thinking on scale awareness and the effectiveness of geomorphic 139 

events in landform and landscape evolution.  This framework provides the structure for an 140 

extensive review of scale-dependent research on beach-dune systems that is 'scale aware' and 141 

identifies critical gaps in knowledge. The review is grounded in the extensive research from the 142 

PEI study site (described in Section 3) but also considers a wide range of contributions, both 143 

classic and contemporary, from around the world. Sections 4 through 6 each provide a brief 144 

synthesis of classic knowledge and the state of the science up to the early 2000s. This is 145 

followed by focused summaries of major advances at distinct spatial-temporal scales (plot, 146 
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landform, landscape for Sections 4-6 respectively) over the last 15 or so years.  Section 7 offers 147 

an overarching summary of key advances at each scale, issues of integration between them, 148 

and presents future research opportunities and challenges.  149 

Given the significant range of spatial and temporal scales covered in this review, the 150 

domain of long-term Quaternary studies is not incorporated.  It is acknowledged, however, that 151 

glacio-isostatic adjustments and altered rates of relative sea-level (RSL) rise, for example, exert 152 

key controls on the evolution of global coastlines that, in turn, may have implications for littoral 153 

cell sediment budgets and influence millennial-scale evolution of beach-dune systems.  154 

 155 

2. Conceptual Foundations: Effectiveness and Scale of Geomorphic Events 156 

Advances in Earth sciences are typically incremental, often building on the research of past 157 

generations of scientists.  Modern process geomorphologists, are often motivated by earlier 158 

works on complex system behaviour (or ‘process-response’ dynamics) in geomorphic 159 

environments.  Wolman and Miller (1960), for example, argued that the largest magnitude 160 

events in Earth surface systems are not necessarily those that perform the greatest amount of 161 

work. 'Catastrophic' storms may have immense capacity to alter pre-existing landscapes over 162 

short time spans, but events of moderate magnitude may account for greater cumulative work 163 

in a system because of their more frequent recurrence within the historical sequence of events 164 

that yield landscape evolution.  In contrast, seemingly innocuous events individually may not 165 

cause major landscape disruption, but can be significant in landscape dynamics because of the 166 

sustained work they perform over decades. Wolman and Gerson (1978) further argued that the 167 
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degree to which an event may leave an indelible imprint on the landscape (referred to as 168 

geomorphic 'effectiveness') is not a simple, linear function of event magnitude but, rather, 169 

depends on: (i) the historical sequencing of events and their timing; (ii) the antecedent 170 

conditions that predispose a landscape for rapid change; and (iii) the capacity for a landscape to 171 

recover from the change imparted by the most recent event.  Thus, a large catastrophic event 172 

may alter the landscape significantly, but the system may rebuild to the pre-event state under 173 

every-day processes that cause landscape change.  In contrast, even small landscape 174 

disturbances may persist for decades if there is little capacity in the system to recover to the 175 

prior state. 176 

The effectiveness of a geomorphic event, which must include its magnitude-threshold-177 

frequency characterization, is also closely linked to the idea of equilibrium behavior (Thorn and 178 

Welford, 1994) by virtue of implicitly embedding events into a historical sequence that yields 179 

landscape change. The notion of ‘embeddedness’ was described masterfully by Schumm and 180 

Lichty (1965) who asserted that the spatial-temporal scale at which a geomorphic system is 181 

examined has implications for how system equilibrium may be manifested or perceived. 182 

Although Schumm and Lichty (1965) referred to each of the scale domains as representative of 183 

time, their framework implicitly embodies spatial dimensions. Based on these seminal 184 

perspectives on geomorphic effectiveness and the conceptual foundation established by 185 

Schumm and Lichty (1965) for general geomorphic systems, this paper provides a ‘scale aware’ 186 

approach for reviewing recent advances on beach-dune dynamics using a dominantly spatial 187 

reference terminology.  Specifically, three characteristic scales of interest are identified: (1) the 188 
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experimental ‘plot’ scale, which operates on ‘steady’ time scales of seconds to days and length 189 

scales of metres; (2) the ‘landform’ scale, which functions on ‘graded’ time (months to years) 190 

and on length scales of hundreds of metres; and (3) the ‘landscape’ scale, which operates on 191 

‘cyclic’ time (decades to centuries) across length scales of kilometres. Table 1 proposes a list of 192 

variables applicable to a beach-dune system across the three scale ranges, which coincides with 193 

our predisposition to investigate geomorphic processes and landform dynamics at scales 194 

relevant to the human management of coastal resources. It is acknowledged that a different 195 

definition of scale may be needed to create a similar classification for other coastal systems 196 

(e.g., rocky, muddy, ice-dominated, etc.).  Furthermore, challenges that exist at key scale 197 

transitions (plot-landform, landform-landscape) are identified and recent efforts to bridge them 198 

are discussed. 199 

At the landscape (largest) scale, the dominant research interests of a coastal 200 

geomorphologist might include characterizing and classifying the dynamic nature of the coast 201 

according to whether the shoreline is prograding, aggrading, or retrograding, how wide and 202 

steep the beach is, and whether the foredune is receding or advancing and growing or 203 

shrinking. These factors are closely tied to the geometry and morphology of the beach-dune 204 

system (Short and Hesp, 1982; Hesp, 1988; Sherman and Bauer, 1993; Bauer and Sherman, 205 

1999; Houser and Ellis, 2013; Hesp and Walker, 2013), and they collectively define the 206 

"dependent" variables (i.e., those that geomorphologists are interested to understand and 207 

predict). The main “independent” variables (i.e., those that serve as controls or drivers of 208 

system change and allow geomorphologists to gain insight into the dependent variables) are 209 
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the geological framework of the coast (i.e., tectonic/isostatic setting, structural controls, rock 210 

type/history, fracture patterns, submarine bathymetry), eustatic sea-level trends, regional 211 

climatology, and exposure to oceanographic forcing (e.g., wave climatology, coastal currents, 212 

tidal fluctuations). Time is a relevant variable, simply because it takes time for major landforms 213 

to respond and adjust toward equilibrium.  214 

Many of the landscape scale variables listed toward the bottom of Table 1 are considered 215 

“indeterminate” (i.e., those that have large variance but little impact on system dynamics at the 216 

scale of interest) because there is often insufficient information to adequately parameterize 217 

them and predict their state. For example, the degree to which a beach may have surface salt 218 

crusts, snow cover, and flotsam during an individual transport event is of limited importance to 219 

understanding whether there was (or will be) shoreline progradation or landward translation of 220 

the beach-dune profile at the scale of decades to centuries. 221 

At the plot (smallest) scale, the research focus is on prediction of sediment transport at 222 

discrete locations over short time spans with the intent of understanding erosion and 223 

deposition across the beach-dune system as it relates to foredune maintenance and evolution. 224 

Thus, sediment transport rate and the pattern of flux divergence (leading to erosion or 225 

deposition) are the primary dependent variables in the system, whereas the primary driver is 226 

the near-surface wind vector (speed, direction) consistent with standard formulations of 227 

aeolian sediment transport models (e.g., Bagnold, 1941; Kawamura, 1951).  In addition, there 228 

are a large number of supply-limiting surface controls, such as moisture content, snow cover, 229 

salt crusts, textural gradations, roughness elements (e.g., woody debris, wrack, foot prints, 230 
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bedforms, lag deposits), that dictate the spatial-temporal pattern of sand transport across a 231 

beach-dune system (Sherman, 1990; Ellis and Sherman, 2013).  Table 1 also catalogues 232 

"parameters", which are defined as controlling variables that are largely time-invariant at the  233 

scale of inquiry, although at larger scales they may be treated as time dependent variables. For 234 

example, in most plot-scale studies of sediment transport across a beach, it is reasonable to 235 

assume that foredune geometry is unchanged over periods of hours to days, that vegetation 236 

cover is constant because of slow growth rates (unless buried by a large event), and the 237 

tendency for the shoreline to erode or accrete is relatively unaltered if nearshore forcing is 238 

constant. Long-term factors such as mean wave conditions, climate patterns, relative sea-level 239 

trend and the geological context are not relevant at the plot scale, whereas at the landscape 240 

scale, these are dominant independent variables.  As shown by Schumm and Lichty (1965), the 241 

specific combination of independent and dependent variables defining the dynamics of 242 

geomorphic systems will change depending on the scale of investigation. 243 

Between the landscape and plot scales is the landform (intermediate) scale, which spans a 244 

period of time long enough to include seasonal cycles of adjustment as well as multiple extreme 245 

events.  Table 1 shows that there is no overlap between the list of variables that are dependent 246 

(i.e., predictable) or independent (i.e., imposed) at the landscape versus plot scales, suggesting 247 

that knowledge gained at these end-member frames of reference is largely incommensurate.  248 

Research at the landform scale provides rich opportunities to connect these disparate 249 

knowledge domains, although research at the landform scale requires a commitment to 250 
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longitudinal experimental designs that span a decade or more, which is often logistically 251 

challenging to maintain.  252 

In many respects, the landform scale is the most challenging and demanding to conduct 253 

research in as it retains the requirements of a short-term (plot-scale) assessment with the need 254 

to scale up to a medium-term (landform-scale) understanding of processes that span a much 255 

wider range of variables.  Moreover, the contextual controls imposed by the broader landscape 256 

scale are also relevant for understanding landform scale adjustments. Foredune maintenance 257 

and evolution is best understood with observations that span periods of many years to 258 

decades, and this category of understanding offers greater utility for management strategies 259 

intended to mitigate damage from human alteration of the coast and/or within a framework of 260 

climate non-stationarity and global sea-level rise (e.g., Davidson-Arnott, 2005; McLean and 261 

Shen, 2006; Hesp, 2013).  Indeed, this was one of the key motivations for our research at 262 

Greenwich Dunes and our research partnership with Parks Canada.   263 

264 
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Table 1: A proposed classification of system variables for beach-dune interaction that integrates 265 
across key spatial-temporal scales of reference from the plot scale (seconds to days, metres), to 266 
landform scale (months to years, 100s of metres), and up to landscape scale (decades to 267 
centuries, kilometres). This conceptualization is limited in scope to sandy coastal systems and 268 
scales relevant for human management of coastal systems, rather than the long-term 269 
geological evolution of the coastline. 270 
 271 

Beach-Dune Variable Status of Variable During Spatial-Temporal Frame of Reference 

 LANDSCAPE LANDFORM PLOT 

Time Independent Not Relevant Not Relevant 

Geological Context Independent Parameter Not Relevant 

Sea-Level Transgression Independent Parameter Not Relevant 

Climatology Independent Independent Not Relevant 

Coastal Oceanography Independent Independent Not Relevant 

Shoreline Progradation/Erosion Dependent (In)dependent Parameter 

Vegetation Cover (Biogeography) Dependent (In)dependent Parameter 

Foredune Size And Geometry Dependent Dependent Parameter 

Beach Width And Slope Dependent Dependent Independent 

Surface Moisture & Snow/Ice Indeterminate Dependent Independent 

Salt Crusts Indeterminate Dependent Independent 

Surface Debris Indeterminate Dependent Independent 

Human Influences Indeterminate Dependent Independent 

Wind Approach Angle Indeterminate Dependent Independent 

Wind Speed Indeterminate Dependent Independent 

Sediment Transport Rate Indeterminate Dependent Dependent 

Erosion/Deposition Patterns Indeterminate Dependent Dependent 

 272 

3. Study Area: Greenwich Dunes, Prince Edward Island, Canada 273 

The Greenwich Peninsula is located on the northeastern shore of Prince Edward Island (PEI) 274 

in the Gulf of St. Lawrence in eastern Canada.  The Greenwich Dunes complex was incorporated 275 

by Parks Canada Agency (PCA) into PEI National Park in 2000 to protect an area of established 276 

foredunes backed by wetlands, ponds, stabilized transgressive dunes, and a large parabolic 277 

dune complex (Figure 1).  Much of the northeastern coast of PEI consists of horizontally-278 

bedded, red sandstone, with some siltstone and mudstone, of Permian-Carboniferous age (van 279 
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de Pol, 1983), that erodes readily. During the Holocene, the coast of PEI evolved under marine 280 

transgression and bedrock erosion. Shoreline retreat averaged about 0.5 m a-1 over the past 281 

6,000 years (Forbes et al., 2004), which is similar to recession rates over the past half century 282 

along the NE coast (Webster, 2012). Sand supply associated with marine erosion and 283 

transgression is stored primarily as a thin wedge on the beach and inner shoreface, in barrier 284 

islands and mainland dune systems, and in flood and ebb tidal deltas associated with inlets of 285 

the barrier systems (Forbes et al, 2004; Coldwater Consulting, 2011). Today, low bedrock cliffs 286 

and headlands are typical with extensive sections of barrier islands and spits that enclose 287 

lagoons and shallow estuaries.  The tidal range is micro-tidal (~1.0 m) with a mixed, semi-288 

diurnal regime. Recent estimates of relative sea-level (RSL) rise for Charlottetown, PEI, give 289 

rates of land subsidence (due to glacial isostatic effects) of -1.45 mm a-1 and an estimated 290 

eustatic rise in sea level of +1.07 mm a-1, producing an estimated RSL rise of about +0.25 m 291 

century-1 (James et al., 2012).  This value is roughly consistent with estimates of long-term RSL 292 

rise for the past 6,000 years of +0.3 m century-1 (Forbes et al., 2004; Webster, 2012).   293 

Prince Edward Island experiences a cool, temperate climate with a strong marine influence. 294 

Daily average temperatures range from a low of -8°C in February to a high of 19°C in August 295 

with maximum temperatures seldom exceeding 30°C. Average annual precipitation is about 296 

1200 mm with less than 25% falling as snow, although winter snowfall amounts are highly 297 

variable. Prevailing winds at the site are from the SW, although strong northerly winds are 298 

common in March and April. Dominant winds from the NW, N and NE are driven by the passage 299 

of mid-latitude cyclones, which occur frequently in late fall through winter (October through 300 
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March) and exert significant control on precipitation and wind patterns in PEI (Manson et al., 301 

2002; Forbes et al., 2004; Manson et al., 2015). Occasionally, hurricanes also track NE from the 302 

Caribbean, particularly in September and October. While the direct impact of hurricanes and 303 

post-tropical storms is generally moderate, storms tracking close to the area can interact with 304 

other mid-latitude systems to produce intense wind and wave conditions and storm surges that 305 

may persist for many hours.  Extensive coastal erosion, flooding, and localized overwash of 306 

mainland and barrier dune systems is associated with extreme storms, as appears to have been 307 

the case for a major fall gale in 1923 (see section 5.2.3). 308 

Foredunes at the site range in height from 8 to 12 m and have fairly uniform, straight 309 

seaward stoss slopes and a complex, undulating dune crest with intermittent depositional lobes 310 

and blowouts (Hesp and Walker, 2012). The foredune toe is occasionally scarped by waves 311 

during major storms but aeolian processes rapidly rebuild the slope by scarp in-filling.  Incipient 312 

dunes up to 1 m high and 5-6 m wide also develop and can persist for 2-4 years between major 313 

storms. The dominant vegetation on the foredune is American Beach Grass (Ammophila 314 

breviligulata), whereas the annual Sea Rocket (Cakile edentula) is common on the backshore 315 

and occasionally Saltwort (Salsola sp.) is present. Beach Pea (Lathyrus japonicas) and Seaside 316 

Goldenrod (Solidago sempiverens) are common on lee slopes during the summer and fall 317 

months and shrubs such as Bayberry (Myrica pensylvanica) are found in more sheltered areas.  318 

 319 

320 
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Figure 1: Location of study area showing: a) location of PEI in the Gulf of St. Lawrence and 321 
surrounding provinces; b) the Greenwich Dunes and St. Peter’s Estuary area; c) vertical aerial 322 
photograph of Greenwich Dunes and the entrance to St. Peters Bay; d) oblique aerial 323 
photograph of the beach and dune system at Greenwich Dunes including the locations of 324 
characteristic study reaches (1-3) and cross-shore topographic profiles (see Ollerhead et al. 325 
2013, and Figs. 21 and 25). 326 

 327 
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For the purposes of coastal erosion and dune dynamics monitoring for PCA, the study site 328 

was divided into three reaches (Figure 1d, each described in section 5.2.2). Representative 329 

profiles across the beach and foredune were established within each reach and surveyed 330 

annually between 2002 and 2012 (Ollerhead et al., 2013). Net littoral sediment transport is 331 

from E to W and there is evidence of about 100 m of westward progradation into the estuary 332 

over the past 80 years with several small foredune ridges formed over this time (Mathew et al., 333 

2010). The littoral sediment budget is negative in Reach 1 with measured recession of the 334 

foredune of 0.5-1.0 m a-1 over the observation period. In contrast, the sediment budget in 335 

Reach 2 transitions from negative to positive, with Line 7 having a neutral budget (Ollerhead et 336 

al., 2013).  337 

Plot scale field experiments were conducted in Reach 2 just west of Bowley Pond near Line 338 

7 (Figs. 1d, 2a, b) to measure wind flow and sediment transport on the beach and foredune in 339 

May-June 2002, October 2004, October 2007, and April-May 2010. Beach width at this location 340 

was 30-40 m and sediments consisted of dominantly quartz sand with some feldspar with a 341 

mean grain size of 0.26 mm. 342 

343 
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Figure 2: Site photographs of the beach and foredune system at Greenwich Dunes, PEI. The 344 
uppermost photos show the site for plot scale experiments in 2004 with a wide, vegetated 345 
incipient dune a) before the arrival of Tropical Storm Nicole and during the storm in b) with a 346 
visible eroded scarp at the foredune toe and active sand transport and deposition.  Photo c) 347 
shows shorefast ice, snow cover, and vegetation dieback typical of the winter season.  Photo d) 348 
illustrates distinct depositional lobes landward of the foredune crest that result from onshore 349 
sand transport and deposition in the winter months. 350 

 351 
4. Plot scale 352 

For most of the 20th century, aeolian geomorphologists have worked within a paradigm of 353 

steady, uniform flow for which (dry) sand flux is controlled mainly by the strength of the wind 354 

under what is referred to as ‘transport-limited' conditions.  These conditions were replicated 355 

well within wind tunnel experiments that dealt primarily with horizontal, uniform beds of 356 

unimodal sediments, which also facilitated the development of theoretical models based on the 357 

a) b)

d)c)
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fundamental physics of saltation.  Plot scale field experiments were often sited to minimize 358 

topographic and surface complexity so as to conform to the paradigm. The development of 359 

ultrasonic 2D and 3D anemometers and fast-response sediment sensors has allowed aeolian 360 

geomorphologists to make high frequency measurements of turbulent wind flow and sand 361 

transport, which has enabled a shift away from the steady-state paradigm toward consideration 362 

of more natural conditions (e.g., Stout and Zobeck, 1997; Bauer et al., 1998; Sterk et al., 1998; 363 

Davidson-Arnott et al., 2005; Walker, 2005; Bauer et al., 2013).  The plot scale experiments at 364 

PEI were specifically designed to explore the characteristics and effects of unsteady, non-365 

uniform flow together with spatial and temporal variations in topography and surface 366 

characteristics.  367 

This section provides a summary of research that was designed to characterize the complex 368 

flow dynamics over the beach and foredune and related patterns of sand transport. A summary 369 

and critique of traditional models of airflow dynamics and surface shear stress over low hills is 370 

provided as a starting point. More comprehensive reviews of secondary flow dynamics over 371 

dunes in general, and related semi-coherent flow structures over dunes, are provided by 372 

Walker and Hesp (2013) and Bauer et al. (2013), respectively. 373 

4.1 Airflow dynamics over the beach-dune profile 374 

4.1.1 Classic models of boundary layer flow over low hills  375 

Theory on boundary layer flows over flat surfaces were extended to low symmetrical hills 376 

by climatologists (see Walker and Hesp, 2013), and seized upon by aeolian geomorphologists 377 

interested in predicting sand transport over dunes (e.g., Howard et al., 1978; Walmsley et al., 378 
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1982; Lancaster et al., 1996; Jensen and Zeman, 1985; Lancaster, 1985; Walmsley and Howard, 379 

1985; Mulligan, 1988; Weng et al., 1991; Frank and Kocurek, 1996a; Wiggs et al., 1996b; 380 

McKenna Neuman et al., 1997, 2000; Walker and Nickling, 2002). The Jackson and Hunt (JH) 381 

model (Jackson and Hunt, 1975; Hunt et al., 1988) delineated ‘inner’ and ‘outer’ flow regions 382 

that resulted from topographically-forced streamline perturbations. Outer flow in the JH model 383 

is modified only by the pressure field, whereas within the inner region turbulent momentum 384 

transfers and surface shear effects are also considered and create two sub-layers: i) the thin, 385 

inner surface layer (ISL) where fluid shear is in equilibrium with surface roughness (i.e., the 386 

constant stress region) and ii) the overlying shear stress layer (SSL) where shear effects 387 

decrease with height until negligible. The JH model established a new theoretical framework for 388 

understanding boundary layer flow dynamics, successfully characterizing: i) flow stagnation and 389 

deceleration immediately upwind of hills and ii) flow acceleration or ‘speed-up’ on the 390 

windward (stoss) slope.  391 

Rasmussen (1989) was among the first to apply a modified version of the JH model to a 392 

foredune. Due to varying roughness and slope transitions, he found that the depth of the ISL, 393 

from which surface shear stress is derived, was very thin and therefore traditional velocity-394 

profiles measured using bulky instruments were of limited utility in estimating sand 395 

transport.  Similarly, Hesp (1983) and Arens et al. (1995) found that flow accelerations up the 396 

windward slope deviated from those predicted by the JH model due to vegetation effects.  They 397 

also noted that, as winds became more oblique, the effective slope (i.e., aspect ratio) of the 398 

dune decreased, reducing flow acceleration and the transport rate on the stoss slope. Arens et 399 



 

 

20 

al. (1995) noted a decline in sand flux up the stoss slope at a rate that was dependent on 400 

incident wind speed. At slow speeds, the decline in sand flux was drastic, whereas at faster 401 

speeds sand traveled farther inland because of turbulent suspension. This effect was 402 

pronounced for steeper dunes and occurred despite changes in vegetation density.  403 

These early studies revealed that the ability to simulate flow dynamics over foredunes 404 

using climatological models was limited.  Field experiments in the 1990s and 2000s also 405 

showed that typical foredune terrain leads to flow separation and flow reversal, unlike flow 406 

over a low hill (see Walker et al., 2006; Walker and Hesp, 2013).  Empirical models of flow 407 

behavior in the lee of transverse desert dunes also emerged (e.g., Sweet and Kocurek, 1990; 408 

Frank and Kocurek, 1996; Wiggs et al., 1996; Walker and Nickling, 2002; 2003) and provided 409 

new conceptual foundations upon which flow dynamics over more complex, vegetated dunes 410 

could be understood. 411 

4.1.2 Advances in flow dynamics over complex dune terrain 412 

A vegetated foredune induces flow deceleration upwind of the dune toe, promoting 413 

deposition of sand at the bottom of the dune slope (e.g., Arens, 1996a; Davidson-Arnott and 414 

Law, 1996; Hesp, 1989; Sarre, 1989; Wal and McManus, 1993; Hesp, 2002).  Beyond the 415 

foredune toe and up the stoss slope, the protrusion of the foredune into the boundary layer 416 

results in the compression of flow streamlines, increasing surface shear stress and wind speed 417 

toward a maximum at the crest.  Accordingly, non-log-linear velocity profiles are common (Fig. 418 

3). This type of topographic forcing on flow speed and shear stress distributions over aeolian 419 

dunes has been documented widely (see Walker and Hesp, 2013). The effect is most 420 
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pronounced with wind perpendicular to the crest line and decreases steadily as the wind 421 

direction becomes more oblique (Hesp et al., 2005; 2015; Smyth and Hesp, 2015; Walker et al., 422 

2006; 2009b). 423 

In the PEI plot scale research, conventional velocity profiles were measured as part of some 424 

experiments (e.g., Hesp et al. 2009), although several drawbacks to this approach are 425 

recognized. Conventional anemometers (rotating cups, propeller-fuselage, sonic anemometry) 426 

are bulky compared to the shallow depth of the ISL.  Thus, it is difficult to estimate shear stress 427 

in the thin constant flux region (where the Law of the Wall applies).  Some researchers have 428 

measured velocity profiles that extend above the ISL (into the overlying SSL) as a proxy for 429 

estimating shear stress over desert dunes (e.g., Mulligan, 1988; Lancaster et al., 1996; Wiggs et 430 

al., 1996b). However, this often produces segmented and/or non-linear profiles (e.g., Bauer et 431 

al., 1990; 1996; Hesp et al., 2005; 2013; see Fig. 3).  Additionally, a vegetation canopy over the 432 

foredune stoss slope imposes other limitations for applying boundary layer theory to estimate 433 

surface shear stress. Thus, careful sampling and assessment of flow conditions within the near 434 

surface zone is required if reliable sediment transport predictions are to be achieved (Bauer et 435 

al., 2004). This remains difficult with existing instrument designs (Walker, 2005).   436 

437 
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Figure 3: Percentage wind speed profiles up the PEI foredune stoss slope from an experiment in 438 
2002 (see Hesp et al. 2005; 2013). Speed observations at positions 3–7 are normalized against 439 
windspeed measured by a sonic anemometer at 2.2 m on a mast on the upper beach. Wind 440 
speed is topographically accelerated upslope above the vegetation, while within the vegetation, 441 
drag increases upslope and speeds decelerate. 442 
 443 

 444 

The PEI experiments included measurements during flow conditions moderately above the 445 

threshold for sand transport in 2002 and substantially above threshold in 2004. In both studies, 446 

flow across the foredune was characterized by significant flow compression and 447 

acceleration.  However, during the 2002 experiment a significant reduction in wind speed 448 

(deceleration) resulted over the foredune from enhanced drag exerted by the vegetation 449 

canopy as observed in other studies (e.g., Arens et al., 1995). During the gale event in 2004, 450 

there was a marked speed up above the vegetation, but also significant penetration of high-451 

speed flow into the vegetation that, at times, produced sediment entrainment within the plant 452 
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canopy (Hesp et al., 2005, 2009; 2013; Walker et al., 2009; see Fig. 3). The vertical (W) velocity 453 

component of the flow field was positive (upwards) across the stoss slope under slow wind 454 

conditions but shifted to negative (downwards) during gale conditions. In addition, a jet 455 

developed approximately 1 m above the vegetation canopy and extended from the upper stoss 456 

slope to the foredune crest during the gale event (Hesp et al., 2009; 2013).  Formation of jet 457 

flow is common over distinct topographic breaks (e.g., Bowen and Lindley, 1977; Hsu, 1977, 458 

1987; Tsoar et al., 1985; Arens, 1996a), but had not been observed on foredune stoss slopes 459 

(Hesp and Smyth, 2016a).  These two phenomena, flow speed up within the plant canopy and 460 

jet flow development, are important for moving sediment to the lee of the dune during strong 461 

wind events (e.g., Arens, 1996a; Peterson et al., 2011; Hesp et al., 2009; 2013; Hesp and Smyth, 462 

2016a). 463 

 Tall grassy vegetation exerts significant aerodynamic roughness that likely varies with wind 464 

speed as the plants flex downward and become more streamlined under extreme winds (e.g., 465 

Hesp et al., 2009). This dynamic behavior of the vegetation layer makes it difficult to 466 

parameterize surface roughness as an aerodynamic roughness length (z0) or with a 467 

displacement height (d). This quandary is also a major limitation with current numerical 468 

modelling approaches (Smyth, 2016).   As a result, time-averaged and spatially coarse velocity 469 

profiles over foredunes are likely inaccurate for characterizing the highly spatially and 470 

temporally variable surface shear stresses that drive sand transport. 471 
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4.1.3 New perspectives on turbulence and coherent flow structures 472 

Much work has been done recently to describe time-averaged conditions and turbulent 473 

structures in flow over aeolian dunes (see Walker and Hesp, 2013) similar to earlier research in 474 

rivers (e.g., McLean and Smith, 1986; Nelson and Smith, 1989; Bennett and Best, 1995; Venditti 475 

and Bauer, 2005).  Nevertheless, the relationship between turbulence intensity, Reynolds shear 476 

stress (RS = -ρ u′w′̅̅ ̅̅ ̅̅ ̅̅ ̅̅  where u', w' are horizontal, vertical velocity fluctuations and ρ is fluid 477 

density), and sand transport across aeolian dunes remained essentially unexplored until the 478 

early 2000s following work on sand transport and turbulence over flat sand surfaces (e.g., 479 

Bauer et al., 1998; Sterk et al., 1998; Leenders et al., 2005; Baas, 2006).  480 

Research over desert dunes and in wind tunnels demonstrated that RS at the toe of a dune 481 

often exceeds time-averaged, streamwise shear stress (τ = ρ u*
2, where u* is shear velocity 482 

derived from velocity profiles) (e.g., Wiggs et al., 1996; Walker and Nickling, 2002; 2003; 483 

Parsons et al., 2004; Baddock et al., 2011; Weaver and Wiggs, 2011; Smyth and Hesp, 2015).  484 

Wiggs et al. (1996) argued that semi-coherent flow structures in the upwind boundary layer 485 

were conveyed toward the bed at the dune toe by concave streamline curvature in this 486 

region. These structures, which cause fluctuations in local RS, were thought to aid the 487 

maintenance of grain transport across the beach and through the flow deceleration region at 488 

the dune toe.  Toward the dune crest, surface shear stress increases as a result of streamline 489 

compression and flow acceleration, assisted by streamline convexity that suppresses vertical 490 

motions and enhances horizontal fluctuations.  These patterns of turbulence modification have 491 

been documented in flow over desert dunes (see Wiggs et al. 1996; Walker and Nickling, 2002; 492 
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2003; Walker and Hesp, 2013) and over the foredunes at the PEI study site (Chapman et al. 493 

2012; 2013). 494 

Research in fluvial systems has shown that ejection and sweep events and larger macro-495 

structures (e.g., kolks, boils) are often associated with enhanced sediment entrainment and 496 

transport via suspension (e.g., Jackson, 1976; Drake et al., 1988; Best, 1993; Robert et al., 1996; 497 

Roy et al., 1996, 2004; Best and Kostachuk, 2002; Kostaschuk et al., 2008, 2009; Shugar et al., 498 

2010). However, few studies have focused on bed load transport, which is more comparable to 499 

the saltation-dominated mode of transport over aeolian dunes (cf., Drake et al., 1988; Valyrakis 500 

et al., 2010).  Some of the experiments at PEI were dedicated to exploring the relationships 501 

between turbulent stresses (including semi-coherent structures) and sediment transport 502 

(Chapman et al. 2012; 2013) over foredunes using ultrasonic anemometry to acquire high-503 

frequency (1-32 Hz) measurements of 3D velocity vectors (U, V, W) at two sampling heights  504 

across a transect extending from the upper beach to the lee of the dune crest.  Sand transport 505 

intensity was measured using Laser Particle Counters (LPCs) positioned at 0.014 m and 506 

higher.  Quadrant analysis was used to assess the distribution of quasi-instantaneous 507 

components of the RS signals over the foredune as a means to interpret potential links between 508 

fluid stress and resulting sand transport (Chapman et al., 2013). 509 

Chapman et al. (2012) showed that the activity level in each of the four quadrants varied 510 

with height and position across the beach-dune profile (Fig. 4).  Q2 activity (u′<0, w′>0), which is 511 

often associated with 'ejections', and Q4 activity (u′>0, w′<0), which is associated with 'sweeps', 512 

generally dominated the turbulence structure over Q1 (u′>0, w′>0) and Q3 (u′<0, w′<0) activity, 513 
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which conform to 'outward' and 'inward' interactions, respectively.  Such Q2-Q4 skew is a 514 

characteristic signature of a turbulent boundary layer and was particularly evident across the 515 

beach, dune toe, and lower stoss slope of the foredune.  In contrast, as the dune crest is 516 

approached, Q2 activity declines whereas Q1 becomes more dominant.  The frequency of 517 

ejection and sweep activity is reduced toward the crest. In the lee of the crest, where flow 518 

separation occurs, the quadrant distributions were more symmetrical due to mixed, multi-519 

directional flow.  In terms of correlations between quadrant signatures and sand transport, 520 

Chapman et al., (2013) found that Q4 activity was most frequently associated with transport on 521 

the beach (52%), foredune toe (60%), and stoss locations (100%), whereas Q1 activity was 522 

dominant at the crest (25 to 86%), followed by Q4 (13 to 59%). Q3 activity appeared to be 523 

largely irrelevant in terms of correlation with observed sand transport at any location.   524 

525 
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Figure 4: Quasi-instantaneous (32 Hz) quadrant plots derived from a 10-minute Run at 1700 h 526 
on 11 October 2004 during a gale force event. Average incident flow angle and resultant speed 527 
for each location are shown in the top right. Quadrant counts (in each corner) represent the 528 
total number of observations (modified from Chapman et al. 2012: Fig. 10). 529 

 530 
 531 
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Understanding the dominance of certain quadrants over others at varying positions across 532 

the beach-dune profile provides insight into why there is generally a poor correlation between 533 

sand transport and time-averaged RS, contrary to what might be expected across an extensive 534 

horizontal sand surface.  Specifically, fluid fluctuations that yield activity signatures in Q2 and 535 

Q4 provide positive contributions to RS, whereas those in Q1 and Q3 are negative 536 

contributions.  If either couplet dominates the distribution (as with diagonally-skewed ellipsoids 537 

shown in Fig. 4), there will be either positive or negative momentum transfer toward, or away 538 

from, the bed, respectively.  However, when the activity signatures are balanced (i.e., a circular 539 

pattern), the positive and negative quantities balance each other in the time-averaged RS.  540 

Thus, it is possible to have intense activity in Q1 and Q4, as we find at the dune crest, which 541 

implies significant turbulent fluctuations in the streamwise (positive) direction, but poor 542 

correlation with vertical fluctuations.  This situation yields a small value of RS, despite 543 

significant potential in the flow field to sustain sediment transport. As a result, the relationship 544 

between sand transport and turbulence across beach-dune profiles is complex and cannot be 545 

described well using RS alone (Chapman et al. 2013). Figure 5 presents a conceptual model that 546 

summarizes these relations.  547 

Other research has examined the distribution of Reynolds normal stresses (i.e., u’2, w’2) 548 

and turbulent kinetic energy (TKE) in flow over desert dunes (e.g., Baddock et al., 2011; Weaver 549 

and Wiggs, 2011).  Increasing evidence suggests that positive streamwise velocity fluctuations 550 

are associated with the bulk of aeolian transport (e.g. Bauer et al., 1998; Sterk et al., 1998; 551 

Schönfeldt and von Löwis, 2003; Leenders et al., 2005; Baddock et al., 2011; Weaver and Wiggs, 552 



 

 

29 

2011; Wiggs and Weaver, 2012). As such, the relationship between near-surface turbulence, 553 

especially RS, and sand transport is not as straightforward as in traditional equations that relate 554 

sand flux to surface stress directly and unambiguously.  555 

4.1.4 Advances in understanding topographic steering of near surface flow and sand transport 556 

vectors 557 

Interaction of regional wind flow with surface topography results in deviations in the 558 

magnitude and directionality of near-surface flow vectors - a phenomenon termed ‘topographic 559 

steering’.  The mechanics of topographic steering are driven largely by pressure differences that 560 

the flow field encounters along streamlines that traverse the dune toe (deceleration, positive 561 

pressure gradient) and stoss slope (acceleration, negative pressure gradient).  More in-depth 562 

explanations of this mechanism are provided by Walker and Hesp (2013) and Hesp et al. (2015) 563 

and references therein. 564 

Early work on topographic steering over beaches and foredunes (e.g., Svasek and Terwindt, 565 

1974; Bradley, 1983; Mikklesen, 1989; Rasmussen, 1989; Arens et al., 1995; Hesp and Pringle, 566 

2001) demonstrated that winds approaching a foredune at an oblique angle tend to be 567 

deflected toward crest-normal and that this effect is greatest when incident angles are 568 

between 30° and 60° to the crestline. Highly oblique winds less than 30° to the foredune crest 569 

(where 90° is directly on shore) are generally deflected parallel to the crestline. Recent research 570 

at the PEI site (Walker et al., 2006, 2009a, b; Bauer et al., 2012; Hesp et al., 2015) and 571 

elsewhere (e.g., Lynch et al., 2008; 2009; 2013; Jackson et al., 2011; Delgado-Fernandez et al., 572 

2013, Smyth et al., 2011, 2012), suggests a common set of flow responses over morphologically 573 
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simple foredunes.  Bauer et al. (2012) presented a conceptual model (Fig. 7) of flow-form 574 

interaction over foredunes for a variety of flow approach angles from onshore (crest-575 

perpendicular) through oblique, and offshore that also incorporates knowledge of resultant 576 

sediment transport vectors (Bauer et al., 2015). 577 

From these collective empirical results, it is now clear that topographic steering plays a 578 

significant role in determining the near surface wind field and, consequently, the sediment 579 

transport pathways across the beach-dune profile during onshore, oblique, and offshore 580 

regional wind flows. To extend understanding beyond these empirical observations, a more 581 

detailed computational fluid dynamics (CFD) simulation of flow over the PEI foredune (Hesp et 582 

al., 2015) was conducted to simulate near-surface flow response in 10° increments from 583 

onshore (0°) to alongshore (90°) wind approach angles.  The results are summarized below into: 584 

I) crest perpendicular winds – onshore and offshore; II) crest oblique winds – onshore and 585 

offshore; and III) shore parallel winds. 586 

587 
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Figure 5: Conceptual model showing observed streamline behaviour, flow dynamics, Reynolds 588 
stress (RS) quadrant event activity, and sand transport responses over a foredune. (Chapman et 589 
al. 2013: Fig. 7). 590 
 591 

 592 

 593 

594 
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Figure 6: Conceptual model of flow–form interaction and topographic steering over a large 595 
foredune for variable wind approach directions. Large solid arrows correspond to near-surface 596 
wind flows and small arrows show likely sediment transport directions. (Bauer et al. 2012: Fig. 597 
11). 598 

 599 

 600 

I. Crest perpendicular winds 601 

Crest perpendicular winds are accelerated up the stoss (upwind) slope of the dune and, if 602 

the foredune ridge is sufficiently high and steep, flow detachment occurs at the crest.  A 603 

recirculation cell occupies the dune lee with a reattachment point located somewhere 604 

downwind depending on dune height and topographical complexity. Flow reversals at the bed 605 

are not uncommon (Fig. 6A and C) (e.g., Delgado-Fernandez et al., 2011; Jackson et al., 2011).  606 

During offshore winds, when the beach is in the 'lee' of the foredune ridge, anemometers 607 



 

 

33 

located above the foredune crest and on tall beach towers record the regional (offshore) wind 608 

flow, while those close to the surface show drastically reduced flow speed and often reversed 609 

and highly variable wind directions, which are typical of lee side eddy circulation in general 610 

(Walker and Nickling, 2002; Jackson et al., 2011; Delgado-Fernandez et al., 2013; Bauer et al., 611 

2012; 2015). The results of the PEI work on onshore and offshore flow conditions support 612 

detailed findings of others in Northern Ireland (Lynch et al., 2009; 2010; 2013; Jackson et al., 613 

2011; Delgado-Fernandez et al., 2013) who documented distinct flow recirculation in the lee of 614 

a large foredune during offshore winds.  During strong winds from either onshore or offshore 615 

directions, flow acceleration towards the crest can result in sand transport high enough above 616 

the bed to be incorporated within and above the lee-side flow separation eddy and deposited 617 

on the lower part of the downwind slope and beyond (Arens 1995; Peterson et al., 2011; Hesp 618 

et al., 2013). During offshore winds, some sand may be entrained near the crest and 619 

transported onto the upper seaward slope of the foredune, while on the beach, onshore 620 

transport may occur both seaward and landward from the point of flow reattachment, thus 621 

leading to a pronounced transport discontinuity (Bauer et al., 2012; 2015; Davidson-Arnott et 622 

al., 2012).  623 

ii. Oblique winds 624 

Winds approaching a foredune at an oblique angle are deflected toward crest-normal along 625 

the stoss slope (Fig. 6B and D) (Walker et al., 2006; 2009b; Hesp et al., 2015). The degree of 626 

deflection is dependent on incidence angle as well as height above the surface, with the most 627 

pronounced steering near the surface and nearer to the crest where flow acceleration effects 628 
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are most prevalent (Arens et al., 1995; Mikkelsen, 1989; Walker et al. 2006; 2009b; Walker and 629 

Shugar, 2013; Hesp et al., 2015).  Significant onshore steering of near-surface flow vectors can 630 

occur (as much as 37° from the incident wind as in Walker et al. 2009b), even during highly 631 

oblique winds.  632 

Figure 7 shows CFD-generated flow streamlines in near-surface boundary layer flow (from 633 

0.66 to 2 m) over the PEI foredune and depicts the resulting degree of streamline deflection for 634 

three incident wind approach directions (20°, 40° and 80°)(Hesp et al. 2015). The lowest 635 

streamlines show the strongest response to topographic forcing and display the greatest degree 636 

of deflection, similar to that observed empirically at the PEI site by Walker et al. (2006; 2009b).  637 

Near-surface flow speed responses show that the greatest speed-up occurs for winds that are 638 

most directly onshore when the dune has the steepest aspect ratio and then decreases as the 639 

incident wind becomes increasingly oblique.  For example, at 0.66 m above the bed the wind 640 

speed at the foredune crest for incident wind directions from 50° to 30° to the crest is on 641 

average 25% lower than for winds in the 30° to 0° range (Fig. 8).  Beyond the crest, flow 642 

separation occurs for onshore to moderately oblique winds and is manifest as a fairly simple 643 

reversing roller vortex, as in Fig. 6A above and as captured in smoke visualization by Walker 644 

(2005: Fig. 6).  Flow separation and expansion results in notable flow deceleration leeward of 645 

the crest, particularly closer to the surface (Fig. 8B). However, as the flow trends towards more 646 

alongshore (from 50° to 70°), the degree of lee-side flow deceleration declines.  This generally 647 

reflects a change in the effective aspect ratio imposed by the dune, such that from onshore (0°) 648 

to oblique-alongshore (~60°), incident winds still encounter a relatively steep and asymmetric 649 
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topography. Beyond this range, as the incident wind approaches crest-parallel, there is 650 

significantly less topographic forcing due to the decline in dune aspect ratio, and little to no 651 

flow separation in the lee, as evident in the markedly different surface velocity distribution.   652 

Figure 7: Examples of topographic steering of lower boundary layer flow (0.66 to 2 m) 653 
streamlines generated by a field-validated CFD simulation (Hesp et al., 2015) for three incident 654 
wind approach directions: 20° (oblique-onshore, uppermost), 40° (oblique, middle) and 80° 655 
(oblique-alongshore, lowermost). The lowest streamlines show the strongest response to 656 
variations in surface morphological changes and display the greatest degree of deflection. 657 
(Hesp et al. 2015: Fig. 8, reproduced with permission). 658 
 659 

 660 
661 
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 Figure 8: Near-surface wind speed responses generated by the CFD simulation of Hesp et al. 662 
(2015) showing speeds at 1 m intervals across the foredune at heights of 1.66 m(a) and 0.66 m 663 
(b) above the dune profile (c) for five incident wind directions. (Hesp et al. 2015: Fig. 7, 664 
reproduced with permission). 665 

 666 

 667 

668 
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III. Alongshore winds 669 

As the incident wind becomes more oblique (i.e., alongshore), the reduction in mean wind 670 

speed at the dune toe and the increase in wind speed toward the crest become less 671 

pronounced due to the declining effects of flow stagnation and streamline compression over 672 

the effectively less steep dune form (Arens et al. 1995; Parsons et al., 2004).  Overall, there is 673 

also less spatial variability in near-surface flow speed over the dune (Fig. 8), although this does 674 

depend on the variability in surface morphology as well as vegetation cover and distribution.   675 

The reduced flow acceleration effect over the dune for highly oblique flows can often result 676 

in increased sand transport potential along the beach (vs. into the foredune). However, the 677 

greater drag on wind flow over the vegetated surface of the lower stoss slope can also produce 678 

rapid wind speed decreases and some topographic steering towards the foredune toe, which 679 

may enhance sand transport from the upper beach onto the lower stoss slope.  Transport 680 

potential over the stoss slope also decreases as a consequence of vegetation-induced drag, 681 

thereby creating a large disparity between sand transport on the stoss slope versus that on the 682 

beach.   683 

If the foredune is scarped as a result of storm wave erosion, flow deflection patterns may 684 

be significantly different, than that for a non-scarped dune.  Winds above the scarp may be 685 

deflected onshore towards the crest (Hesp et al., 2013) while flow seaward of the scarp is 686 

deflected along the beach during oblique and alongshore winds (Hesp and Smyth, 2016a), 687 

which may aid in the development of a dune ramp that rebuilds the eroded region (see 688 

Ollerhead et al., 2013).   689 
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The geomorphic implications of these flow deflection phenomena are important for several 690 

reasons.  First, oblique winds can transport sediment onto a foredune or away from it 691 

depending on the angle of incident wind or the presence of a dune scarp, thereby affecting 692 

sediment supply to the dune. Second, deflected surface winds can influence net transport 693 

pathways and sedimentation patterns on the foredune, as has also been documented over 694 

transverse desert dunes. Third, transport conditions on the beach may be decoupled from 695 

those on the foredune at certain approach angles. Fourth, fetch distances and sand transport 696 

pathways into, and over, foredunes may be greater or less than predicted depending on the 697 

nature and magnitude of flow deflection.  Finally, sedimentary strata may be deposited more 698 

crest transverse than the regional wind regime would indicate, thereby confounding paleo-699 

environmental interpretations of relict dunes.  Thus, assessments of landscape-scale dune 700 

evolution using regional wind statistics from nearby weather stations or relict dune morphology 701 

must also consider the confounding effects of topographic steering on near-surface flow 702 

patterns and the overall foredune sediment budget (Hesp and Hyde, 1996; Walker et al., 2006). 703 

In some settings (e.g., offshore oriented wind regimes), this may exert significant control on the 704 

total sand supply to, and/or the distribution of sand within, the foredune system (Hesp, 2002; 705 

and Davidson Arnott and Law, 1996; Walker et al. 2006; 2009a; 2009b; Lynch et al., 2009; 2010; 706 

2013; Jackson et al., 2011; Bauer et al. 2012; Delgado-Fernandez et al., 2013), as discussed in 707 

Section 5.  708 

At the plot scale, the nature and degree of topographic forcing on near-surface flow 709 

vectors is now conceptually understood and supported by rich empirical datasets and recent 710 
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CFD simulations (e.g., Parsons et al., 2004; Beyers et al., 2010; Jackson et al., 2011; Hesp et al., 711 

2015).  Implementation of this understanding into predictive models remains a challenge. 712 

4.1.5 Innovative Computational Fluid Dynamics (CFD) modeling of flow over foredunes 713 

The development of robust CFD modeling has significantly advanced our understanding of 714 

flow dynamics over dunes. Due to the logistical limitations of deploying field instrumentation to 715 

measure wind flow over complex terrain (Walker, 2005), CFD simulations are being used 716 

increasingly as a proxy and/or in conjunction with field measurements to accurately model 717 

complex flow behavior over aeolian landforms (e.g., Parsons et al., 2004; Omidyeganeh et al., 718 

2013; Pelletier et al. 2015; Hesp et al., 2015; Hesp and Smyth, 2016a; Smyth, 2016).  719 

CFD is a numerical method of solving fluid flow by converting the Navier-Stokes (N-S) 720 

equations to algebraic equations and solving them iteratively within a gridded computational 721 

domain of a study area. Unlike the Jackson and Hunt (1975) model, which solved the N-S 722 

equations linearly, CFD is capable of solving complex turbulent flow using a range of methods. 723 

The two most common approaches are Reynolds-Averaged Navier-Stokes (RANS) and Large 724 

Eddy Simulation (LES). RANS separates velocity and pressure into mean and fluctuating 725 

components, which are substituted into the original N-S equations producing a steady state 726 

solution of the mean flow dynamics. Unsteady or transient RANS (URANS and TRANS 727 

respectively) can also be calculated by retaining the unsteady terms, instead of averaging, 728 

making the dependent variables not only a function of space but also of time. LES produces a 729 

transient solution of flow dynamics by modelling smaller scale vortices, which are close to 730 

homogenous, and simulating larger-scale turbulence, which largely depends on geometry and 731 
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boundary conditions.  The locations in the mesh where the N-S equations are simulated (i.e., 732 

the N-S equations are solved) depends on the spatial resolution of the mesh and a spatial filter.  733 

Where the cells are larger (smaller) than the filter, the flow is calculated exactly (modelled 734 

using approximations).  735 

Direct Numerical Simulation (DNS) of the N-S equations without any turbulence modelling 736 

is also possible. However, the computational power required to solve all scales of turbulence 737 

spatially and temporally makes the computational cost prohibitively expensive for use at high 738 

Reynolds numbers over aeolian landforms. To date, most studies of wind flow over aeolian 739 

landforms have been performed using RANS turbulence modelling, with the exception of 740 

Jackson et al. (2011) who compared RANS, LES and a hybrid RANS-LES model with measured 741 

data.  In addition, Omidyeganeh et al. (2013) conducted an LES study of flow over a barchan 742 

dune at a relatively high Reynolds number, more akin to flow conditions found in fluvial 743 

environments. Building on this work, Pelletier et al. (2015) quantified turbulent shear stresses 744 

that produce grain flows on the slip faces of aeolian barchan dunes.  Smyth (2016) provides a 745 

comprehensive review of recent progress in the use of CFD in aeolian research. 746 

Despite recent advances, several limitations remain in CFD modelling of flow over aeolian 747 

landforms (Smyth, 2016).  Most notable for research on coastal dunes is the ability to 748 

accurately model surface roughness imposed by vegetation. Vegetation drastically reduces 749 

wind velocity and shearing force exerted near the surface, which causes sediment to be 750 

deposited, which may over time result in increasing dune mass. In the majority of CFD codes, 751 

vegetation is simply parameterized as a fixed, surface roughness length.  This parameter limits 752 
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the vertical resolution of the computational domain, as the cell closest to the surface (where 753 

the roughness element resides) must equal twice the aerodynamic roughness length. The 754 

problem is compounded by the recommendations of Franke et al. (2004), who advise that at 755 

least two cells must exist between the surface and the area of interest inside the computational 756 

domain. This remains a key challenge in aeolian geomorphology as sediment transport is driven 757 

by flow dynamics very close to the surface within the ISL (see section 4.1.1), yet roughness 758 

lengths can extend to tens of centimetres within and through the ISL.  759 

4.2 Instantaneous sediment transport across the beach-dune profile 760 

4.2.1. Classic ideas on equilibrium ‘saturated’ sand transport  761 

A great deal of effort has been devoted to understanding the detailed physics of aeolian 762 

saltation, usually under ideal conditions such as dry, unimodal sand on a flat, extensive surface 763 

without vegetation or moisture controls.  Many aspects of saltation (e.g., grain-fluid 764 

momentum transfer, impact cratering, boundary layer adjustments) have also been simulated 765 

using complex analytical and numerical models (e.g., Bagnold, 1941; Anderson and Haff, 1991; 766 

Durán and Herrmann, 2006; Kok and Renno, 2009) but, in general, there is a presumption that 767 

the transport rate is in steady-state equilibrium with the wind.  This has been referred to as the 768 

‘saturated’ flux condition (Sauermann et al., 2001).  In parallel, a large number of empirical 769 

studies have tested the performance of the basic predictive relations under natural field 770 

situations, with often disappointing performance.  In early experiments, sand transport was 771 

measured with integrating traps over periods of 10-20 minutes and compared to values of u* 772 

derived from the wind profile. Measured flux rates in the field were often much less than the 773 
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maximum theoretical rate predicted for saturated sand transport (e.g., Sarre, 1988; Bauer et al., 774 

1990; Sherman et al., 1998; Sherman et al., 2011).  Sherman and Hotta (1990) summarized how 775 

the basic transport equations have been modified to accommodate the influence (usually 776 

singly) of supply-limiting factors such as surface moisture, binding salts, topographic slope, and 777 

sediment texture, which tend to reduce the maximum transport rate below that from standard 778 

models (see review in Ellis and Sherman, 2013).  779 

In the 1990s, a number of fast response sensors for high frequency measurement of sand 780 

transport were developed and tested in the field, including: acoustic impact sensors (Spaan and 781 

van den Abeele, 1991; Arens, 1996; Ellis et al., 2009); piezoelectric impact sensors (Stockton 782 

and Gillette, 1990; Stout and Zobeck, 1997; Baas, 2004); and electronic balance traps (Jackson, 783 

1996; Bauer and Namikas, 1998; McKenna Neuman et al., 2000). These sensors have permitted 784 

field measurements of “instantaneous” sediment transport in combination with high frequency 785 

measurements of wind flow. As a consequence, greater insight has been gained into the links 786 

between wind turbulence and the resulting characteristics of aeolian transport, including 787 

transport intermittency (e.g., Davidson-Arnott and Bauer, 2009; Davidson-Arnott et al., 2009; 788 

Davidson-Arnott et al., 2012) and the event-based nature of saltation (e.g., “flurry” 789 

characterization per Bauer and Davidson-Arnott, 2014). Advances in the ability to measure 790 

surface moisture content have also enabled improved understanding of non-saturated flux 791 

related to supply-limited conditions (e.g., Yang and Davidson-Arnott, 2005; Davidson-Arnott et 792 

al., 2008; Bauer et al., 2009; Darke et al., 2009; Delgado-Fernandez et al., 2009).  793 



 

 

43 

4.2.2. Improved understanding of the fetch effect on beaches and sand delivery to 794 

foredunes 795 

Increasing evidence collected from field studies from the 1970s to the 1990s identified a 796 

persistent mismatch between measured and predicted transport rates on beaches (e.g., Svasek 797 

and Terwindt, 1974; Sarre, 1988; Bauer et al., 1990; Davidson-Arnott and Law, 1990; Nordstrom 798 

and Jackson, 1992; 1993). This compelled aeolian geomorphologists working on coasts to 799 

contemplate the ways in which the beach-dune environment is different from desert surfaces 800 

and wind-tunnel simulations.  A primary factor involves the complexities of flow-transport 801 

interactions from open water to sandy beach to foredune (Sherman and Bauer, 1993; Hesp and 802 

Smyth, 2016b) that generates complex boundary layer adjustments, as well as specific 803 

constraints on sediment transport imposed by the 'fetch' effect (Gillette et al., 1996; Bauer and 804 

Davidson-Arnott, 2003; Delgado-Fernandez, 2010).  Wind tunnel studies with dry, uniform sand 805 

showed that the distance downwind from a sediment source boundary required for the 806 

saltation cascade to achieve a constant transport rate (i.e., 'saturated' transport) was only a few 807 

metres (e.g., Nickling, 1988; Shao and Raupach, 1992; Dong et al., 2004), although this may 808 

depend somewhat on working section length, height and flow speed (Dong et al., 2004). 809 

However, it has long been recognized for agricultural fields that, where some form of supply-810 

limiting factor exists, this distance can be significantly longer (Chepil and Milne, 1939). Coastal 811 

geomorphologists began exploring how important the fetch effect was for reconciling 812 

differences between measured and predicted transport rates across beaches, especially on the 813 

foreshore and lower beach (e.g., Svasek and Terwindt, 1974; Davidson-Arnott and Law, 1990; 814 
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Bauer et al., 1990). Just as there is a time lag or period of adjustment between the response of 815 

the saltation layer to a change in wind speed (e.g., Butterfield, 1999), there is a corresponding 816 

spatial distance over which such process-response adjustments occur (e.g., Shao and Raupach, 817 

1992).  The downwind distance that is required to achieve equilibrium transport via the 818 

saltation cascade is referred to as the ‘critical fetch distance’ (Fc).  If one measures sediment 819 

transport downwind of Fc, then it is reasonable to expect that an equilibrium model (e.g., 820 

Bagnold, 1941) could be applicable.   Within the fetch-limited zone (F < Fc), however, measured 821 

transport will always be less than that predicted by equilibrium-type models.   822 

Figure 9 depicts the conceptual model of Bauer and Davidson-Arnott (2003), wherein the 823 

influence of fetch on sand supply to a foredune is characterized geometrically as a function of 824 

beach geometry (w/L) and incident flow angle (α).  The model identifies the region landward 825 

(downwind) of Fc where sediment transport rate reaches a maximum (equilibrium flux) state, 826 

which, in turn, governs total transport into the foredune.  Figure 10 shows various simulations 827 

that depict the magnitude of normalized specific sediment transport (relative to maximum rate 828 

per unit width) for a 1:1 (w:L) beach form for three different wind angles (α = 0°, 20°, 45°) and 829 

three fetch ratios (Fc/w = 0.2, 1.0, 1.3).  Essentially, the simulations reveal that Fc exerts an 830 

important control on the amount of sand delivery to the foredune, but the proportion of 831 

sediment delivered to the dune, relative to the amount eroded from the beach, is influenced 832 

dominantly by angle of wind approach, not fetch.  When angle of wind approach becomes more 833 

oblique, the downwind portion of the beach closest to the dunes experiences enhanced sand 834 

transport rates (ultimately reaching the equilibrium potential rate), however, the total amount 835 
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of sediment supplied to the foredune actually decreases relative to that during shore-normal 836 

conditions as most of the sediment is lost to the downwind margin of the beach. 837 

Figure 9: Conceptual model of Bauer and Davidson-Arnott (2003: Fig. 4) characterizing the fetch 838 
effect on a rectangular beach of length, L, and width, w. The beach is defined as the zone of dry 839 
sand between the limit of wave swash and the dune toe (limit of dune vegetation or significant 840 
break in slope). Critical fetch length, Fc, is the distance for aeolian sand transport to reach its 841 
maximum value (equilibrium flux rate).  The shaded zone is the region where maximum values 842 
exist, as determined by wind speed, incident wind approach angle, α, and sediment size.  Fm is 843 
maximum fetch resulting from the relationship between beach width relative to shore normal. 844 
Distance l represents a unit of alongshore length at the dune toe mapped out by two parallel 845 
streamlines of the wind field separated by perpendicular distance, b, such that b = l (cos α). T 846 
represents a total transport line, or alongshore length of a line parallel to the dune toe that will 847 
receive sand transported from the beach for a given wind angle, α.  848 

 849 

850 
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Figure 10: Distribution of normalized specific sediment transport (relative to maximum rate per 851 
unit width) over a beach with geometry w/L = 1.0 for a combination of three wind angles (α = 852 
0°, 20°, 45°) and three fetch ratios (Fc/w=0.2, 1.0, 1.3) simulated by Bauer and Davidson-Arnott 853 
(2003: Fig. 9) based on the conceptual model presented in Fig. 9. The mesh grid shows 854 
magnitude of normalized specific transport parallel to the wind vectors and shaded portions of 855 
the axis planes indicate magnitude of transport across dune line or downwind margin of beach 856 
(as controlled by the cos α effect).  Zones of net transport and erosion on the beach correspond 857 
to level and sloping regions of the mesh grid, respectively, where steeply sloping regions 858 
indicate intense erosion. 859 

 860 

 861 
4.2.3. Advances in understanding of fetch and moisture interactions on beaches 862 

In addition to the fetch effect, there are a host of other confounding natural factors that 863 

limit our ability to predict accurately the amount of sediment transport from beaches into 864 

foredunes.  It is well known, for example, that increased surface moisture reduces the 865 

maximum rate of sand transport across a beach (e.g., Namikas and Sherman, 1995, McKenna 866 

Neuman and Langston, 2006; Davidson-Arnott et al., 2008; Edwards et al., 2012).  It is also 867 

known that sand transport does not shut down completely during intense rain events, provided 868 
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there is sufficient wind speed (e.g., Jackson and Nordstrom, 1998; McKenna Neuman and Scott, 869 

1998; Hesp et al., 2009; Rotnicka, 2013).  Wet portions of a beach, (e.g., foreshore, 870 

groundwater emergence zones) are subject to greater transport intermittency and spatial 871 

variability (e.g., Davidson-Arnott et al., 2005, 2008; Davidson-Arnott and Bauer, 2009), with the 872 

result that the critical fetch distance, Fc, will increase with increasing surface moisture 873 

(Davidson-Arnott and Dawson, 2001).  All other factors equal, foredunes fronted by typically 874 

dry (wet) beaches will experience enhanced (reduced) sediment delivery and dune 875 

growth.  Similar increases in Fc can be expected for other supply-limiting conditions such as the 876 

presence of pebbles or flotsam (e.g., de Vries et al., 2014).  877 

Until recently, surface moisture measurement in the field was estimated gravimetrically by 878 

taking field samples to the laboratory – a tedious and time-consuming process. The Theta Probe 879 

impedance sensor was initially tested on beach surfaces by Atherton et al. (2001) and Wiggs et 880 

al. (2004), and this approach permitted rapid determination of average moisture at a sampling 881 

point over a depth of 0.1 m. Yang and Davidson-Arnott (2005) demonstrated that the probe 882 

length could be reduced to 0.02 m without significant loss in accuracy, thus permitting 883 

measurements that were much more representative of the forces related to moisture content 884 

very near the surface that constrain grain entrainment. Further evaluation of these instruments 885 

was done by Edwards and Namikas (2009) and Edwards et al. (2012). Rapid changes in surface 886 

elevation due to erosion and deposition in beach and foredune environments makes it difficult 887 

to deploy impedance sensors over long periods by simply embedding the instrument in the 888 
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sand. Thus, repetitive sampling is required, with the prospect of unduly affecting the surface 889 

conditions.   890 

An alternate near-field remote sensing approach based on surface brightness signatures 891 

from digital photographs has also been used to measure surface moisture (e.g., McKenna 892 

Neuman and Langston, 2006; Darke and McKenna Neuman, 2008). This method was applied to 893 

oblique photographs taken from cameras mounted on a tower on the dune crest at the PEI site 894 

(Fig. 11), thus providing coverage of an area on the order of 100 m2 (Darke et al., 2009) and for 895 

a period of several months (Delgado-Fernandez et al., 2009; see section 5.1.2). Ortho-896 

rectification and incorporation of these photos into a GIS facilitated the mapping of a number 897 

of other variables, in addition to moisture, on a regular basis (Delgado Fernandez and Davidson-898 

Arnott, 2011; Delgado-Fernandez et al., 2012). 899 

Figure 11:  Components of the PEI long-term monitoring station located at the crest of the 900 
foredune (A). A 2D sonic anemometer was located at the top of a 5-m mast, with three digital 901 
SLR cameras below to take oblique, overlapping colour photographs of the beach and foredune 902 
toe region for ortho-rectification (B), and moisture mapping (C).  Modified from Delgado 903 
Fernandez and Davidson-Arnott (2011: Fig. 2) and Delgado-Fernandez et al. (2009). 904 

 905 



 

 

49 

The control on aeolian transport imposed by surface moisture is ordinarily thought of as 906 

either a spatial phenomenon (i.e., zones or patches of wet or dry sand) or a temporal 907 

phenomenon (i.e., increasing moisture during storms and subsequent drying via 908 

evaporation).  However, surface moisture exerts a supply-limiting control on aeolian sediment 909 

transport on beaches that varies in both space and time coincidentally. Indeed, the moisture 910 

state of a beach surface will often interact with the fetch effect to yield very complex process-911 

response feedback loops (e.g., Nordstrom and Jackson, 1992; 1993; Bauer et al., 2009).   912 

Consider the scenario of a wide beach that has experienced uniform surface drying via 913 

solar radiation for several hours and sand at the surface retains a moisture content of about 914 

4%.  A short-lived, onshore wind event begins that has the capacity to entrain sediment from 915 

the dry surface layer.  Sediment stripped from the upper foreshore is transported to the 916 

foredune toe and deposited. As there is no supply of dry sediment to the foreshore from 917 

upwind, progressive erosion of the surface layer exposes wetter sediments beneath that are 918 

increasingly more difficult to entrain.  As a consequence, the critical fetch distance, Fc, required 919 

for sand transport to reach its maximum (equilibrium) flux rate is effectively lengthened and 920 

the equilibrium transport zone fronting the foredune becomes narrower (see Fig. 921 

10).  Eventually, the berm and lower beach are stripped of dry sediment, exposing more closely 922 

packed, moist sediments, which further extends the Fc.  In contrast, the upper beach and 923 

foredune toe are zones of deposition, comprised of newly delivered sediment that is dry and 924 

unconsolidated.  The outcome of this scenario is that the system progresses from an initial 925 

beach surface with uniform moisture conditions to one with distinct zones of erosion, 926 
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transportation, or deposition, in response to aeolian transport alone and without any changes 927 

other meteorological or tidal conditions that control the moisture state of the beach.  Delgado-928 

Fernandez (2010) and Delgado-Fernandez et al. (2012) describe field measurements consistent 929 

with these trends. 930 

A different scenario is presented in Figure 12, which shows surface moisture conditions 931 

across the beach at the PEI site over an 8-hr interval (see Bauer et al., 2009). In the morning 932 

(0850 h), the upper beach was relatively wide and dry, with moisture contents ranging from 2-933 

4% at the top of the beach, 4-6 % in the mid-beach, and saturated conditions in the foreshore 934 

zone from wave run-up.  Moisture contents over the beach decreased slightly as the sun rose 935 

then increased with increasing wind speed and spray from wave breaking. As described below, 936 

because of drying of the surface layer by wind, low transport activity occurred occasionally 937 

even from areas that had 6% moisture or greater as a result of a relatively wide fetch zone. 938 

During the day, wind speed increased progressively and, by 1000 h, sand transport was 939 

active across the entire beach except on the lower foreshore.  Wind direction also shifted from 940 

essentially alongshore in the early morning to obliquely onshore by late morning. Despite a 941 

relatively narrow beach (< 20 m wide at 1200 h), sand transport across the upper beach 942 

remained active because of the oblique angle of wind approach, creating an effective fetch 943 

length > 80 m.  By 1450 h, a combination of enhanced wave set-up, run-up, and rising tide 944 

caused the lower half the beach to become saturated and, by 1645 h, almost the entire beach 945 

except a 5-m strip in front of the foredune was either totally or periodically inundated.  So, 946 

even though the wind field was competent to transport sediment, aeolian activity was inhibited 947 
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by excess surface moisture across most of the beach. These types of complex interactions on 948 

beach-dune systems that involve changes in fetch distance that result from the interaction of 949 

wind angle, wind speed, wave set-up, tidal excursions, and rainfall, and, in turn, they can have 950 

significant implications for modelling sand supply to the foredune over a period of months to 951 

years (see section 5.2.3) 952 

Figure 12:  Surface moisture contents across the beach at the PEI study site from the foredune 953 
toe (baseline origin) to lower foreshore over an 8-hr interval during which wind speeds 954 
increased above transport threshold by 1000h and wind direction shifted from alongshore to 955 
obliquely onshore by late morning. 956 

 957 

4.2.4. Exploring wind unsteadiness, transport response, and intermittency 958 

Natural winds tend to be unsteady rather than constant, adding another level of 959 

complexity to sediment transport processes at the plot scale.  Rather than a constant state of 960 

maximum flux, there is a semi-continuous state of disequilibrium between the time-varying 961 

nature of the wind and the phase-lagged response of the saltation system (Butterfield, 1991, 962 

Spies et al., 2000).  This disequilibrium is most pronounced when wind speed fluctuates above 963 

and below the entrainment threshold, leading to discontinuous and constantly varying rates of 964 

sand transport.  Stout and Zobeck (1997) proposed an ‘intermittency' parameter that 965 
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characterizes the degree of transport continuity as a function of the number of data points in a 966 

measurement period during which active transport occurs, expressed as a fraction of the total 967 

number of data points in the period. A time series with continuous transport, during which 968 

wind speed is consistently above the entrainment threshold, will have an intermittency value of 969 

1, whereas a value of 0 indicates no transport.  Davidson-Arnott et al. (2012) recommended 970 

adoption of an 'activity parameter' (AP) rather than 'intermittency parameter' (IP) per Stout and 971 

Zobeck (1997) because a large value for AP (or IP) indicates a very active transport system with 972 

minimal intermittency (taken literally). It should be noted, that while the AP (or IP) is a fairly 973 

simple concept, differences in the sampling effectiveness of different sensors make comparison 974 

of AP values derived between sensors and studies difficult (Baas, 2005; Davidson-Arnott et al. 975 

2009; Barchyn and Hugenholtz, 2010).   976 

Field experiments at the Greenwich Dunes in PEI and elsewhere have shown that the sand 977 

transport rate increases downwind from the limit of swash run-up toward the upper beach 978 

(e.g., Nordstrom and Jackson, 1992; Bauer and Davidson-Arnott, 2003; Bauer et al., 2009; 979 

Delgado-Fernandez, 2010; De Vries et al., 2014). A pattern of exponential increase in sand 980 

transport rate with downwind distance is often evident in time-averaged measurements along 981 

transects over beaches using depth-integrating traps (e.g., Davidson-Arnott and Law, 1990; 982 

Davidson-Arnott et al., 2008).  Consistent with the fetch effect, this suggests that there is an 983 

increase in transport toward the saturated flux condition somewhere on the upper beach. 984 

However, observations also indicate that there can be considerable variation across the beach-985 

dune profile, with some locations showing semi-continuous transport while others show 986 
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significant transport intermittency. This suggests that the increase in the time-averaged 987 

transport rate at different positions across the beach-dune profile reflects both an increase in 988 

the instantaneous transport rate (larger flux peaks) and an increase in the proportion of time 989 

that transport occurs (Davidson–Arnott and Bauer, 2009).   990 

There is also a positively reinforcing interaction between the fetch effect and the spatial 991 

pattern of surface moisture that leads to an increase in overall sand transport rate downwind 992 

toward the foredune. Figure 13 is a conceptual schematic of expected transport variation and 993 

AP values across a beach-dune profile for an obliquely onshore wind, based on observations at 994 

the PEI site.  Sand transport on the beach foreshore (BF) is very intermittent, producing small 995 

AP values and small total transport (qs). Toward the beach backshore (BB), the effects of the 996 

saltation cascade and decreasing moisture content produce an increase in activity and total 997 

transport. Behind the beach is a near vertical scarp that, coupled with the presence of 998 

vegetation, prevents most sand transported across the beach from reaching the foredune.  As a 999 

consequence, both AP and qs are very small at the dune toe and lower stoss slope (DS). Near 1000 

the foredune crest (DC), sand is entrained from the upper stoss slope reflecting both small 1001 

values for surface moisture and significant wind speed up towards the crest due to flow 1002 

compression.  This results in nearly continuous transport (large AP) at the crest but smaller 1003 

values of sand transport in comparison to the back-beach. 1004 

1005 
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Figure 13:  Conceptual model of expected transport variation (qs) and activity (AP) across a 1006 
beach-dune profile at beach foreshore (BF), back beach (BB), dune slope (DS) and dune crest 1007 
(DC) locations for an obliquely onshore wind, based on our field experiments at the Greenwich 1008 
Dunes. 1009 

 1010 

The consequence of these spatial-temporal controls on aeolian sand transport across the 1011 

beach-dune profile (including fetch length, moisture interactions, vegetation, and topographic 1012 

effects) is that there is often very poor correspondence between quasi-instantaneous (i.e., 1 Hz) 1013 

wind speed and sand transport at any given location (e.g., Davidson-Arnott et al., 2008; 1014 

Davidson-Arnott and Bauer, 2009).  Indeed, regressions between transport flux and the cube of 1015 

wind speed often have very small R2 values, suggesting poor explanatory power (see example 1016 

below in Fig. 15).  The relationship usually improves with longer averaging intervals, which is 1017 
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consistent with the observation of Namikas et al. (2003) regarding u*.  Stout and Zobeck (1997) 1018 

sought to use the observed fluctuations in wind speed and sand transport to derive a ‘time 1019 

fraction equivalent’ threshold wind speed. However, measurements at the PEI site by Davidson-1020 

Arnott et al. (2005; 2008) and Davidson-Arnott and Bauer (2009) as well as others (e.g., Wiggs 1021 

et al., 2004a, b) have shown that sand transport can occur when quasi-instantaneous wind 1022 

measurements are below the calculated threshold of motion, and vice versa.  In part, this is 1023 

explained by the phase-lagged response of saltation to changes in wind speed (Spies et al., 1024 

2002), but there are also spatial dimensions involving the delivery of saltating sediments to a 1025 

sensor location from upwind sources that have differing surface controls and wind patterns.   1026 

4.2.5. New observations of vertical sediment flux variations and transport events 1027 

(flurries) 1028 

Aeolian sand transport is a near-surface phenomenon in that saltation layers are of limited 1029 

vertical extent.  The bulk of transport occurs in a very thin layer immediately above the surface 1030 

by grains moving in saltation (saltons) and as surface creep (reptons). The grain concentration 1031 

in a given volume of air decreases with increasing distance from the surface in a non-linear 1032 

manner, as does the transport rate.  Usually an exponential-decay function is used to describe 1033 

vertical profiles of sand transport (Ellis et al., 2011; Rotnicka, 2013; Bauer and Davidson-Arnott, 1034 

2014).  Energetic saltons that rise higher into the air column tend to have larger particle speeds 1035 

than low-energy saltons that are constrained to a near-surface layer and, therefore, the 1036 

concentration profile and the flux profile are not ordinarily interchangeable unless information 1037 

is available on the particle speed profile.  Another source of confusion arises from the use of 1038 



 

 

56 

three different transport quantities (mass, volume, particle count) to represent the vertical 1039 

profile. These are, in theory, interchangeable but in practice there can be insurmountable 1040 

challenges and uncertainty around grain size distributions, particle shapes, and mineral 1041 

densities. There remains considerable debate in the literature regarding whether the vertical 1042 

profile of sediment flux is smoothly continuous or layered (e.g., Butterfield, 1999; Dong et al., 1043 

2006; 2011; Farrell et al., 2012) and how the profile should be parameterized (e.g., Martin et 1044 

al., 2013; Bauer and Davidson-Arnott, 2014). 1045 

Insight into the nature of vertical mass flux profiles across beach-dune systems was 1046 

facilitated with the adoption of the segmented sand trap in field studies (e.g., Williams, 1964; 1047 

Rasmussen et al., 1989; Rasmussen and Mikkelson, 1998; Sherman et al., 1994; 2014; Namikas, 1048 

2003).   The cumbersome nature of these first-generation traps was eliminated by the 1049 

development of smaller and more sophisticated laser particle counters (LPCs) and acoustic 1050 

sensors, which could be stacked vertically.  Some key advantages of the LPCs used in the PEI 1051 

experiments are that they are commercially available, relatively affordable, and manufactured 1052 

to high technical standards.  This implies that the results from one unit are precisely 1053 

reproducible by another unit, eliminating the need for extensive cross-calibration (cf. Baas, 1054 

2004 in regards to Safire-style piezoelectric probes).  As with any field instrument, LPCs have 1055 

certain shortcomings (see Barchyn et al., 2014 and references therein), the most challenging of 1056 

which is the conversion of particle counts to mass flux.  It is advisable to co-locate a passive, 1057 

segmented trap such as a multi-layered ‘hose trap' (Sherman et al., 2014) to verify results from 1058 

the high-frequency sensors with direct mass flux measurements.   1059 
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In the PEI research, vertical arrays of LPCs yielded novel insights into the nature of aeolian 1060 

saltation at the plot scale. Figure 14 shows time series of: (A) wind speed; (B) wind angle; (C) 1061 

particle flux; and (D) AP during an intense wind event on 4 May 2010 at the PEI field site (from 1062 

Bauer and Davidson-Arnott, 2014).  The wind speed and particle flux traces suggest a crude 1063 

correspondence for which the most intense and variable speed segments align with the 1064 

greatest flux events.  However, a simple regression analysis using the 1 Hz data (Fig. 15) reveals 1065 

that the R2 is only 0.33 (P <0.0001), which is typical for raw, high-frequency data that have not 1066 

been averaged. There are periods near the beginning of the time series when transport was not 1067 

very active and a large number of intervals that had no transport whatsoever.  Figure 14D 1068 

shows APs for different layers in the vertical flux profile calculated over 15-minute 1069 

intervals.  The first (red) bar in each interval shows AP for the lowermost LPC (0.014 m), and 1070 

each bar progressively declining to the right shows LPCs higher in the profile (up to 0.472 m). 1071 

The lowermost LPC in the first interval had an AP of only 0.37 followed by 0.75 for the second 1072 

interval, and 0.99 for the third interval.  All subsequent intervals had APs in excess of 0.91 for 1073 

the lowermost LPC (in most cases it was 0.99 or 1.00), indicating a very energetic transport 1074 

system over a prolonged period.  Of particular interest is the substantial difference in the 1075 

nature of the vertical flux profiles before 1545 h relative to those afterward.  In the earlier 1076 

intervals, there was a rapid reduction in AP above the lowermost LPC with values typically < 0.2, 1077 

which means that the majority of particle flux was contained in a near-surface layer of 1078 

approximately 0.05 m height.  In contrast, after 1545 h when the total transport rate increased, 1079 

the AP of the mid-level LPCs was typically > 0.2 and often as large as 0.7, which indicates that 1080 
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there were significantly more energetic saltons higher in the profile. The uppermost LPC (at 1081 

0.472 m) had APs between 0.05 and 0.15, whereas in the earlier period there were very few 1082 

saltons recorded at this height. A detailed assessment of these flux profiles was undertaken by 1083 

Bauer and Davidson-Arnott (2014), wherein it was demonstrated that the geometry of the 1084 

vertical flux profiles (shape, slope) depended on the event-like nature of the sand transport 1085 

time series.  Specifically, during intervals when transport was highly intermittent (small AP), 1086 

there were fewer significant transport events (referred to as sediment 'flurries') interspersed 1087 

between longer periods of quiescence.  In addition, these flurries tended to have shorter life-1088 

spans (several seconds), which means that the saltation system rarely achieved the equilibrium 1089 

(saturated) transport state.   Thus, there are intricate linkages between wind unsteadiness, 1090 

transport intermittency, and the geometry of the vertical flux profile and these linkages are 1091 

further complicated by topographic position and vegetation characteristics over the beach-1092 

dune profile. 1093 

1094 
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Figure 14: Time series of: (A) wind speed; (B) wind approach angle; (C) particle flux; and (D) 1095 
Activity Parameter (AP, a measure of transport intermittency) recorded at 1 Hz for a three-hour 1096 
measurement period on the foredune crest on 4 May 2010.  Wind speed and direction are from 1097 
the 3D sonic at 0.2 m above the bed adjacent to the vertical array of LPCs.  Smoothed trend 1098 
lines are 5-minute moving averages.  Particle flux is the vertically-integrated instantaneous (1 1099 
Hz) count summed over six LCPs in the vertical array (left-hand scale).  Upper (grey-shaded) 1100 
panels show 15-minute mean counts (right-hand scale). Every 15-minute segment has six 1101 
vertical bars that indicates AP for each of the six sensors in the vertical array (left-most bar is 1102 
the lowest LPC and right-most bar is the highest LPC in the array).  1103 
 1104 

 1105 

 1106 

1107 
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Figure 15:  Regression of wind speed against particle flux (data in panels A and C, respectively, 1108 
in Fig. 14) during an intense wind event on 4 May 2010 at the PEI field site. 1109 

 1110 

4.2.6. Observations of flux divergence and spatial-temporal patterns of erosion and 1111 

deposition 1112 

The introduction and use of relatively affordable, fast-response sediment transport sensors 1113 

in aeolian geomorphology has facilitated the deployment of dense arrays of instruments that 1114 

enable the characterization of spatial-temporal patterns of transport rate across an entire 1115 

beach-dune profile. Not only has this provided insight into the vertical structure of the saltation 1116 

layer, as described above, but also into the potential correlation between fundamental scales of 1117 

fluid events (i.e., coherent flow structures) and transport events such as aeolian streamers 1118 

(Baas and Sherman, 2005; Bauer et al., 2013) or ‘flurries’ (Bauer and Davidson-Arnott, 2014).   1119 

Initially, the objective of horizontal arrays of transport sensors was to quantify the spatial 1120 

variability in transport rate relative to predictions from equilibrium models.  Ellis et al. (2012) 1121 
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noted that there were only five field-based studies addressing this problem at that time, and 1122 

four of them used integrating traps rather than fast-response sensors.  The horizontal spacing 1123 

between traps was usually several metres.  Baas (2003) was the first to utilize a very closely 1124 

spaced horizontal instrument array, which included both fast-response piezo-electric impact 1125 

sensors (e.g., ‘Safires’) and hot-wire anemometry. Collectively, these studies demonstrated that 1126 

there can be considerable spatial variability in transport rate, with the coefficient of variation 1127 

across the array of traps ranging from about 0.1 to 1.0.  In the Baas (2003) study, the sand 1128 

surface in front of the array was meticulously groomed, thereby reducing the likelihood that 1129 

the spatial variation in transport rate was due to surface controls.  Nevertheless, it proved 1130 

impossible to link the scales of the transport events (i.e., streamers) to the scales of fluid 1131 

structures embedded in the wind field in a statistically reliable way.  1132 

One of the more useful applications for data derived from spatial arrays of LPCs is to derive 1133 

the sediment flux divergence, ∇ ∙ qs, which is the spatial gradient (d/dx, d/dy, d/dz) in sediment 1134 

volume flux (qs). The flux divergence is used in a simplified version of the sediment 1135 

conservation relation referred to as the Exner equation (Paola and Voller, 2005), 1136 

∂h

∂t
=  −

1

(1−p)
  ∇ ∙ qs                   (1) 1137 

where h is elevation of the bed, t is time, and p is sediment porosity. Figure 16 shows the cross-1138 

beach pattern of mean wind speed and mean sediment transport (time averaged flux and 1139 

transport intensity) at four trap locations oriented along prevailing streamlines during an 1140 

obliquely onshore wind event at the Greenwich Dunes site on 11 October 2004.  Estimates of 1141 

sediment transport were from integrating traps as well as co-located Safire sensors and both 1142 
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methods showed the same trend in transport.  The rate of sand transport increased from a 1143 

minimum at the foreshore, where conditions were extremely wet and fetch-limited, to a 1144 

maximum on the upper beach, where conditions were dry and closer to equilibrium.  An 1145 

unexpected, but recurring decline in transport rate toward the dune toe was also measured, 1146 

which is explained by the downstream reduction in wind speed associated with the vertical 1147 

growth of the boundary layer, and flow stagnation imposed by the dune, thereby yielding a 1148 

concomitant decrease in near-surface shear stress (Bauer et al., 2009; Walker and Hesp, 2013; 1149 

Hesp et al. 2015).  The flux divergence between neighboring trap locations suggests that there 1150 

would be net erosion from the foreshore and across most of the beach, which is required to 1151 

drive the increase in saltation flux in the downwind direction. However, the decrease in 1152 

sediment flux between the last two stations indicates that this is a zone of deposition, which is 1153 

typically observed during onshore transport events across beaches.   1154 

Bauer et al. (2015) demonstrated that a similar pattern of sand accumulation at the toe of 1155 

the dune occurs during offshore wind events because of eddy recirculation over the seaward 1156 

(lee) slope of the foredune.  A methodology for isolating the cross-shore sediment flux from the 1157 

total sediment flux using the wind vectors was proposed.  These patterns of flux divergence 1158 

over beaches are critical to infilling wave-cut scarps at the dune toe and to rebuilding dune 1159 

ramps that are essential to facilitating sand transport pathways onto the stoss slope of the 1160 

foredune and toward the crest. 1161 

1162 
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Figure 16:  Patterns of mean wind speed, mean sediment transport rate derived from sand 1163 
traps (squares), and transport intensity measured from safire sand transport probes (circles) at 1164 
several trap locations from the foreshore to dune toe during an obliquely onshore wind event 1165 
at the Greenwich Dunes, PEI site on 11 October 2004.  Normalized fetch distance for each trap 1166 
(aligned into local flow streamlines) is provided on the x-axis. 1167 

 1168 

The complexity of spatial-temporal patterns of erosion and deposition across beach-dune 1169 

systems during single events is becoming widely appreciated and increasingly quantified, yet 1170 

the linkages between plot scale investigations and landform scale perspectives remain more 1171 

challenging.  Logistically, it is not yet feasible to conduct experiments at the intensity of the plot 1172 

scale with continuous high-frequency monitoring over periods of years.  Nor is it reasonable to 1173 

maintain high-density instrument deployments over very large areas because of financial 1174 

constraints.  As a consequence, there can be substantial data gaps during periods in which 1175 

significant geomorphic change may occur in locations where we did not (or were unable to) 1176 

monitor.  Thus, plot scale studies provide only a limited vignette within the broader frequency-1177 

magnitude-effectiveness regime that governs dune morphodynamics, and yet it is the broader 1178 

landscape scale perspective that is of greater concern to coastal resource management. The 1179 
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next section explores research at the landform scale that attempts to bridge the divide 1180 

between the plot scale and the landform scale (Table 1). 1181 

 1182 

5. Landform scale 1183 

The objectives of research at the landform scale in the PEI study were motivated by the 1184 

need to make observations and to obtain data that provide insights into which processes at the 1185 

plot scale may be most relevant for understanding and managing issues related to foredune 1186 

morphodynamics in partnership with Parks Canada Agency (e.g., dune evolution, dune 1187 

migration, coastal erosion). At the landform scale (Table 1), beach-dune sediment budgets and 1188 

foredune growth over months to years are controlled initially by the volume of sand on the 1189 

beach that is available to be transported to the foredune by aeolian processes and/or the 1190 

propensity for sediment to be eroded from the upper beach and foredune by high-water 1191 

events.  1192 

Much effort has gone into developing predictive models based on standard deterministic 1193 

equations used in plot scale studies (e.g., Hunter et al., 1983; Kroon and Hoekstra, 1990; Wahid, 1194 

2008). The approach employed in the PEI research at the landform scale is similarly 1195 

‘reductionist’ (Bauer and Sherman, 1999) as it splits the problem of predicting aeolian transport 1196 

into smaller and smaller components with the intent of scaling back up. Over time, it has 1197 

certainly offered insights into the relationships between aeolian sediment transport and a 1198 

range of controlling variables, but it has also highlighted other non-trivial issues such as how to 1199 

combine multiple supply-limiting factors, or to upscale findings from plot scale studies to the 1200 
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landform scale. Ultimately, a main focus of research at the landform scale is to predict (model) 1201 

sand delivery from the beach to the foredune, and then to examine the broader processes 1202 

involved in beach-dune interaction as controls on foredune evolution. 1203 

5.1 Modeling sediment delivery to coastal dunes 1204 

5.1.1 Classic approaches to modelling long-term aeolian sand drift  1205 

The most widely used approach for predicting aeolian sand supply and resulting dune form 1206 

is the 'Fryberger method' (Fryberger and Dean, 1979), which uses the Lettau and Lettau (1977) 1207 

equation to calculate aeolian sand transport (drift) at an annual scale. The Fryberger method 1208 

was applied initially to desert dunes (e.g., Fryberger, 1980; Carson and Mclean, 1986; Wang et 1209 

al., 2002) but has also been adopted for coastal dunes (e.g., Chapman 1990; Wal and McManus, 1210 

1993; Davidson-Arnott and Law, 1996; Hesp and Hyde, 1996; Blumberg and Greeley, 1996, 1211 

Walker and Barrie, 2006; Miot da Silva and Hesp, 2010). The wind speed at 10 m drives ‘drift 1212 

potentials’ (DP) in compass directional classes to express total potential sand drift and resultant 1213 

drift potential (RDP) associated with the wind regime in a particular area. In turn, these 1214 

quantities can be related to dune size, shape, and mobility using statistical expressions.  The 1215 

method is relatively simple and only requires wind data from standard meteorological stations. 1216 

Details of the method and discussion of procedural limitations, including inaccuracies resulting 1217 

from how data are converted (e.g., units as knots vs. m s-1, Bullard, 1997) and/or categorized 1218 

during the calculations to introduce ‘frequency bias’ (Pearce and Walker, 2005), are provided 1219 

elsewhere.  1220 
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The main limitation of the Fryberger method, especially in vegetated coastal foredune 1221 

settings, is that it does not account for key supply-limiting factors, such as surface moisture or 1222 

fetch effects (Nickling and Davidson-Arnott, 1990; Bauer and Davidson-Arnott, 2003), transport 1223 

–limiting factors such as vegetation or beach wrack, or near-surface secondary flow effects such 1224 

as topographic steering. As a result, measured transport and deposition is typically much less 1225 

than predicted by the Fryberger method (e.g., Hunter et al., 1983; Sarre, 1989; Chapman, 1990; 1226 

Davidson-Arnott and Law, 1996; Hesp and Hyde, 1996). 1227 

5.1.2 New efforts to assess the regime of aeolian transport events in beach-dune systems 1228 

Recognizing the limitations of the Fryberger approach to predicting sand supply from the 1229 

beach to the foredune, Delgado-Fernandez et al. (2009; 2012; 2013a) developed a monitoring 1230 

system that simultaneously measured wind velocity (hourly), sediment transport, and some key 1231 

supply-limiting factors including surficial moisture content (see Darke et al., 2009) and beach 1232 

width (cf. Lynch et al., 2006). Sediment transport was measured using several complementary 1233 

methods, including piezoelectric (‘Safire’ style) saltation sensors and erosion-deposition pins 1234 

permanently deployed from the upper beach toward the crest, bedframe volumetric surveys, 1235 

and visual interpretation of aeolian transport conditions from fixed-mount camera imagery. The 1236 

resulting data set permitted assessment of both the magnitude and frequency of wind events 1237 

and associated sand transport events, as well as the development and testing of a modelling 1238 

approach to predict sand supply to the foredune that accounts for supply-limited conditions 1239 

operating at seasonal time scales (Delgado-Fernandez and Davidson-Arnott, 2011). 1240 
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To develop models capable of calculating sand supply to a foredune and, in turn, to better 1241 

predict foredune evolution at the landform scale, it is important to evaluate the relative 1242 

significance of event frequency, magnitude, and effectiveness following the concepts described 1243 

in Wolman and Miller (1960) and Wolman and Gerson (1978)(see section 2). An effective wind 1244 

event is defined as a period during which wind speed exceeds the threshold of motion for dry 1245 

sand for more than two hours (based on an hourly photo acquisition rate), thus providing the 1246 

potential for significant transport to occur.  Additional supply-limiting factors to consider are 1247 

the moisture state of the beach sand, wind approach angle, and available fetch distance, among 1248 

others.  Ultimately, the potential hourly sand transport rate (Q) can be converted into a 1249 

potential hourly sand delivery into the dune based on the cosine function (Davidson-Arnott and 1250 

Law, 1990; Bauer and Davidson-Arnott, 2003): 1251 

Qn =  Q cos α       (2) 1252 

where α is the angle of the wind to shore perpendicular and Qn is the hourly average sand 1253 

transport into the foredune per metre alongshore (kg h-1 m-1). Equation 2 can be summed for 1254 

each hour to give the total potential transport for the event.  Note that a transport event does 1255 

not necessarily coincide with the duration of the wind event because of the threshold 1256 

condition, which defines when sand transport is active.  As such, transport events may occupy 1257 

all or only a portion of an associated wind event and some wind events may have no transport 1258 

associated with them at all.   1259 

Delgado-Fernandez and Davidson-Arnott (2011) examined a total of 184 wind events 1260 

during a 9-month period from 1 September 2007 to 31 May 2008. Most of these events 1261 
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(95/184) had mean wind speeds of < 8 m s-1 and, therefore, were of insufficient strength to 1262 

yield transport (Figure 17).  Only about 25% of the events had wind speeds in excess of 12 m s-1 1263 

and of sufficient duration (> 12 hrs) to yield significant sediment transport.  1264 

Figure 17:  Wind event categorization according to wind speed magnitude and storm duration 1265 
(adapted from Delgado-Fernandez and Davidson-Arnott, 2011).  In general, low magnitude 1266 
events were more frequent and of shorter duration than large magnitude events, which were 1267 
infrequent and of longer duration. 1268 

 1269 

The relative magnitude of each wind storm (Qm%) as a potential sediment transporting 1270 

event was calculated based on hourly wind transport rates  and event duration, and expressed 1271 

as percentage of the total amount of sediment transport predicted for the study period.  An 1272 

expression proposed by Wolman and Miller (1960) was adapted for this purpose: 1273 

𝑄𝑚% =
𝑄𝑖 .  𝐹

𝑄𝑡𝑜𝑡
 . 100      (3) 1274 

where Qi is the sediment transport during a given event predicted by summing the potential 1275 

transport for each hour (per Delgado-Fernandez and Davidson-Arnott, 2011), F is the frequency 1276 

of the event, and Qtot is the total sand transport predicted over the study period. Events were 1277 
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grouped into five magnitude classes prior to implementation of Equation 3 to simplify the 1278 

frequency analysis.  Roughly 50% of the potential transport was associated with large 1279 

magnitude events (> 81 x 102 kg m-1), while the smallest events (< 3 x 102 kg m-1) contributed 1280 

only 7.6% to the total potential transport despite accounting for more than 60% of the total 1281 

number of events (Fig. 18A).  1282 

Large magnitude wind events occurred mostly during the late fall and winter months. 1283 

Events with an onshore component accounted for about half of the number of events but 1284 

about 71% of the total potential transport. However, when the potential transport is modified 1285 

by the cosine function (Eq. 2), the net potential transport (Qn) into the dune is about 41% of the 1286 

total transport predicted for all events (Fig. 18B). Despite the overall reduction in the number of 1287 

events with only onshore conditions and the magnitude of predicted transport for those events, 1288 

the percentage distributions associated with each category were very similar to the total 1289 

population of all wind events (Fig. 18A). Infrequent, large magnitude wind events were still 1290 

concentrated during the late fall and winter months and were responsible for approximately 1291 

50% of potential sediment input to the dunes (as depicted in Figs. 2c, d).  1292 

Many of the wind events with very large transport potential (i.e., with extreme wind 1293 

speeds) actually produced less (or no) total transport compared to more moderate events (Fig. 1294 

18). The influences of one or more supply-limiting controls, such as fetch, wind angle, surface 1295 

moisture, storm surge, wave runup, tide level, and the presence of snow and ice during the 1296 

winter months (January through March) are critical in determining whether aeolian transport is 1297 

active or not and, thereby, effective in moving sediment into the foredune.  The wind vector is 1298 
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but one of many important variables to consider at this scale, which is a much different result 1299 

than that obtained using the Fryberger method in the absence of appropriate local controls on 1300 

the transport process. 1301 

Figure 18C shows that three transport events were responsible for the majority of sand 1302 

delivery to the foredune over the 9-month observation period.  The largest amount of transport 1303 

occurred during an event that lasted 90 hours (long duration) with an average wind speed of 1304 

12.5 m s-1 (moderate to low magnitude).  The other two transport events occurred with average 1305 

wind speeds of 8.2 and 9.2 m s-1 (low magnitude) and lasted 32 and 54 h (long duration), 1306 

respectively.  Active transport during these events was both time limited (i.e., only observed 1307 

during a portion of the wind event) and magnitude limited (i.e., observed transport was less 1308 

than predicted). Despite fetch-restricted and moisture-limiting conditions, these three events 1309 

delivered 75% of the total amount of sand to the dune during the study period. The remaining 1310 

25% was delivered during 24 lesser transport events. Ten of the strongest wind events, which 1311 

accounted for 45% of the total predicted sediment input to the dunes, produced no significant 1312 

transport at all (Delgado-Fernandez and Davidson-Arnott, 2011).  This study shows that 1313 

although transport-competent winds may be frequent, only a sub-set of these events may be 1314 

effective in transporting sediment toward the foredune given the complex suite of supply-1315 

limiting factors and their seasonal variations. 1316 

1317 
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Figure 18: (A) Frequency distribution of potential sediment transport events for the 9-month 1318 
study period.  A total of 15 large or very large magnitude wind events during winter months 1319 
were associated with over 50% of the total potential sand transport. (B) Frequency distribution 1320 
of potential sand transport events with onshore flow direction and modified by the cosine 1321 
function, which are believed to be the major contributors to foredune maintenance and 1322 
growth. Large magnitude events still accounted for approximately 50% of potential sediment 1323 
input to the dunes. (C) Observed sand transport towards the foredune measured using a 1324 
combination of techniques (described in Delgado-Fernandez and Davidson-Arnott, 2011). Only 1325 
one of the original large magnitude wind events (in November) actually produced strong 1326 
transport. Two additional medium transport events occurred in the spring. Together, these 1327 
three events accounted for approximately 75% of the total sand delivered to the dunes. Values 1328 
outside the pie charts indicate the percent of potential transport and the number (in brackets) 1329 
of events.  1330 
 1331 

 1332 

 1333 
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5.1.3 Advances in modelling the effect of supply-limited conditions on predicted sand 1334 

transport to foredunes 1335 

As discussed above, supply limitations play a key role in determining the actual sediment 1336 

transport associated with a wind event in coastal environments. This highlights a need to model 1337 

supply limitations explicitly when predicting sediment supply to foredunes over periods of 1338 

weeks to years. Delgado-Fernandez (2011) used the same dataset to test a supply-limited 1339 

modelling approach, which involved filtering the time series to remove all periods when: i) wind 1340 

speed was below the threshold for dry sand, ii) when winds were offshore, and iii) during 1341 

periods of high surface moisture or coverage by snow and/or ice. Using the theoretical 1342 

framework for assessing the impact of the fetch effect (per Bauer and Davidson-Arnott, 2003, 1343 

sections 4.2.2 and 4.2.3) the critical fetch length, Fc, was first determined for ‘dry’ conditions, 1344 

where the surface moisture content was <2%, and then for situations of greater moisture 1345 

content, between 4 and 10%, to allow for the lengthening of Fc with increasing surface 1346 

moisture. When Fc > F, the effects of supply limitation can be modeled by any of the 1347 

expressions presented in Bauer and Davidson-Arnott (2003), whereas when Fc < F, transport 1348 

rate is considered to be at its maximum potential.  1349 

An example of the model output for a 90-hour storm in November 2007 is shown in Figure 1350 

19.  Sediment input to the foredune based on wind speed and direction alone was over-1351 

predicted at Qn = 9,470 kg m-1 for this event, with maximum transport rate coinciding with the 1352 

peak of strong onshore winds (Fig. 19A,E).  Large moisture content and short fetch distances 1353 

(Fig. 19C,D) imposed a constraint on sediment transport at around 50 hrs into the event and, 1354 
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when these factors were included in the model (Fig. 19G), the predictions improved 1355 

considerably.  The initial filtering approach reduced the total predicted input to the foredune 1356 

from approximately 86,000 to 36,000 kg m-1.  The value was further reduced to about 19,000 kg 1357 

m-1 once the supply-limiting effects of fetch and moisture were applied. Values for deposition 1358 

measured by erosion-deposition pins and bedframe stations over the same period ranged from 1359 

about 4,000 to 15,000 kg m-1.  The uncertainty in measured deposition reflects the difficulty in 1360 

accounting for the effects of wave erosion and some landward sand transfers (losses) beyond 1361 

the foredune, although it is evident that the filtered estimates from the model are much closer 1362 

to the measurements than to original, unfiltered predicted values.   1363 

These modelling results at the landform scale, combined with the plot-scale investigations 1364 

described above, highlight the need to include supply-limiting factors when predicting sand 1365 

transport from the beach to the foredune.  The modeling approach reviewed here considers the 1366 

effect of increasing moisture content on lengthening the critical fetch (Fc) necessary to achieve 1367 

saturated transport, however, it is also possible to model this effect as a limitation on sand 1368 

supply from the surface directly (cf., de Vries et al., 2014).  Other studies have attempted to 1369 

scale up sediment supply to coastal dunes and model their evolution by simply calculating 1370 

subaerial barrier volumes and comparing these to foredune volumetric change measurements 1371 

(e.g., Miot da Silva and Hesp, 2010), or by using computational approaches that solve simplified 1372 

aerodynamics and sand transport relations (e.g., Luna et al., 2011; Duran and Moore, 2014) or 1373 

cellular automata approaches (e.g., Baas, 2002; Baas and Neild, 2007; 2010; Zhang et al., 2015; 1374 

Keijsers et al., 2016). The utility of these modelling efforts is limited, however, by fundamental 1375 
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assumptions of saturated flux and the effectiveness of onshore winds over seasons and years. 1376 

While incorporation of complexities such as moisture and vegetation may improve some 1377 

simulations (e.g., Luna et al., 2011, Zhang et al., 2015; Keijsers et al., 2016), realistic 1378 

parameterization of vegetation growth (e.g., seasonal phenology, gradual succession) and 1379 

related roughness effects and sand trapping efficiency are generally lacking. In addition, there 1380 

are limited field measurements to inform and validate such models, which increases the risk of 1381 

using expedient oversimplifications (Barchyn et al., 2014). 1382 

Finally, sand input from the beach is just one component of the foredune sediment budget. 1383 

Controls on dune evolution at the landscape scale must also consider the broader framework of 1384 

beach-dune interaction, which includes wave erosion during storms and berm construction and 1385 

the onshore welding of nearshore sand bars to the foreshore, as discussed below. 1386 

1387 
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Figure 19: Modelling output for a 90-hr storm at the Greenwich Dunes, PEI site starting on 9 1388 
November 2007.  A) 2-min records of wind speed, U, and direction, α; B) saltation intensity and 1389 
tidal elevation; C) beach width, W; D) fetch distance, F, determined by beach width and wind 1390 
direction, and classified (optically derived) moisture values, μ; E) hourly potential transport 1391 
based on wind speed and direction, Qn; F) output of the filtering step, Qfiltering; G) calculated 1392 
transport over isolated potential transport periods, QPTP, including fetch distance and moisture. 1393 
Transport in E–F expressed in kg m−1. Modified from Delgado-Fernandez (2011: Fig. 10). 1394 

 1395 
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5.2. Beach-dune interaction 1396 

5.2.1. Classic understanding of sand supply and coastal dune evolution 1397 

While cycles of foredune erosion during extreme storms and subsequent rebuilding by 1398 

aeolian processes over long inter-storm periods have been recognized for decades, 1399 

incorporation of this understanding into a holistic conceptual framework stems from the 1400 

proceedings of a symposium on beach-dune interaction edited by Psuty (1988).   Studies of 1401 

beach-dune interaction typically employed either one or some combination of repeated 1402 

topographic surveys, mapping from aerial photography, stratigraphic analysis from trenches or 1403 

cores, or interpretation of shallow seismic logs (e.g., Olson, 1958; Bigarella, 1979; Thom and 1404 

Hall, 1991; Gares and Nordstrom, 1995; Bristow et al., 2000; Hesp, 2013). In the last two 1405 

decades, the development of Ground Penetrating Radar (GPR) and airborne or terrestrial LiDAR 1406 

has enhanced mapping of landforms in great detail.  In addition, analysis of digital imagery 1407 

using GIS has greatly increased our ability to use both historical aerial photography and modern 1408 

imagery (e.g., Figs. 11, 23) to map landform change at time scales of days to decades.  These 1409 

technologies provide a compelling means to fill the information gap between the plot scale and 1410 

the landform scale.  Nevertheless, a key challenge remains in correlating observed 1411 

morphological changes of foredunes with the key forcing variables.   1412 

At the plot scale, localized erosion and deposition patterns can be understood and crudely 1413 

predicted on the basis of the near-surface wind vector and the contributions of a host of 1414 

supply-limiting factors listed as 'independent' variables in Table 1.  But at the landform scale, all 1415 

of the 'independent' variables at the plot scale become 'dependent' variables and, therefore, 1416 
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the patterns of erosion and deposition that ultimately lead to broad-scale foredune evolution 1417 

are governed by such factors as the nature of shoreline progradation or erosion, the emergence 1418 

or removal of vegetation cover, and seasonal to decadal changes in the morphodynamic state 1419 

of the nearshore system fronting the foredune.  Thus, the detailed nuances of sediment 1420 

transport at the scale of seconds and hours (i.e., the intra-event dynamics of interest at the plot 1421 

scale) become largely irrelevant as attention must shift toward event characterization (i.e., 1422 

kinds of events), inter-event conditions (i.e., processes active between events), and the time-1423 

sequencing of events.  In effect, the focus becomes parameterizing the changing nature of 1424 

geomorphically effective events over time as conditioned by the broader context within which 1425 

beach-dune interaction takes place. 1426 

Events leading to dune erosion and potential overwash are controlled by meteorological 1427 

factors that govern wave generation, storm surge, and aeolian transport (e.g., Kriebel and 1428 

Dean, 1985; Vellinga, 1986; Morton, 2002; Forbes et al., 2004; Thornton et al., 2007; Pye and 1429 

Blott, 2008; Roelvink et al., 2009).  An additional factor is alongshore variations in beach width 1430 

associated with rip current circulation and megacusps (e.g., Komar, 1971; Thornton et al., 1431 

2007), intertidal bar welding (e.g., Aagaard et al., 2004; Anthony et al., 2006) and longshore 1432 

sandwave migration (e.g., Inman, 1987; Davidson-Arnott and Stewart, 1988; Davidson-Arnott 1433 

and Law, 1990; Ruessink and Jeuken, 2002; Davidson-Arnott and van Heyningen, 2003; Houser 1434 

et al, 2008).  These controls operate at time scales of months to years.  1435 
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5.2.2. Assessing annual to decadal beach-dune interaction 1436 

Changes in beach-foredune morphology were quantified at the PEI site using: (i) repeat 1437 

topographic surveys of cross-shore profiles, (ii) detailed bedframe measurements of volumetric 1438 

changes along each transect (per Davidson-Arnott and Law, 1990), and (iii) hourly remotely 1439 

sensed measurement of erosion-deposition pins on the stoss slope of the foredune (see 1440 

Delgado-Fernandez et al., 2009; Ollerhead et al., 2013).  The site was partitioned into 3 distinct 1441 

reaches (see Fig. 1d).  Reach 1 extended W about 2 km from the E boundary of PEI National 1442 

Park and was oriented ~100°-280°. Reach 2 extended about 3 km to the inlet of St. Peters Bay 1443 

and was oriented at 60°-240° and reach 3 is about 1 km long and extends SE into St. Peters Bay. 1444 

Examples of annual topographic profiles are shown in Figure 20 for Lines 5 to 8 in Reach 1445 

2 for the period May 2002 to May 2011. These data illustrate how profile response differs in the 1446 

alongshore direction (E to W) due to variations in the littoral sediment budget fronting the 1447 

beach-dune system.  Sediment accretion is evident on the lee slope for all profiles in Reach 2, 1448 

indicating landward sand transfers, but the pattern of topographic change on the stoss slope 1449 

and back beach is highly variable.  On the eastern margins of Reach 2 (e.g., Line 5), the profile 1450 

was displaced landward over time due to a negative littoral sediment budget.  On the western 1451 

margins where there is a positive littoral budget (e.g., Line 8), accretion occurred on the stoss 1452 

slope of the foredune while the crest remained relatively stationary.  Between Lines 6 and 8, 1453 

there is a transition from a negative to a positive littoral budget and, as a consequence, there 1454 

was relatively little change in the foredune profile at Line 7.   1455 
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During the winter 2008-2009 season, there was a major dune scarping event that 1456 

eroded the toe of the entire foredune along Reaches 1 and 2.  As a result, little sediment moved 1457 

onto the foredune at all four lines over the following year, which illustrates how dune scarping 1458 

and ramp rebuilding processes pre-condition the broader dune profile response.  In short, if the 1459 

foredune is scarped, usually during late fall and early winter storms, a dune ramp must re-1460 

establish in order to provide a path for any significant volume of sediment to move up onto the 1461 

upper stoss slope. Figure 20 includes an inset graph that shows time-series (2009-2010) trends 1462 

from erosion-deposition pin lines installed on the E and W sides of Line 7.  The data are mean 1463 

values derived from all pins deployed on each line spanning most of the stoss slope. On the E 1464 

line, there was a period of relatively little change on the stoss slope (Sept – Nov) followed by 1465 

rapid accretion (Nov – Feb) and then no change (Feb – May), whereas on the W line there was 1466 

continuous accretion (Sept – Jan) followed by no change afterward.  Examination of annual 1467 

profiles from 2009 and 2010 shows that this was a period of ramp rebuilding. By mid-November 1468 

2009, the ramp had built sufficiently in front of the E line to permit transport onto the stoss 1469 

slope and sediment accretion occurred on the stoss slope at both lines of pins thereafter. The 1470 

onset of winter terminated the accretion period.  1471 

1472 
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Figure 20: Cross-shore topographic profiles for the period 2002-2011 showing differences in 1473 
foredune evolution at Lines 5-8 in Reach 2 at the study site (see Fig. 1d for general locations). 1474 

 1475 

The patterns illustrated in Figure 20 are also apparent in more detailed bedframe data 1476 

(Fig. 21). At Line 5, no net deposition was recorded on the stoss slope or crest because the 1477 

profile was being displaced landward semi-continuously.  Sediment was transported from the 1478 

beach, across the stoss slope, and onto the lee slope, except when there was no ramp present 1479 

(e.g., 2006-2007). Line 5 data also show that when there is a significant scarping event, as in 1480 

2008-2009, sediment can still move onto the lee slope in association with landward 1481 

displacement of the entire profile. At Line 6 there was also no recorded deposition on the mid-1482 

stoss slope over the seven-year interval.  At Lines 7 and 8, where the littoral sediment budget 1483 

transitions from negative to positive, deposition was recorded on the mid-stoss at both lines in 1484 
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most years, particularly at Line 8 at the W end of Reach 2. Little deposition was recorded on the 1485 

mid and upper stoss slope at Lines 7 and 8 in years like 2003-2004 because sediment was being 1486 

trapped in the incipient foredune though, in subsequent years, sediment was able to move up 1487 

and over the foredune.  Seasonal bedframe data and erosion-deposition pin datasets in 2009-1488 

2010 (not shown) also show that most sediment transport onto the foredune occurs during the 1489 

fall and early winter months.  There is a secondary peak in the late winter to early spring when 1490 

the snow and ice cover disappears and the vegetation cover is dormant and of low density 1491 

(Ollerhead et al., 2013). 1492 

Figure 21:  Stacked bar graphs showing the amount and variability of sediment deposition over 1493 
Lines 5-8 for each year period from 2002-2003 to 2008-2009. Modified from Ollerhead et al. 1494 
(2013: Fig. 7). 1495 

 1496 

The broad picture of beach-dune interaction and evolution that emerges from this 1497 

dataset is one of large inter-annual variability driven by: (i) the magnitude and timing of wind 1498 
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events that yield aeolian transport, (ii) the magnitude and timing of storms that alter the beach 1499 

configuration and potentially scarp the dune toe, (iii) the severity of winter temperature and 1500 

snow cover conditions, (iv) the spatial variability in beach width at the plot scale due to surface 1501 

moisture, wind approach angle, and foreshore accretion/erosion, and (v) landform scale 1502 

variation in the littoral sediment budget.  Similar patterns have been documented for many 1503 

other mid-latitude coasts (e.g., Law and Davidson-Arnott, 1990; Byrne 1997, McKenna Neuman 1504 

1990a, 1990b, 1993; Ruz and Allard, 1994; van Dijk and Law, 1995; 2003; Aagaard et al., 2004; 1505 

Anthony et al., 2006; Pye and Blott, 2008; Yurk et al., 2014).  A specific nuance that became 1506 

evident in the PEI research, however, was the role of foredune scarping and the subsequent 1507 

development of dune ramps in either precluding or facilitating the transfer of sand to the upper 1508 

foredune slope.  Similar observations were made by Christiansen (2003) and Christiansen and 1509 

Davidson-Arnott (2004). Dune scarp and fill processes and ramp building are understood 1510 

conceptually (e.g., Carter et al., 1990), although there are very few field studies of the 1511 

processes involved.  Plot-scale research on alongshore winds and topographic steering (section 1512 

4.1.4) as well as seasonal-interannual topographic profile responses (Ollerhead et al. 2013, 1513 

section 5.2.2) provide some insights. If the foredune is scarped, flow deflection may be 1514 

significantly different near the scarp than for a non-scarped dune. Winds above the scarp may 1515 

be deflected onshore towards the crest while wind flow seaward of the scarp may be deflected 1516 

semi-parallel to the beach during oblique and alongshore winds (Hesp et al. 2013). These wind 1517 

patterns likely result in dune ramp development because of extended fetch distances that 1518 

mobilize sediment on the upper beach, which is deposited near the foredune toe to infill the 1519 
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eroded areas.  Echo dune formation is also common at the base of scarps and is often the first 1520 

stage of scarp fill development (Carter et al., 1990; Christiansen and Davidson-Arnott, 2004). 1521 

Sand deposition in the lee of echo dunes occurs during onshore winds just above sand 1522 

transport threshold and during more oblique winds.  Additionally, slumping or avalanching of 1523 

the scarp face can occur.  All processes lead to infilling of the scarped zone and eventual 1524 

rebuilding of the foredune toe ramp.  Once the ramp is reconstructed, sediment pathways onto 1525 

the stoss slope are re-established. 1526 

A conceptual model based on the beach-dune interactions described above is shown in 1527 

Figure 22 (see also specific intervals in Fig. 21), which illustrates the following associations: (i) 1528 

when the foredune is cliffed and a relatively small ramp is present (CS), very little sediment 1529 

reaches the dune crest or lee slope (e.g., Line 5 2006-07); (ii) where the dune is cliffed and a 1530 

dune ramp extends over a substantial portion of the lower slope (CLS), moderate to large 1531 

amounts of sediment can be delivered to the upper stoss slope, crest and lee slope (e.g., Line 6 1532 

2002-03, 2003-04; Line 8 2005-06, 2006-07); (iii) where there is a continuous, vegetated stoss 1533 

slope but no substantial incipient foredune (S), moderate amounts of sediment reach the upper 1534 

stoss and crest and more limited amounts reach the lee slope (e.g., Line 6 2007-08; Line 7 2002-1535 

03, 2006-07); and (iv) where there is a continuous vegetation cover and a well-developed 1536 

incipient foredune (SI), substantial amounts of sediment are trapped in the incipient dune and 1537 

lower stoss slope, with small to moderate amounts reaching the crest and little if any reaching 1538 

the lee slope (e.g., Line 6 2008-09; Line 7 2007-08, 2008-09; Line 8 2002-03, 2003-04). Further 1539 

details of these responses are described in Ollerhead et al. (2013). 1540 

1541 
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Figure 22: Conceptual diagram of the four characteristic foredune profile forms found at the 1542 
study site. (A) “CS” is a fully cliffed form with stoss slope > 40° that results from high magnitude 1543 
wave or storm surge erosion, whereas (B) “CLS” is a cliffed lower stoss slope form resulting 1544 
from lower magnitude storms. A ramp may or may not be present at any given time. (C) “S” is a 1545 
stoss slope form that has a continuous vegetated slope of < 40° from the dune toe to the crest 1546 
and vegetation may extend onto the upper beach, while (D) “SI” is a stoss slope form that has a 1547 
continuously vegetated slope and that is fronted by a vegetated incipient foredune that is 1548 
capable of trapping significant quantities of aeolian sand transported off the beach. Modified 1549 
from Ollerhead et al. (2013: Fig. 6). 1550 
 1551 

  1552 
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5.2.3. Decadal scale observations of extreme overwash and foredune recovery 1553 

The field surveying observations at the Greenwich Dunes, PEI site span a period of only one 1554 

decade, yet, several major storms occurred during this time and resulted in significant erosion 1555 

of the seaward base of the foredunes.  The effects were often locally constrained, but in the 1556 

winter of 2008-09, the entire shoreline of the study area (and beyond) experienced pronounced 1557 

erosion.  Barrier breaches and washover fans occurred elsewhere along the north shore of PEI, 1558 

but the foredune at Greenwich was not breached.  To place this event into context, 1559 

examination of historical aerial photographs and local newspaper articles was conducted to see 1560 

how often erosive storms had occurred in the past.  This research indicated that foredune 1561 

breaching had occurred historically, with a particularly intense storm accompanied by a very 1562 

high storm surge documented in October 1923 (Mathew et al., 2010).   During this time, the 1563 

entire dune system along the Greenwich peninsula was eroded and overwashed, creating a 1564 

continuous washover terrace that extended up to 600 m inland.  Such inundation overwash is 1565 

the most severe form of overwash (Sallenger, 2000; Morton, 2002; Donelly et al., 2006) and 1566 

signifies an extreme event in the spectrum of event magnitude. Moreover, evidence from 1567 

elsewhere along the north shore of PEI (Simmons, 1982) indicates that this event destroyed the 1568 

foredune over most, if not all, of the region.  Evidence of this event provided an outstanding 1569 

opportunity from which to assess rates of landform recovery (Wolman and Gerson, 1972) in a 1570 

beach-dune system. 1571 

Mathew et al. (2010) analyzed ortho-rectified mosaics of aerial photographs from 1936, 1572 

1953, 1971, and 1997 and produced digital elevation models (DEMs) for each photo year.  1573 
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Figure 23 shows the orthophoto mosaics for each year that were analyzed to assess landscape 1574 

change and Figure 24 shows extracted topographic profiles at profile locations 6 and 8 (see Figs. 1575 

1, 20). In 1936, over a decade after the storm, a wide, unvegetated intertidal zone and beach is 1576 

seen with aeolian sand accumulating at the landward edge of the transgressive dunes. Relief 1577 

landward of the beach along the shoreline was generally <1 m above mean sea level (aMSL). 1578 

Between 1936 and 1953, vegetation established along much of the shoreline and initiated 1579 

foredune development in some locations, although there were still several zones of active 1580 

overwash. It is likely that the slow rate of vegetation establishment in this 20-year period 1581 

reflects almost complete removal of pioneer vegetation by the storm and, thus, the absence of 1582 

a nearby source of seeds or reproductive material to re-colonize the area.  Less severe 1583 

overwash events do not produce such intense 'sterilization' of the substrate (Saunders and 1584 

Davidson-Arnott, 1990; Snyder and Boss, 2002). By 1971, a continuous, broad foredune was 1585 

present along almost all of the shoreline with a relief of 2-6 m aMSL. In 1997, the foredune 1586 

ridge had grown to 6-10 m aMSL and the crest was more continuous and located closer to the 1587 

beach. Thus, while washover healing can take place in less than a decade for relatively small 1588 

events (Cleary and Hosier, 1979), an event of the magnitude of the 1923 storm required more 1589 

than five decades for recovery to a form similar to that found at the site today.   1590 

1591 
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Figure 23:  Historical aerial photographs showing landscape changes at Greenwich Dunes, PEI 1592 
from 1936 to 1997.  Locations of cross-shore profiles 6 and 8 (from Figures 1 and 20) are 1593 
indicated as well as extent of established foredunes (yellow polygons). Cross-shore topography 1594 
along profiles 6 and 8 extracted from the related stereo imagery is shown in Fig. 24.  Modified 1595 
from Mathew et al. (2010: Fig. 4). 1596 
 1597 

1598 
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Figure 24: Cross-shore topographic profiles extracted from stereo aerial photography by 1599 
Mathew et al. (2010) at lines 6 and 8 (see Figs. 1 and 20) from 1953 to 2011 depicting the 1600 
extent of vertical accretion and foredune recovery following the major overwash event that 1601 
occurred prior to 1936. 1602 

 1603 

At both the plot and landform scale, the potential for foredune erosion and rebuilding at 1604 

Greenwich, PEI is highly dependent on the frequency and magnitude of seasonal storm events, 1605 

most of which occur in the fall and early winter months (Forbes et al., 2004). While a very large 1606 

storm surge accompanied by large waves is necessary to produce the inundation overwash of 1607 
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the 1923 storm event, the impacts of smaller, less severe storms are also controlled by factors 1608 

such as surfzone and beach slope and morphology, foredune height and morphology, littoral 1609 

sediment budget, and the time interval between storms (e.g., Houser et al., 2008; Esteves et al., 1610 

2012; Heathfield et al., 2012; Hesp and Smyth, 2016b). The extent and severity of erosion from 1611 

an individual storm cannot be predicted by modeling storm surge elevation and wave height 1612 

alone.  Other factors, such as the presence and effects of dune ramps and incipient dunes, all 1613 

influence the extent of erosion and, subsequently, the rate and nature of dune recovery. There 1614 

are now a number of approaches to modeling dune erosion and overwash from relatively 1615 

simple models based on a few broad beach and water level parameters (e.g., Komar et al., 1616 

1999; Kriebel and Dean, 1993; Larson et al., 2004; Mull and Ruggeiro, 2014) to much more 1617 

computationally complex 2D cross-shore models such as XBeach (Roelvink et al., 2009; Splinter 1618 

and Palmsten, 2012; de Winter et al., 2015) or 3D models such as SWAN offshore and XBeach in 1619 

the nearshore (Dissanayake et al., 2014). Rigorous field-testing of these models, however, 1620 

requires considerable data on morphology before and after the event, and of ongoing 1621 

processes during the storm.  None of these models adequately couple nearshore processes to 1622 

aeolian processes in the true sense of beach-dune interaction. Very recently, Zhang et al. (2015) 1623 

coupled a process-based nearshore model and a cellular automata aeolian model to simulate 1624 

historical foredune change on the Baltic Coast.  Due to the extent and limitations of model 1625 

calibration, however, accurate prediction of future coastline change at scales of years to 1626 

decades remains elusive. 1627 

 1628 
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6. Landscape scale 1629 

In PEI, two controls dominate beach-dune morphodynamics and evolution at the landscape 1630 

scale. First is the regional RSL trend, which has been rising at a rate of about 0.3 m century-1 for 1631 

the past 6,000 years.  Second is the rapid erosion of relatively soft bedrock leading to recession 1632 

rates of 0.3-1.0 m a-1 and high sand supply to the littoral system (Forbes et al., 2004; Webster, 1633 

2012). The focus of the PEI research at the landscape scale was on understanding the effects of 1634 

the ongoing RSL transgression and the influence on the littoral and dune sediment budgets and 1635 

resulting evolution of the beach-dune system. Two particular questions were addressed: 1) 1636 

How do observations of decadal scale dune dynamics align with expected responses per the 1637 

Bruun (1962) model of coastline response to sea-level rise?, and; 2) What is the nature of 1638 

foredune morphological change (i.e., equilibrium shape and size), if any, associated with 1639 

ongoing sea-level transgression? 1640 

6.1 The classic view of the response of coastlines to sea-level rise: the Bruun model 1641 

For decades, much effort has been centred on understanding and predicting the response 1642 

of sandy coastal systems to sea-level rise using the “Bruun Rule” (Bruun, 1962; Schwartz, 1967; 1643 

SCOR Working Group 89, 1991; Mimura and Nobuoka, 1995; List et al., 1997; Zhang et al., 2004; 1644 

Pilkey and Cooper 2004; Rosati et al., 2013), which predicts that a sandy coast will respond to 1645 

progressively rising sea levels by shoreline erosion and recession.  The volume of eroded 1646 

sediment is transported offshore and deposited as a layer with a thickness equal to the rise in 1647 

sea level (Fig. 25). Thus, the sink for sediment is offshore, which implies that the sediment is 1648 

lost to the nearshore system as further sea-level rise forces the wave-base upwards.  In PEI, 1649 
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sea-level rise over the past 6,000 years should have resulted in very large volumes of sand 1650 

deposited in the nearshore. However, it is evident from surveys by Forbes et al. (2004) that the 1651 

shoreface is sediment starved beyond the nearshore bar system.  Furthermore, a huge volume 1652 

of sediment is stored in inlet tidal deltas and in beach and dune deposits on the mainland or on 1653 

barriers.  Thus, the Bruun model appears not to apply to the PEI coastline, and similar 1654 

conclusions have been reached for a handful of other coasts (e.g., Rosati et al., 2013; Aagaard, 1655 

2014). 1656 

6.2 A new perspective on the response of beach-dune systems to sea-level rise: the RD-1657 

A model 1658 

Based on previous work on the dynamics of nearshore bar systems and research on beach-1659 

dune morphological changes in PEI, Davidson-Arnott (2005) proposed a conceptual model (aka 1660 

the RD-A model) of the response of mainland sandy beach and dune systems to sea-level rise 1661 

that envisions onshore migration of sediments in the nearshore and consequent landward and 1662 

upward translation of the beach-dune profile. In the RD-A model, the primary sediment sinks 1663 

are landward of the nearshore, not offshore, and the equilibrium nearshore profile is 1664 

maintained as its spatial position migrates (Fig. 25).  1665 

1666 



 

 

92 

Figure 25: Schematic illustrations of the Bruun (1962) model of beach profile response to rising 1667 
sea level (A) showing erosion of the upper beach and deposition in the nearshore to a thickness 1668 
equivalent to the rise in sea level, and the RD-A model (B) showing erosion and landward 1669 
migration of the nearshore profile and transgression of the beach and foredune under the same 1670 
amount of sea-level rise. Modified from Davidson-Arnott (2005: Figs. 1 and 2). 1671 
 1672 

 1673 
 It is now recognized from various lines of evidence that RSL on sandy coasts is generally 1674 

accompanied by erosion of sand from the outer shoreface and onshore transport resulting in 1675 

the accumulation of large sediment bodies on land and in shallow water. For instance, seismic 1676 

profiling and coring off the East and Gulf coasts of the USA and elsewhere in the world have 1677 

revealed that the Holocene transgression resulted in reworking and onshore transport of 1678 

sediments on the shelf as RSL rose, leading to the formation of ravinement surfaces that persist 1679 
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to the present (e.g., Belknap and Kraft, 1981; Niederoda et al., 1985; Siringan and Anderson, 1680 

1994; Rodriguez et al., 2001; Dillenburg and Hesp, 2009; Goff, 2014; Schwab et al., 2014, Goff et 1681 

al., 2015). This is also supported by recent analysis of shoreline change and profile evolution 1682 

(e.g., Short, 2010; Schwab et al., 2013; Rosati et al., 2013; Houston and Dean, 2014).  1683 

Sediment budget studies based on long-term monitoring and individual field experiments 1684 

at Skallingen, Denmark, have shown that sand is transferred from the lower to upper shoreface 1685 

in response to ongoing sea-level rise (Aagaard et al., 2004; Aagaard and Sorensen, 2012, 2013). 1686 

These empirical studies are supported by numerical modeling of sand transport by wave events 1687 

(Aagaard, 2014) at five different sites.  A simulation of sand transport for one year using the 1688 

model showed net sediment transfers that compared well to transport rates estimated from 1689 

nearshore bar migration and aeolian accretion (Aagaard, 2014). This work provides a 1690 

mechanism through which the landward transfer of sediments, necessary for translation of the 1691 

nearshore profile in equilibrium with sea-level rise, occurs as envisaged by the RD-A model. 1692 

There is also increasing recognition that on gently sloping coasts, landward translation of 1693 

barriers often involves overwash and inlet processes that move large volumes of sediment 1694 

landward (e.g., Dean and Mauremeyer, 1983; Rosati et al., 2013), such as the accretion of 1695 

barriers on the east coast of Australia towards the end of the Holocene transgression (e.g., Roy 1696 

et al., 1994; Hesp and Short, 1999; Cowell et al., 1995, 2003). On mainland dunes, landward 1697 

translation of the foredune occurs by aeolian transport over the dune crest and deposition on 1698 

the lee slope, as our annual surveys and other studies show (Ollerhead et al., 2013; Hesp and 1699 

Walker 2013: Figs. 10 and 11, see also section 5.2.2).  Appreciable amounts of sand may be 1700 
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transported tens of metres landward of the crest during strong wind events, thus providing a 1701 

deposit over which the foredune can subsequently migrate (Arens, 1996; Aagaard et al., 2004; 1702 

Christiansen and Davidson-Arnott, 2004; Hesp et al., 2009, 2013; Petersen et al., 2011; 1703 

Ollerhead et al., 2013).  This is also the mechanism by which landward transgressive dune 1704 

systems can be fed (e.g., Anderson and Walker, 2006).  According to the RD-A model, if the 1705 

sediment budget is relatively neutral (e.g., Line 7), the beach-dune profile will translate 1706 

landward in equilibrium with sea-level rise and the transgression distance, R, associated with 1707 

the rise in sea level can be measured by migration of the dune toe position. In so doing, one 1708 

would need to account for the local nearshore context over shorter time frames, as 1709 

demonstrated by the variable responses observed in Fig. 20 (Line 5 to Line 8).  1710 

The RD-A model is a simple 2-D model that is best applied to specific cases such as confined 1711 

headland-bay beach systems where there are no significant alongshore transfers of sand. On 1712 

most exposed coasts, however, it is necessary to consider the complexities introduced by 1713 

negative or positive littoral sediment budgets and other factors that may influence the 1714 

dynamics of beach-dune interaction locally.  The positive littoral sediment budget at Line 8 1715 

appears to have counter-balanced the landward translation of the profile due to RSL rise for at 1716 

least a decade, while at Line 5, where the sediment budget is negative, ongoing translation of 1717 

the shoreline is clearly taking place (Fig. 20).  Although these associations are apparent when 1718 

examining a decade of topographic profile changes, these trends may be significantly altered 1719 

over periods of centuries.  Thus, at the landscape scale, even a large overwash event such as 1720 
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the storm of 1923 can be viewed simply as part of the ongoing 'normal' processes leading to 1721 

landward translation of the profile (Mathew et al., 2010) according to the RD-A model.  1722 

On shorelines characterized by barriers, tidal inlets, estuaries, and lagoons with large 1723 

accommodation space, the controls on shoreline displacement become highly complex. This 1724 

applies to much of the north coast of PEI, to the east coast of the USA, and to areas such as the 1725 

Wadden Sea in western Europe. In these situations, alongshore transfers and accommodation 1726 

space in lagoons are major controls on coastal evolution and it is increasingly recognized that 1727 

these 3D sediment transfers have to be modeled explicitly in order to understand the 1728 

morphodynamic character of the beach-dune profile and nearshore system (e.g., Stive, 2004; 1729 

Stive et al., 2009; Hinckel et al., 2013; Ranasinghe et al., 2013; Moore et al., 2014). 1730 

Consideration must also be given to other factors that influence alongshore variations in post-1731 

storm dune recovery (e.g., Houser, 2013) such as controls imposed by shallow bedrock outcrops 1732 

on the potential for shoreline transgression.  1733 

1734 
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7. Summary and Conclusions 1735 

7.1 The persistent challenges of scale in beach-dune geomorphology 1736 

A continuing challenge for geomorphology, as with many multidisciplinary Earth sciences, is 1737 

that most knowledge about how natural systems function is bounded by scale-specific 1738 

constraints inherent to the theories, methodologies, and objects of study that are adopted or 1739 

constructed in the scientific process.  Occasionally, efforts are made to broaden perspectives by 1740 

considering knowledge from closely allied fields or sub-fields, which often have different 1741 

methodological and/or theoretical underpinnings.  In so doing, a more nuanced understanding 1742 

of the dynamics of natural systems is often derived that is informed by alternative perspectives 1743 

and different scales of inquiry.  This paper attempts to provide such a 'scale aware' perspective 1744 

on coastal-aeolian morphodynamics and evolution, based in part on the vast literature on 1745 

aeolian processes on coasts and deserts worldwide, but primarily on a decade-long research 1746 

program at the Greenwich Dunes, PEI, Canada.  This research program incorporated 1747 

experimental and monitoring methods spanning the plot (micro), landform (meso), and 1748 

landscape (macro) scales.  It is argued that this approach has led to a more holistic (i.e., multi-1749 

scalar), focussed, and comprehensive (albeit incomplete) understanding of a discrete beach-1750 

dune system than has been undertaken previously.   1751 

An example of the dilemma posed by the scalar boundedness of empirical geomorphic 1752 

knowledge in this research is the disconnect in knowledge gained between the detailed process 1753 

observations of sand transport activity and related beach-dune conditions (sections 5.1.2, 5.1.3) 1754 

and the morphological response observations provided by the seasonal cross-shore beach-dune 1755 
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profiles (section 5.2.2).  The former provides key information on the regime of sand transport, 1756 

erosion, and deposition processes presumed to be representative at a seasonal scale, while the 1757 

latter yields key insight on the magnitude and direction of seasonal to interannual topographic 1758 

and sediment budget changes in the beach-dune system.  Despite some spatial and temporal 1759 

overlap (e.g., profile 7 exists in the area of coverage of the camera monitoring system) and the 1760 

respective richness of these datasets, there remains significant scalar incompatibility or 1761 

incompleteness between them.  For instance, in the absence of information on how and when 1762 

sediments were mobilized between all of the surveys and at all locations, it is only with much 1763 

caution and many limitations that one can extrapolate how the temporally-limited and 1764 

spatially-discrete observations of the transport regime might translate from seasonal or decadal 1765 

trends in beach-dune morphology or sediment budgets.  Similarly, it is incredibly difficult to 1766 

retrodict prior system states that preconditioned the present observed conditions.  So, despite 1767 

great efforts here to span spatial and temporal scales of process-response interactions, there 1768 

remain some appreciable gaps at scale transitions, in particular. 1769 

7.2 Plot scale complexities encourage consideration of landscape scale linkages 1770 

The plot scale research at the Greenwich Dunes, PEI, provided significant insights into the 1771 

widely recognized inability of conventional sediment transport models to predict sand mass flux 1772 

moving across the beach-dune system as a function of wind strength alone (e.g., Sherman and 1773 

Li, 2011).  Multiple supply-limiting constraints (e.g., surface moisture, grain size and texture, 1774 

bed roughness, salt crusts, vegetation) and transport-limiting factors (e.g., vegetation, coarse 1775 

lag deposits, wrack) collectively result in sand transport intermittency.  Many of these factors, 1776 
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and their effects on sand transport, are spatially variable as the wind field transitions from the 1777 

nearshore to the foreshore, across the back beach, and on to the foredune. However, the plot 1778 

scale research also showed that these factors are coupled and co-evolve both in space and 1779 

time, with often counter-intuitive outcomes depending on feedback relationships.  For 1780 

example, the veering of wind direction from cross-shore to oblique approach angles can 1781 

strongly influence the delivery of sand to the foredune by way of the fetch effect.  Generally, 1782 

sand transport increases across the back beach due to increasing fetch distance, however, less 1783 

may be delivered to the foredune because total sediment transport across the dune toe line 1784 

decreases in proportion to the cosine of the wind angle (e.g., Bauer and Davidson-Arnott, 2003; 1785 

Delgado-Fernandez, 2010).  Similarly, as the incident wind begins to interact with foredune 1786 

topography, and the vegetation thereon, there can be considerable changes in wind speed and 1787 

direction as a result of flow deflection, streamline compression or expansion, flow acceleration 1788 

or deceleration, vegetation density and distribution, and related secondary flow patterns (e.g., 1789 

flow steering, separation, reversal, jet formation) with significant implications for sand 1790 

transport pathways (e.g., Walker et al., 2006; Walker et al., 2009a; 2009b; Bauer et al., 2012; 1791 

Hesp et al., 2009; 2015; Hesp and Smyth, 2016).  Turbulence within the boundary layer is 1792 

influenced significantly by these wind-topography interactions and this research, along with the 1793 

findings of other researchers, suggests there is some commonality in the turbulent signatures 1794 

found at key locations such as the foredune crest and toe (e.g., Chapman et al., 2012; 2013; 1795 

Wiggs et al., 1996b; Wiggs and Weaver, 2012).  This work also indicates that there is sufficient 1796 

uncertainty surrounding the association of turbulent Reynolds Stress with sand flux to question 1797 
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whether or not this parameter is a reliable indicator of wind strength for predicting aeolian 1798 

sand transport over complex terrain. 1799 

There also remain significant gaps in our knowledge with regard to how and when 1800 

sediment is moved from the nearshore to the foreshore and, eventually, to the foredune 1801 

(Houser, 2009; Houser and Ellis, 2013).  Furthermore, it remains unclear as to what types of 1802 

events are most significant in growing or maintaining foredunes.  For instance, the importance 1803 

of offshore winds in maintaining foredunes or contributing to the development of sand ramps 1804 

and healing wave-cut dune scarps has become recognised increasingly (e.g., Jackson et al., 1805 

2011; Lynch et al., 2009; 2010; Bauer et al., 2015).  Other external factors such as wave run-up, 1806 

tidal and storm surge innundation, salt spray, rainfall, snow/ice cover, and progressive 1807 

sediment stripping and deflation during transport events also present spatial and temporal 1808 

complexities in the aeolian sand transport process.  At times, therefore, it is possible to have 1809 

some portions of the beach where there is no transport because wind strength is insufficient to 1810 

entrain sediments, other portions where wind strength is adequate but surface controls restrict 1811 

the rate of sand supply (leading to intermittency), and yet other areas where there is sufficient 1812 

wind and sand available to yield substantial transport.  All of the complexities resulting from 1813 

flow-landform-transport interactions over beaches and dunes at the time scales of single events 1814 

and seasons, thus, beget consideration of broader landscape scale controls. 1815 

7.3 Bridging the plot to landform scale transition 1816 

In response to the complexities at work at the plot scale, standard equilibrium models of 1817 

sand transport often fail to produce accurate estimates across beaches and over foredunes.  1818 
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This serves as a reminder that conceptualizing and modelling sediment transport across beach-1819 

dune systems as controlled by singular factors in isolation is an inadequate approach.  The 1820 

collective body of research reviewed in this paper also highlights how information about the 1821 

broader (landform scale) context is critically important.  The conceptual scheme in Table 1 1822 

shows that, in order to understand sediment transport rate and patterns of erosion and 1823 

deposition across the beach (i.e., the dependent variables), one requires knowledge of the 1824 

independent variables (e.g., wind speed, wind approach angle, surface debris, vegetation, salt 1825 

crusts, surface moisture, snow or ice cover, beach width and slope) as well as knowledge of a 1826 

few key parameters such as foredune size and geometry and vegetation species, distribution, 1827 

cover density, height, and morphology.  However, at the landform scale, these all become 1828 

dependent variables (i.e., things we want to predict or better understand) that are governed by 1829 

a range of independent variables (e.g., wave climatology, climatic conditions, geological 1830 

setting).  In turn, these independent variables dictate the overall supply of sediment available 1831 

for beach-dune development.  In other words, to improve understanding of sediment transport 1832 

and beach-dune morphodynamics at a particular site, landform-scale factors that influence 1833 

plot-scale dynamics must be factored in.  Essentially, a typology of events is required that 1834 

distinguishes them according to their character and effectiveness in yielding geomorphic 1835 

change on the beach-dune profile, and that includes information on their magnitude, 1836 

frequency, and duration of occurrence. 1837 

The research at Greenwich Dunes attempted to provide information that links the plot 1838 

scale to the landform scale.  For example, the monitoring and modelling work of Delgado-1839 
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Fernandez and Davidson-Arnott (2011) and Delgado-Fernandez et al. (2009, 2012, 2013a) 1840 

demonstrates that a simple aeolian transport regime assessment, such as the Fryberger and 1841 

Dean (1979) model, is inadequate for predicting long-term sand supply to foredunes as it does 1842 

not consider the range of supply-limiting conditions in coastal regions that occur.  For instance, 1843 

intense winter storm events with powerful winds, which would yield significant transport per 1844 

the Fryberger and Dean (1979) model, are often insignificant in terms of sediment delivery to 1845 

the foredunes simply because the beach is covered by snow and ice.  Similarly, strong wind 1846 

events must also be considered in relation to the surface moisture state of the beach, which is 1847 

controlled by precipitation amounts, relative humidity, solar forcing, tidal stage, and storm 1848 

surge.  During the nine-month photographic observation period of transport activity at the PEI 1849 

study site, only three (of 184) wind events accounted for 75% of the total sand delivered to the 1850 

foredune.  Sand transport over the foredune was further influenced by the density of 1851 

vegetation cover (Ollerhead et al., 2013), which also has a seasonal signature that must be 1852 

accounted for in long-term modelling.   1853 

7.4 Bridging the landform to landscape scale transition 1854 

The transition from landform to landscape scales is similarly critical, as demonstrated by 1855 

the cross-shore profiles measured for over a decade at the Greenwich Dunes site (Figure 20).  1856 

Some regions (e.g., line 5) suggest a continuous and progressive landward migration of the 1857 

dune with little change in overall profile form.  In contrast, other sites (e.g., line 8) shows a 1858 

relatively stable crest location with seaward progradation of the stoss slope, while others (e.g., 1859 

line 7) remained stable and virtually unchanged.  This suggests a transition from a negative 1860 



 

 

102 

littoral sediment budget to the East (line 5) to a positive budget to the west (line 8).  Clearly, a 1861 

linear extrapolation of any individual trend from these locations would suggest very different 1862 

styles of shoreline evolution over the next century. Thus, the littoral sediment budget affects 1863 

the beach width, which in turn influences: i) the fetch effect and, hence, potential sediment 1864 

delivery to the foredune as well as, ii) the propensity for wave scarping of the dune toe during 1865 

high water storm events.  The presence of a scarp or a sand ramp at the base of the dune also 1866 

strongly influences the ability of sand to move onto the stoss slope and toward the dune crest. 1867 

To understand how this coastline might evolve over the next century requires additional 1868 

information at the landscape scale on rates of relative sea-level rise, the broader geological 1869 

context of the north shore of PEI, as well as the history of regional coastal change as 1870 

documented in archives (e.g., Mathew et al. 2006) and via proxy data in the sedimentological 1871 

record.  As uniformitarianism would suggest, these are perhaps our best indicators of what may 1872 

happen in the future, but ideally this information could be integrated back into the landform 1873 

scale and then to the plot scale, so as to provide a deeper understanding of how we might 1874 

reliably predict the future rather than simply extrapolate trends.  For example, framing the 1875 

understanding of coastline evolution within the RD-A model for the response of sandy beach-1876 

dune systems under rising sea levels challenges scientists to predict the events that yield the 1877 

landward (and upward) translation of the beach-dune profile from year-to-year.  In turn, this 1878 

requires the capacity to predict the nature of sediment transport processes across beach-dune 1879 

systems at the plot scale, which leads us back to the uncertain nature of the relation between 1880 

sediment flux and wind strength.   1881 
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Much has been written about the unlikely prospects for 'upscaling' micro-scale knowledge 1882 

of Earth surface system function obtained via scientific reductionism to macro-scale system 1883 

outcomes (e.g., Sherman, 1995; Bauer and Sherman, 1999; Bauer et al., 1999), especially in 1884 

light of such challenges as error propagation in models, chaotic behavior in non-linear systems, 1885 

and climate non-stationarity.  One might ask then, “If we are doing science in the service of 1886 

coastal resource managers who are interested primarily in landform and landscape scale 1887 

outcomes, why even bother with plot-scale experiments?”  The answer, it seems, is to provide a 1888 

more holistic understanding of the system under investigation (or under management), in 1889 

terms of the range of processes, feedbacks, controls, and linkages between scales of 1890 

interaction, to thereby reduce the probability of making incorrect assumptions or predictions 1891 

about the future.  Knowledge and understanding at each of the scale domains is not 1892 

independent of the other, and there has to be consilience or unity of knowledge (Wilson, 1998).  1893 

So, from a management perspective, given the increasing pressures and impacts of global 1894 

climatic and environmental change, there is a clear need for more applied, integrated, multi-1895 

scalar knowledge. Ignoring the context provided by knowledge at shorter and longer scales 1896 

then seems like a perilous course of action. 1897 

1898 
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