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Abstract 25	

A common situation in the evaluation of intervention programs is the researcher’s possibility to 26	

rely on two waves of data only (i.e., pretest and posttest), which profoundly impacts on his/her  27	

choice about the possible statistical analyses to be conducted. Indeed, the evaluation of 28	

intervention programs based on a pretest-posttest design has been usually carried out by using 29	

classic statistical tests, such as family-wise ANOVA analyses, which are strongly limited by 30	

exclusively analyzing the intervention effects at the group level. In this article, we showed how 31	

second order multiple group latent change modeling (SO-MG-LCM) could represent a useful 32	

methodological tool to have a more realistic and informative assessment of intervention 33	

programs with two waves of data. We offered a practical step-by-step guide to properly 34	

implement this methodology, and we outlined the advantages of the LCM approach over classic 35	

ANOVA analyses. Furthermore, we also provided a real-data example by re-analyzing the 36	

implementation of the Young Prosocial Animation, a universal intervention program aimed at 37	

promoting prosociality among youth. In conclusion, albeit there are previous studies that pointed 38	

to the usefulness of MG-LCM to evaluate intervention programs (Curran & Muthén, 1999; 39	

Muthén & Curran, 1997), no previous study showed that it is possible to use this approach even 40	

in pretest-posttest (i.e., with only two time points) designs. Given the advantages of latent 41	

variable analyses in examining differences in interindividual and intraindividual changes 42	

(McArdle, 2009), the methodological and substantive implications of our proposed approach are 43	

discussed. 44	

Keywords: experimental design, pretest-posttest, intervention, multiple group latent curve 45	

model, second order latent curve model, structural equation modeling, latent variables 46	

47	
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Evaluating Intervention Programs with a Pretest-posttest Design: 48	

A Structural Equation Modeling Approach 49	

Evaluating intervention programs is at the core of many educational and clinical 50	

psychologists’ research agenda (Achenbach, in press; Malti, Noam, Beelmann, & Sommer, 51	

2016). From a methodological perspective, collecting data from several points in time (usually T 52	

≥ 3) is important to test the long-term strength of intervention effects once the treatment is 53	

completed, such as in classic designs including pretest, posttest, and follow up assessments 54	

(Roberts & Ilardi, 2003). However, several factors could hinder the researcher’s capacity to 55	

collect data at follow-up assessments, in particular the lack of funds, participants’ poor level of 56	

monitoring compliance, participants’ relocation in different areas, etc. Accordingly, the use of 57	

the less advantageous pretest-posttest design (i.e., before and after the intervention) often 58	

represents a widely used methodological choice in the psychological intervention field. Indeed, 59	

from a literature research on the database PsycINFO using the following string “intervention 60	

AND pretest AND posttest AND follow-up” limited to abstract section and with a publication 61	

date from January 2006 to December 2016, we obtained 260 documents. When we changed 62	

“AND follow-up” with “NOT follow-up” the results were 1,544 (see Appendix A to replicate 63	

these literature search strategies). 64	

A further matter of concern arises from the statistical approaches commonly used for 65	

evaluating intervention programs in pretest-posttest design, mostly ANOVA-family analyses, 66	

which heavily rely on statistical assumptions (e.g., normality, homogeneity of variance, 67	

independence of observations, absence of measurement error, and so on) rarely met in 68	

psychological research (Nimon, 2012; Schmider, Ziegler, Danay, Beyer, & Bühner, 2010). 69	
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However, all is not lost and some analytical tools are available to help researchers better 70	

assess the efficacy of programs based on a pretest-posttest design (see McArdle, 2009). The goal 71	

of this article is to offer a formal presentation of a latent curve model approach (LCM; Muthén & 72	

Curran, 1997) to analyze intervention effects with only two waves of data. After a brief overview 73	

of the advantageous of the LCM framework over classic ANOVA analyses, a step-by-step 74	

application of the LCM on real pretest-posttest intervention data is provided. 75	

Evaluation Approaches: Observed Variables vs Latent Variables 76	

Broadly speaking, approaches to intervention evaluation can be distinguished into two 77	

categories: (1) approaches using observed variables and (2) approaches using latent variables. 78	

The first category includes widely used parametric tests such as Student’s t, repeated measures 79	

analysis of variance (RM-ANOVA), analysis of covariance (ANCOVA), and ordinary least-80	

squares regression (see Tabachnick & Fidell, 2013). However, despite their broad use, observed 81	

variable approaches suffer from several limitations, many of them ingenerated by the strong 82	

underlying statistical assumptions that must be satisfied. A first series of assumption underlying 83	

classic parametric tests is that the data being analyzed are normally distributed and have equal 84	

population variances (also called homogeneity of variance or homoscedasticity assumption). 85	

Normality assumption is not always met in real data, especially when the variables targeted by 86	

the treatment program are infrequent behaviors (i.e., externalizing conducts) or clinical 87	

syndromes (Micceri, 1989). Likewise, homoschedasticy assumption is rarely met in randomized 88	

control trial as a result of the experimental variable causing differences in variability between 89	

groups (Grissom & Kim, 2012). Violation of normality and homoscedasticity assumptions can 90	

compromise the results of classic parametric tests, in particular on rates of Type-I (Tabachnick & 91	

Fidell, 2013) and Type-II error (Wilcox, 1998). Furthermore, the inability to deal with 92	
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measurement error can also lower the accuracy of inferences based on regression and ANOVA-93	

family techniques which assume that the variables are measured without errors. However, the 94	

presence of some degree of measurement error is a common situation in psychological research 95	

where the focus is often on not directly observable constructs such as depression, self-esteem, or 96	

intelligence. Finally, observed variable approaches assume (without testing it) that the 97	

measurement structure of the construct under investigation is invariant across groups and/or time 98	

(Meredith & Teresi, 2006; Millsap, 2011). Thus, lack of satisfied statistical assumptions and/or 99	

uncontrolled unreliability can lead to the under or overestimation of the true relations among the 100	

constructs analyzed (for a detailed discussion of these issues, see Cole & Preacher, 2014). 101	

 On the other side, latent variable approaches refer to the class of techniques termed under 102	

the label structural equation modeling (SEM; Bollen, 1989) such as confirmatory factor analysis 103	

(CFA; Brown, 2015) and mean and covariance structures analysis (MACS; Little, 1997). 104	

Although a complete overview of the benefits of SEM is beyond the scope of the present work 105	

(for a thorough discussion, see Kline, 2016), it is worthwhile mentioning here those advantages 106	

that directly relate to the evaluation of intervention programs. First, SEM can easily 107	

accommodate the lack of normality in the data. Indeed, several estimation methods with standard 108	

errors robust to non-normal data are available and easy-to-use in many popular statistical 109	

programs (e.g., MLM, MLR, WLSMV, etc. in Mplus; Muthén & Muthén, 1998-2012). Second, 110	

SEM explicitly accounts for measurement error by separating the common variance among the 111	

indicators of a given construct (i.e., the latent variable) from their residual variances (which 112	

include both measurement error and unique sources of variability). Third, if multiple items from 113	

a scale are used to assess a construct, SEM allows the researcher to evaluate to what extent the 114	

measurement structure (i.e., factor loadings, item intercepts, residual variances, etc.) of such 115	
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scale is equivalent across groups (e.g., intervention group vs control group) and/or over time (i.e., 116	

pretest and posttest); this issue is known as measurement invariance (MI) and, despite its crucial 117	

importance for properly interpreting psychological findings, is rarely tested in psychological 118	

research (for an overview see Brown, 2015; Millsap, 2011). Finally, different competitive SEMs 119	

can be evaluated and compared according to their goodness of fit (Kline, 2016). Many SEM 120	

programs, indeed, print in their output a series of fit indexes that help the researcher assess 121	

whether the hypothesized model is consistent with the data or not. In sum, when multiple 122	

indicators of the constructs of interest are available (e.g., multiple items from one scale, different 123	

informants, multiple methods, etc.), latent variables approaches offer many advantages and, 124	

therefore, they should be preferred over manifest variable approaches (Little, Card, Preacher, & 125	

McConnell, 2009). Moreover, when a construct is measured using a single psychometric 126	

measure, there are still ways to incorporate the individuals’ scores in the analyses as latent 127	

variables, and thus reduce the impact of measurement unreliability (Cole & Preacher, 2014). 128	

Latent Curve Models 129	

 Among latent variable models of change, latent curve models (LCMs; Meredith & Tisak, 130	

1990), represent a useful and versatile tool to model stability and change in the outcomes 131	

targeted by an intervention program (Curran & Muthén, 1999; Muthén & Curran, 1997). 132	

Specifically, in LCM individual differences in the rate of change can be flexibly modeled 133	

through the use of two continuous random latent variables: The intercept (which usually 134	

represents the level of the outcome of interest at the pretest) and the slope (i.e., the mean-level 135	

change over time from the pretest to the posttest). In detail, both the intercept and the slope have 136	

a mean (i.e., the average initial level and the average rate of change, respectively) and a variance 137	

(i.e., the amount of inter-individual variability around the average initial level and the average 138	
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rate of change). Importantly, if both the mean and the variance of the latent slope of the outcome 139	

y in the intervention group are statistically significant (whereas they are not significant in the 140	

control group), that means that there was not only an average effect of the intervention, but also 141	

some participants were differently affected by the program (Muthén & Curran, 1997). Hence, the 142	

assumption that participants respond to the treatment in the same way (as in ANOVA-family 143	

analyses) can be easily relaxed in LCM. Indeed, although individual differences may also be 144	

present in the ANOVA design, change occurs at the group level and, therefore, everyone is 145	

impacted in the same fashion after the exposure to the treatment condition. 146	

 As discussed by Muthén and Curran (1997), the LCM approach is particular useful for 147	

evaluating intervention effects when it is conducted within a multiple group framework (i.e., 148	

MG-LCM), namely when the intercept and the slope of the outcome of interest are 149	

simultaneously estimated in the intervention and control group. Indeed, as illustrate in our 150	

example, the MG-LCM allows the research to test if both the mean and the variability of the 151	

outcome y at the pretest are similar across intervention and control groups, as well as if the mean 152	

rate of change and its inter-individual variability are similar between the two groups. Therefore, 153	

the MG-LCM provides information about the efficacy of an intervention program in terms of 154	

both (1) its average (i.e., group-level) effect and (2) participants’ sensitivity to differently 155	

respond to the treatment condition. 156	

 However, a standard MG-LCM cannot be empirically identified with two waves of data 157	

(Bollen & Curran, 2006). Yet, the use of multiple indicators (at least 2) for each construct of 158	

interest could represent a possible solution to overcome this problem by allowing the estimation 159	

of the intercept and slope as second-order latent variables (Bishop, Geiser, & Cole, 2015; Geiser, 160	

Keller, & Lockhart, 2013; McArdle, 2009). Interestingly, although second-order LCMs are 161	
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becoming increasingly common in psychological research due to their higher statistical power to 162	

detect changes over time in the variables of interest (Geiser et al., 2013), their use in the 163	

evaluation of intervention programs is still less frequent. In the next section, we present a formal 164	

overview of a second-order MG-LCM approach, we describe the possible models of change that 165	

can be tested to assess intervention effects in pretest-posttest design, and we show an application 166	

of the model to real data. 167	

Identification of a Two-time Point Latent Change Model Using Parallel Indicators 168	

When only two points in time are available, it is possible to estimate two LCMs: A No-169	

Change Model (see Figure 1 Panel A) and a Latent Change Model (see Figure 1 Panel B). In the 170	

following, we described in details the statistical underpinnings of both these models. 171	

Latent Change Model 172	

A two-time points latent change model implies two latent means (κk), two latent factor 173	

variances (ζk), plus the covariance between the intercept and slope factor (Φk). This results in a 174	

total of 5+T model parameters, where T are the error variances for (yk) when allowing  175	

to change over time. In the case of a two waves of data (i.e., T = 2), this latent change model has 176	

7 parameters to estimate from a total of (2) (3) / 2 + 2 = 5 identified means, variances, and 177	

covariances of the observed variables. Hence, two waves of data are insufficient to estimate this 178	

model. However, this latent change model can be just-identified (i.e., zero degrees of freedom 179	

[df]) by constraining the residual variances of the observed variables to be 0. This last constraint 180	

should be considered structural and thus included in all two-time points latent change model. In 181	

this latter case, the variances of the latent variables (i.e., the latent intercept representing the 182	

starting level, and the latent change score) are equivalent to those of the observed variables. 183	
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Thus, when fallible variables are used, this impedes to separate true scores from their 184	

error/residual terms. 185	

A possible way to allow this latent change model to be over-identified (i.e., df ≥ 1) is by 186	

assuming the availability of at least two observed indicators of the construct of interest at each 187	

time point (i.e., T1 and T2). Possible examples include the presence of two informants rating the 188	

same behavior (e.g., caregivers and teachers), two scales assessing the same construct, etc. 189	

However, even if the construct of interest is assessed by only one single scale, it should be noted 190	

that psychological instruments are often composed by several items. Hence, as noted by Steyer, 191	

Eid, and Schwenkmezger (1997), it is possible to randomly partitioning the items composing the 192	

scale into two (or more) parcels that can be treated as parallel forms. By imposing appropriate 193	

constraints on the loadings (i.e., λk = 1), the intercepts (τk = 0), within factor residuals (ek = e), 194	

and by fixing to 0 the residual variances of the first-order latent variables ηk (ζk = 0), the model 195	

can be specified as a first-order measurement model plus a second-order latent change model 196	

(see Figure 1 Panel B). Given previous constraints of loadings, intercepts, and first order factor 197	

residual variances, this model is over-identified because we have (4) (5) / 2 + 4= 14 observed 198	

variances, covariances, and means. Of course, when three or more indicators are available, 199	

identification issues cease to be a problem. In this paper, we restricted our attention to the two 200	

parallel indicators case to address the more basic situation that a researcher can encounter in the 201	

evaluation of a two time-point intervention. Yet, our procedure can be easily extended to cases in 202	

which three or more indicators are available at each time point. 203	

Specification. More formally, and under usual assumptions (Meredith & Tisak, 1990), 204	

the measurement model for the above two times latent change model in group k becomes:  205	

    (1) 206	
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where yk is a mp x 1 random vector that contains the observed scores, { }, for the ith 207	

variable at time t, i Î {1,2,.., p}, and t Î {1,2,.., m}. The intercepts are contained in the mp x 1 208	

vector ,   is a mp x mq matrix of factor loadings, ηk is a mq x 1 vector of factor scores, and 209	

the unobserved error random vectors  is a mp x 1 vector. The population vector mean, , and 210	

covariance matrix, , or Means and Covariance Structure (MACS) are: 211	

 and ,   (2) 212	

where  is a vector of latent factors means, is the modeled covariance matrix, and  213	

is a mp × mp matrix of observed variable residual covariances. For each column, fixing an 214	

element of  to 1, and an element of  to 0, identifies the model. By imposing increasingly 215	

restrictive constraints on elements of matrix Λy and τy, the above two-indicator two-time points 216	

model can be identified. 217	

The general equations for the structural part of a second order (or change) model are: 218	

ηk = Γk ξk + ζk ,      (3) 219	

where Γk is a mp x qr matrix containing second order factor coefficients, ξk is a qr × 1 220	

vector of second-order latent variables, and ζk is a mq x 1 vector containing latent variable 221	

disturbance scores. Note that q is the number of latent factors and that r is the number of latent 222	

curves for each latent factor. 223	

The population mean vector, , and covariance matrix, , based on (3) are 224	

 ,   (4) 225	

where Φk is a r x r covariance of the latent variables, and Ψk is a mq × mq latent variable 226	

residual covariance matrix. In the current application, what makes the different in two models is 227	

the way in which matrices Γk and Φk are specified. 228	

Application of the MG-LCM to Intervention Studies using a Pretest-posttest Design 229	
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The application of the above two-times latent change model to the evaluation of an 230	

intervention is straightforward. Usually, in intervention studies, individuals are randomly 231	

assigned to two different groups. The first group (G1) is exposed to an intervention that takes 232	

place somewhere after the initial time point. The second group (G2), also called the control 233	

group, does not receive any direct experimental manipulation. In light of the random assignment, 234	

G1 and G2 can be viewed as two equivalent groups drawn by the same population and the effect 235	

of the intervention may be ascertained by comparing individuals’ changes from T1 to T2 across 236	

these two groups. 237	

Following Muthén and Curran (1997), an intercept factor should be modeled in both 238	

groups. However, only in the intervention group an additional latent change factor should be 239	

added. This factor is aimed at capturing the degree of change that is specific to the treatment 240	

group. Whereas the absolute value for the latent mean of this factor can be interpreted as the 241	

change determined by the intervention in the intervention group, a significant variance indicates 242	

a meaningful heterogeneity in responding to the treatment. In this model  is a vector 243	

containing freely estimating mean values for the intercept (i.e., ξ1), and the slope (i.e., ξ2).   is 244	

thus a 2 x 2 matrix, containing basis coefficients, determined in  for the intercept (i.e. , ξ1) and 245	

 for the slope (i.e., ξ2). Φk is a 2 x 2 matrix containing variances and covariance for the two 246	

latent factors representing the intercept and the slope. 247	

Given randomization, restricting the parameters of the intercept to be equal across the 248	

control and treatment populations is warranted in a randomized intervention study. Yet, baseline 249	

differences can be introduced in field studies where randomization is not possible or, simply, the 250	

randomization failed during the course of the study (Cook & Campbell, 1979). In such cases, the 251	

equality constraints related to the mean or to the variance of the intercept can be relaxed.  252	
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The influence of participants' initial status on the effect of the treatment in the 253	

intervention group can also be incorporated in the model (Cronbach & Snow, 1977; Curran & 254	

Muthén, 1999; Muthén & Curran, 1997) by regressing the latent change factor onto the intercept 255	

factor, so that the mean and variance of the latent change factor in the intervention group are 256	

expressed as a function of the initial status. Accordingly, this analysis captures to what extent 257	

inter-individual initial differences on the targeted outcome can predispose participants to 258	

differently respond to the treatment delivered. 259	

Sequence of models 260	

We suggest a four-step approach to intervention evaluation. By comparing the relative fit 261	

of each model, researchers can have important information to assess the efficacy of their 262	

intervention. 263	

Model 1: No-change model. A no change model is specified for both intervention group 264	

(henceforth G1) and for control group (henceforth G2). As a first step, indeed, a researcher may 265	

assume that the intervention has not produced any meaningful effect, and therefore a no-change 266	

model (or strict stability model) should be simultaneously estimated in both the intervention and 267	

control group. In its more general version, the no-change model includes only a second-order 268	

intercept factor which represents the participants’ initial level. Importantly, both the mean and 269	

variance of the second-order intercept factor are freely estimated across groups (see Figure 1 270	

Panel A). More formally, in this model, Φk is a qr x qr covariance matrix of the latent variables, 271	

and Γk is a mq x qr matrix, containing for each latent variable, a set of  basis coefficients for the 272	

latent curves. 273	

Model 2: Latent change model in the intervention group. In this model, a slope 274	

growth factor is estimated in the intervention group only. As previously detailed, this additional 275	
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latent factor is aimed at capturing any possible change in the intervention group. According to 276	

our premises, this model represents the “target” model, attesting a significant intervention effect 277	

in G1 but not in G2. Model 1 is then compared with Model 2 and changes in fit indexes between 278	

the two models are used to evaluate the need of this further latent factor (see section Statistical 279	

Analysis). 280	

Model 3: Latent change model in both the intervention and control group. In model 281	

3, a latent change model is estimated simultaneously in both G1 and G2. The fit of Model 2 is 282	

compared with the fit of Model 3 and changes in fit indexes between the two models are used to 283	

evaluate the need of this further latent factor in the control group. From a conceptual point of 284	

view, the goal of Model 3 is twofold because it allows the researcher: (a) to rule out the 285	

eventuality of “contaminations effects” between the intervention and control group (Cook & 286	

Campbell, 1979); (b) to assess a possible, normative mean-level change in the control group (i.e., 287	

a change that cannot be attributed to the treatment delivered). In reference to (b), indeed, it 288	

should be noted that some variables may show a normative developmental increase during the 289	

period of the intervention. For instance, a consistent part of the literature has identified an overall 290	

increase in empathic capacities during early childhood (for an overview, see Eisenberg, Spinrad, 291	

& Knafo-Noam, 2015). Hence, researchers aimed at increasing empathy-related responding in 292	

young children may find that both the intervention and control group actually improved in their 293	

empathic response. In this situation, both the mean and variance of the latent slope should be 294	

constrained to equality across groups to mitigate the risk of confounding intervention effects 295	

with the normative development of the construct (for an alternative approach when more than 296	

two time points are available, see Curran & Muthén, 1999; Muthén & Curran, 1997). 297	

Importantly, the tenability of these constraints can be easily tested through a delta chi square test 298	

Provisional



EVALUATING INTERVENTION PROGRAMS	 14 

(Δχ2) between the chi squares of the constrained model vs. unconstrained model. A significant 299	

Δχ2 (usually p < .05) indicates that the two models are not statistically equivalent, and the 300	

unconstrained model should be preferred. On the contrary, a non-significant Δχ2 (usually p > .05) 301	

indicates that the two models are statistically equivalent, and the constrained model (i.e., the 302	

more parsimonious model) should be preferred. 303	

Model 4: Sensitivity Model. After having identified the best fitting model, the 304	

parameters of the intercept (i.e., mean and variance) should be constrained to equality across 305	

groups. This sensitivity analysis is crucial to ensure that both groups started with an equivalent 306	

initial status on the targeted behavior which is an important assumption in intervention programs. 307	

In line with previous analyses, the plausibility of initial status can be easily tested through the 308	

Δχ2 test. Indeed, given randomization, it seems likely to assume that participants in both groups 309	

are characterized by similar or identical starting levels, and the groups have the same variability. 310	

These assumptions lead to a constrained no-change no-group difference model. This model is the 311	

same as the previous one, except that κk = κ, or in our situation κ1 = κ2. Moreover, in our 312	

situation, r = 1, q = 1, m = 2, and hence,  =  is a scalar,  Γk = 12, and Ψk = ΨI2	for each of 313	

the kth population. 314	

In the next section, the above sequence of models has been applied to the evaluation of a 315	

universal intervention program aimed to improve students’ prosociality. We presented results 316	

from every step implied by the above methodology, and we offered a set of Mplus syntaxes to 317	

allow researchers estimate the above models in their dataset. 318	

The Young Prosocial Animation Program 319	
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The Young Prosocial Animation (YPA; Zuffianò, Alessandri, & Roche-Olivar, 2012) is a 320	

universal intervention program (Greenberg, Domitrovich, & Bumbarger, 2001) to sensitize 321	

adolescents to prosocial and empathic values (Zuffianò et al., 2012). 322	

In detail, the YPA tries to valorize: (a) the status of people who behave prosocially, (b) 323	

the similarity between the “model” and the participants, and (c) the outcomes related to prosocial 324	

actions. Following Bandura’s (1977) concept of modeling, in fact, people are more likely to 325	

engage in those behaviors they value and if the model is perceived as similar and with an 326	

admired status. The main idea is that valuing these three aspects could foster a prosocial 327	

sensitization among the participants (Zuffianò et al., 2012). In other terms, the goal is to promote 328	

the cognitive and emotional aspects of prosociality, in order to strengthen attitudes to act and 329	

think in a "prosocial way". The expected change, therefore, is at the level of the personal 330	

dispositions in terms of an increased receptiveness and propensity for prosocial thinking (i.e., 331	

both the ability to take the point of view and to be empathetic rather than directly affecting the 332	

behaviors acted out by the individuals, as well as the ability to produce ideas and solutions that 333	

can help other people; Zuffianò et al., 2012). Due to its characteristics, YPA can be conceived as 334	

a first phase of prosocial sensitization on which implementing programs more appropriately 335	

direct to increase prosocial behavior (e.g., CEPIDEA program; Caprara et al., 2014). YPA aims 336	

to achieve this goal through a guided discussion following the viewing of some prosocial scenes 337	

selected from the film “Pay It Forward”1. After viewing each scene, a trained researcher, using a 338	

standard protocol guides a discussion among the participants highlighting: (i) the type of 339	

prosocial action (e.g., consoling, helping, etc.); (ii) the benefits for the actor and the target of the 340	

prosocial action; (iii) possible benefits of the prosocial action extended to the context (e.g., other 341	

																																																								
1	Directed by Mimi Leder (2000). 
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persons, the more broad community, etc.); (iv) requirements of the actor to behave prosocially 342	

(e.g., being empathetic, bravery, etc.); (v) the similarity between the participant and the actor of 343	

the prosocial behavior; (vi) the thoughts and the feelings experienced during the viewing of the 344	

scene. The researcher has to complete the intervention within 12 sessions (1 hour per session, 345	

once a week). 346	

For didactic purposes, in the present study we re-analyzed data from an implementation 347	

of the YPA in three schools located in a small city in the South of Italy (see Zuffiano et al., 2012 348	

for details). 349	

Hypotheses 350	

We expected Model 2 (a latent change model in the intervention group and a no-change 351	

model in the control group) to be the best fitting model. Indeed, from a developmental point of 352	

view, we had no reason to expect adolescents showing a normative change in prosociality after 353	

such a short period of time (Eisenberg et al., 2015). In line with the goal of the YPA, we 354	

hypothesized an small-medium increase in prosociality in the intervention group. We also 355	

expected that both groups did not differ at T1 in absolute level of prosocial behaviors, ensuring 356	

that both intervention and control group were equivalent. Finally, we explored the influence of 357	

participants’ initial status on the treatment effect, a scenario in which those participants with 358	

lower initial level of prosociality benefitted more from attending the YPA session. 359	

Method 360	

Design 361	

The study followed a quasi-experimental design, with both the intervention and control 362	

groups assessed at two different time points: Before (Time 1) YPA intervention and six months 363	

after (Time 2). Twelve classrooms from three schools (one middle school and two high schools) 364	
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participated in the study during the school year 2008-2009. Each school has ensured the 365	

participation of 4 classes that were randomly assigned to intervention and control group (two 366	

classes to intervention group and two classes to control group).2 In total, six classes were part of 367	

intervention group and six classes of control group. The students from the middle school were in 368	

the eighth grade (third year of secondary school in Italy), whereas the students from the two high 369	

schools were in the ninth (first year of high school in Italy) and tenth grade (second year of high 370	

school in Italy). 371	

Participants 372	

The YPA program was implemented in a city in the South of Italy. A total amount of 250 373	

students participated in the study: 137 students (51.8% males) were assigned to the intervention 374	

group and 113 (54% males) to the control group. At T2 students were 113 in the intervention 375	

group (retention rate = 82.5%) and 91 in the control group (retention rate = 80.5%). Little’s test 376	

of missingness at random showed a nonsignificant chi-squared value [χ2(2) = 4.698, p = .10]; this 377	

means that missingness at posttest is not affected by the levels of prosociality at pretest. The 378	

mean age was 14.2 (SD = 1.09) in intervention group, and 15.2 (SD = 1.76) in control group. 379	

Considering socioeconomic status, the 56.8% of families in intervention group and the 60.0% in 380	

control group were one-income families. The professions mostly represented in the two groups 381	

were the “worker” among the fathers (the 36.4% in intervention group and the 27.9% in control 382	

group) and the “housewife” among the mothers (the 56.0% in the intervention group and the 383	

55.2% in the control group). Parent’s school level was approximately the same between the two 384	

																																																								
2 Importantly, although classrooms were randomized across the two conditions (i.e., intervention group and control 
group), the selection of the four classrooms in each school was not random (i.e., each classroom in school X did not 
have the same probability to participate in the YPA). In detail, participating classrooms were chosen according to 
the interest in the project showed by the head teachers.  
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groups: Most of parents in the intervention group (43.5%) and in the control group (44.7%) had a 385	

middle school degree. 386	

Measures 387	

Prosociality. Participants rated their prosociality on a 16-item scale (5-point Likert scale: 388	

1 = never/almost never true; 5 = almost always/always true) that assesses the degree of 389	

engagement in actions aimed at sharing, helping, taking care of others’ needs, and empathizing 390	

with their feelings (e.g., “I try to help others” and “I try to console people who are sad”). The 391	

alpha reliability coefficient was .88 at T1 and .87 at T2. The scale has been validated on a large 392	

sample of respondents (Caprara, Steca, Zelli, & Capanna, 2005) and has been found to  393	

moderately correlate (r  > .50) with other-ratings of prosociality (Caprara, Alessandri, & 394	

Eisenberg, 2012). 395	

Statistical Analysis 396	

All the preceding models were estimated by maximum likelihood (ML) using Mplus 397	

program 7 (Muthén & Muthén, 1998-2012). Missing data were handled using full information 398	

maximum likelihood (FIML) estimation, which draws on all available data to estimate model 399	

parameters without imputing missing values (Enders, 2010). To evaluate the goodness of fit, we 400	

relied on different criteria. First we evaluated the values assumed by the χ2 likelihood ratio 401	

statistic for the overall group. Given that we were interested in the relative fit of the above 402	

presented different models of change within G1 and G2, we investigated also the contribution 403	

offered by each group to the overall χ2 value. The idea was to have a more careful indication of 404	

the impact of including the latent change factor in a specific group. We also investigated the 405	

values of the Comparative Fit Index (CFI), the Tucker Lewis Fit Index (TLI), the Root Mean 406	

Square Error of Approximation (RMSEA) with associated 90% confidence intervals, and the 407	
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Root Mean Square Residuals Standardized (SRMR). We accepted CFI and TLI values > 0.90, 408	

RMSEA values < 0.08, and SRMR < 0.08 (see Kline, 2016). Last, we used the Akaike 409	

Information Criteria (AIC; Burnham & Anderson, 2004). AIC rewards goodness of fit and 410	

includes a penalty that is an increasing function of the number of parameters estimated. Burnham 411	

and Anderson (2004) recommend rescaling all the observed AIC values before selecting the best 412	

fitting model according to the following formula: Δi = AICi − AICmin, where AICmin is the 413	

minimum of the observed AIC values (among competing models). Practical guidelines suggest 414	

that a model which differs less than Δi = 2 from the best fitting model (which has Δi = 0) in a 415	

specific dataset is said to be “strongly supported by evidence”; if the difference lies between 4 ≤ 416	

and ≤ 7 there is considerably less support, whereas models with Δi > 10 have essentially no 417	

support. 418	

Results 419	

We created two parallel forms of the prosociality scale by following the procedure 420	

described in Little, Cunningham, Shahar, and Widaman (2002, p. 166). In Table 1 we reported 421	

zero-order correlations, mean, standard deviation, reliability, skewness, and kurtosis for each 422	

parallel form. Cronbach’s alphas were good (≥ .74), and correlations were all significant at p < 423	

.001.	Indices of skewness and kurtosis for each parallel form in both groups did not exceed the 424	

value of |.61|, therefore the univariate distribution of all the eight variables (4 variables for 2 425	

groups) did not show substantial deviations from normal distribution (Curran, West, & Finch, 426	

1996). In order to check multivariate normality assumptions, we computed the Mardia’s two-427	

sided multivariate test of fit for skewness and kurtosis. Given the well known tendency of this 428	

coefficient to easily reject H0, we set alpha level at .001 (in this regard, see Mecklin & 429	

Mundfrom, 2005; Villasenor Alva & Estrada, 2009). Results of Mardia’s two-sided multivariate 430	
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test of fit for skewness and kurtosis showed p-value of .010 and .030 respectively. Therefore the 431	

study variables showed an acceptable, even if not perfect, multivariate normality. Given the 432	

modest deviation from the normality assumption we decided to use Maximum Likelihood as the 433	

estimation method. 434	

Evaluating the impact of the intervention 435	

In Table 2 we reported the fit indexes for the three alternative models (see Appendices 436	

B1-B4 for annotated Mplus syntaxes for each of these). As hypothesized, Model 2 was the best 437	

fitting model. Trajectories of Prosociality for intervention and control group separately are 438	

plotted in Figure 3. The contribution of each group to overall chi-squared values highlighted how 439	

the lack of the slope factor in the intervention group results in a substantial misfit. On the 440	

contrary, adding a slope factor to control group did not significantly change the overall fit of the 441	

model [Δχ2(1) = 0.765, p = .381]. Of interest, the intercept mean and variance were equal across 442	

groups (see Table 2, Model 4) suggesting the equivalence of G1 and G2 at T1. 443	

In Figure 2 we reported all the parameters of the best fitting model, for both groups. The 444	

slope factor of intervention group has significant variance (φ2 = .28, p < .001) and a positive and 445	

significant mean (κ2 = .19, p < .01). Accordingly, we investigated the presence of the influence 446	

of the initial status on the treatment effect by regressing the slope onto the intercept in the 447	

intervention group. Note that this latter model has the same fit of Model2; however, by 448	

implementing a slope instead of a covariance, allows to control the effect of the individuals’ 449	

initial status on their subsequent change. The significant effect of the intercept (i.e., β = -.62, p < 450	

.001) on the slope (R2 = .38) indicated that participants who were less prosocial at the beginning 451	

increased steeper in their prosociality after the intervention. 452	

Discussion 453	
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Data collected in intervention programs are often limited to two points in time, namely 454	

before and after the delivery of the treatment (i.e., pretest and posttest). When analyzing 455	

intervention programs with two waves of data, researchers so far have mostly relied on ANOVA-456	

family techniques which are flawed by requiring strong statistical assumptions and assuming that 457	

participants are affected in the same fashion by the intervention. Although a general, average 458	

effect of the program is often plausible and theoretically sounded, neglecting individual 459	

variability in responding to the treatment delivered can lead to partial or incorrect conclusions. In 460	

this article, we illustrated how latent variable models can help overcome these issues and provide 461	

the researcher with a clear model-building strategy to evaluate intervention programs based on a 462	

pretest-posttest  design. To this aim, we outlined a sequence of four steps to be followed which 463	

correspond to substantive research questions (e.g., efficacy of the intervention, normative 464	

development, etc.). In particular, Model 1, Model 2, and Model 3 included a different 465	

combinations of no-change and latent change models in both the intervention and control group 466	

(see Table 2). These first three models are crucial to identify the best fitting trajectory of the 467	

targeted behaviour across the two groups. Next, Model 4 was aimed at ascertaining if the 468	

intervention and control group were equivalent on their initial status (both in terms of average 469	

starting level and inter-individual differences) or if, vice-versa, this similarity assumption should 470	

be relaxed. 471	

Importantly, even if the intervention and control group differ in their initial level, this 472	

should not prevent the researcher to investigate the presence of moderation effects - such as a 473	

treatment-initial status interaction - if this is in line with the researcher’s hypotheses. One of the 474	

major advantage of the proposed approach, indeed, is the possibility to model the intervention 475	

effect as a random latent variable (i.e., the second-order latent slope) characterized by both a 476	
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mean (i.e., the average change) and a variance (i.e., the degree of variability around the average 477	

effect). As already emphasized by Muthén and Curran (1997), a statistically significant variance 478	

indicates the presence of systematic individual differences in responding to the intervention 479	

program. Accordingly, the latent slope identified in the intervention group can be regressed onto 480	

the latent intercept in order to examine if participants with different initial values on the targeted 481	

behavior were differently affected by the program. Importantly, the analysis of the interaction 482	

effects does not need to be limited to the treatment-initial status interaction but can also include 483	

other external variables as moderators (e.g., sex, SES, IQ, behavioral problems, etc.; see Caprara 484	

et al., 2014). 485	

To complement our formal presentation of the LCM procedure, we provided a real data 486	

example by re-analyzing the efficacy of the YPA, a universal intervention program aimed to 487	

promote prosociality in youths (Zuffianò et al., 2012). Our four-step analysis indicated that 488	

participants in the intervention group showed a small yet significant increase in their prosociality 489	

after six months, whereas students in the control group did not show any significant change (see 490	

Model 1, Model 2, and Model 3 in Table 2). Furthermore, participants in the intervention and 491	

control group did not differ in their initial levels of prosociality (Model 4), thereby ensuring the 492	

comparability of the two groups. These results replicated those reported by Zuffianò et al. (2012) 493	

and further attested to the effectiveness of the YPA in promoting prosociality among adolescents. 494	

Importantly, our results also indicated that there was a significant variability among participants 495	

in responding to the YPA program, as indicated by the significant variance of the latent slope. 496	

Accordingly, we explored the possibility of a treatment-initial status interaction. The significant 497	

prediction of the slope by the intercept indicated that, after six months, those participants 498	

showing lower initial levels of prosociality were more responsive to the intervention delivered. 499	

Provisional



EVALUATING INTERVENTION PROGRAMS	 23 

On the contrary, participants who were already prosocial at the pretest remained overall stable in 500	

their high level of prosociality. Although this effect was not hypothesized a priori, we can 501	

speculate that less prosocial participants were more receptive to the content of the program 502	

because they  appreciated more than their (prosocial) counterparts the discussion about the 503	

importance and benefits of prosociality, topics that, very likely, were relatively new for them. 504	

However, it is important to remark that the goal of the YPA was to merely sensitize youth to 505	

prosocial and empathic values and not to change their actual behaviors. Accordingly, our 506	

findings cannot be interpreted as an increase in prosocial conducts among less prosocial 507	

participants. Future studies are needed to examine to what extent the introduction of the YPA in 508	

more intensive school-based intervention programs (see Caprara et al., 2014) could represent a 509	

further strength to promote concrete prosocial behaviors. 510	

Limitations and Conclusions 511	

Albeit the advantages of the proposed LCM approach, several limitations should be 512	

acknowledged. First of all, the use of a second order LCM with two available time points 513	

requires that the construct is measured by more than one observed indicators. As such, this 514	

technique cannot be used for single-item measures (e.g., Lucas & Donnellan, 2012). Second, as 515	

any structural equation model, our SO-MG-LCM makes the strong assumption that the specified 516	

model should be true in the population. An assumption that is likely to be violated in empirical 517	

studies. Moreover, it requires to be empirically identified, and thus an entire set of constraints 518	

that leave aside substantive considerations. Third, in this paper, we restricted our attention to the 519	

two parallel indicators case to address the more basic situation that a researcher can encounter in 520	

the evaluation of a two time-point intervention. Our aim was indeed to confront researchers with 521	

the more restrictive case, in terms of model identification. The case in which only two observed 522	
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indicators are available is indeed, in our opinion, one of the more intimidating for researchers. 523	

Moreover, when a scale is composed of a long set of items or the target construct is a second 524	

order-construct loaded by two indicators (e.g., as in the case of psychological resilience; see	525	

Alessandri, Vecchione, Caprara, & Letzring, 2012), and the sample size is not optimal (in terms 526	

of the ratio estimated parameters / available subjects) it makes sense to conduct measurement 527	

invariance test as a preliminary step, “before” testing the intervention effect, and then use the 528	

approach described above to be parsimonious and maximize statistical power. In these 529	

circumstances, the interest is indeed on estimating the latent change model, and the invariance of 530	

indicators likely represent a prerequisite. Measurement invariance issues should never be 531	

undervalued by researchers. Instead, they should be routinely evaluated in preliminary research 532	

phases, and, when it is possible, incorporated in the measurement model specification phase. 533	

Finally, although intervention programs with two time points can still offer useful indications, 534	

the use of three (and possibly more) points in time provides the researcher with a stronger 535	

evidence to assess the actual efficacy of the program at different follow-up. Hence, the 536	

methodology described in this paper should be conceived as a support to take the best of pretest-537	

posttest studies and not as an encouragement to collect only two-wave data. Third, SEM 538	

techniques usually require the use of relatively larger samples compared to classic ANOVA 539	

analyses. Therefore, our procedure may not be suited for the evaluation of intervention programs 540	

based on small samples. Although several rules of thumb have been proposed in the past for 541	

conducting SEM (e.g., N > 100), we encourage the use of Monte Carlo simulation studies for 542	

accurately planning the minimum sample size before starting the data collection (Bandalos & 543	

Leite, 2013; Wolf, Harrington, Clark, & Miller, 2013). 544	
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Despite these limitations, we believe that our LCM approach could represent a useful and 545	

easy-to-use methodology that should be in the toolbox of psychologists and prevention scientists. 546	

Several factors, often uncontrollable, can oblige the researcher to collect data from only two 547	

points in time. In front of this (less optimal) scenario, all is not lost and researchers should be 548	

aware that more accurate and informative analytical techniques than ANOVA are available to 549	

assess intervention programs based on a pretest-posttest design. 550	

551	
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Table 1  679	
Descriptive Statistics and Zero-Order Correlations for Each Group Separately (N = 250) 680	

G1 (Intervention group) 

 (1) (2) (3) (4) n 

(1 )Pr1_T1 .80    137 

(2) Pr2_T1 .81 .80   137 

(3) Pr1_T2 .51 .52 .74  113 

(4) Pr2_T2 .48 .59 .78 .79 113 

M 3.44 3.49 3.62 3.71 - 

SD .75 .72 .60 .62 - 

Sk -.51 -.60 -.34 -.61 - 

Ku -.06 .43 -.13 .02 - 

G2 (Control group) 

 (1) (2) (3) (4) n 

(1 )Pr1_T1 .77    113 

(2) Pr2_T1 .76 .76   113 

(3) Pr1_T2 .74 .67 .75  91 

(4) Pr2_T2 .65 .73 .78 .75 91 

M 3.42 3.49 3.49 3.55 - 

SD .70 .71 .65 .64 - 

Sk -.39 -.55 -.27 -.41 - 

Ku -.12 -.01 -.44 -.49 - 

Note. Pr1_T1 = Parallel form 1 of the Prosociality scale at Time 1; Pr2_T1 = Parallel form 2 of 681	
the Prosociality scale at Time 1; Pr1_T2 = Parallel form 1 of the Prosociality scale at Time 2; 682	
Pr2_T2 = Parallel form 2 of the Prosociality scale at Time 2; M = mean; SD = standard 683	
deviation; Sk = skewness; Ku = kurtosis; n = number of subjects for each parallel form in each 684	
group. 685	
Italicized numbers in diagonal are reliability coefficients (Cronbach’s α). 686	
All correlations were significant at p ≤  .001. 687	
 688	
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Table 2 

Goodness-of-fit Indices for the Tested Models 

 NFP χ2(df) χ2G1(df) χ2G2(df) CFI TLI RMSEA [90% CI] SRMR AIC (ΔAIC) 
Model 1 
(G1 = A; G2 = A) 

16 22.826(12)* 18.779(6)** 4.047(6)n.s. .981 .981 .085 [.026, .138] .081 1318.690(9.68) 

Model 2 
(G1 = B; G2 = A) 

17 11.143(11)n.s. 7.096(5)n.s. 4.047(6)n.s. 1.00 1.00 .010 [.000, .095] .047 1309.007(0) 

Model 3 
(G1 = B; G2 = B) 

18 10.378(10)n.s. 7.096(5)n.s. 3.282(5)n.s. .999 .999 .017 [.000, .099] .045 1310.242(1.24) 

 NFP χ2(df) χ2G1(df) χ2G2(df) CFI TLI RMSEA [90% CI] SRMR Δχ2(Δdf) 
of M4 vs M2 

Model  4 15 13.279(13)n.s. 7.920(6)n.s. 5.359(7)n.s. 1.00 1.00 .013 [.000, .090] .160 2.136(2)n.s. 

Note. G1 = intervention group; G2 = control group; A = no-change model; B = latent change model; NFP = Number of Free 

Parameters; df = degrees of freedom; χ²G1 = contribution of G1 to the overall chi-square value; χ²G2 = contribution of G2 to the 

overall chi-square value; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error of 

Approximation; CI = confidence intervals; SRMR = Standardized Root Mean Square Residual; AIC = Akaike’s Information Criterion. 

ΔAIC = Difference in AIC between the best fitting model (i.e., Model 2; highlighted in bold) and each model. 

Model 4 = Model 2 with mean and variance of intercepts constrained to be equal across groups. 

The full Mplus syntaxes for these models were reported in Appendices. 
n.s. p > .05; *p < .05; **p < .01.
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Figure 1. Second Order Latent Curve Models with parallel indicators (i.e., residual variances of 

observed indicators are equal within the same latent variable: ε1  within η1 and ε2 within η2). All 

the intercepts of the observed indicators (Y) and endogenous latent variables (η) are fixed to 0 

(not reported in figure). In model A, the residual variances of η1 and η2 (ζ1 and ζ2, respectively) 

are freely estimated, whereas in Model B they are fixed to 0. 

ξ1 = intercept; ξ2 = slope; κ1 = mean of intercept; κ2 = mean of slope; φ1 = variance of intercept; 

φ2 = variance of slope; φ12 = covariance between intercept and slope; η1 = latent variable at T1; 

η2 = latent variable at T2; Y = observed indicator of η; ε = residual variance/covariance of 

observed indicators.
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Figure 2. Best fitting Second Order Multiple Group Latent Curve Model with parameter 

estimates for both groups. Parameters in bold were fixed. 

This model has parallel indicators (i.e., residual variances of observed indicators are equal within 

the same latent variable, in each group). All the intercepts of the observed indicators (Y) and 

endogenous latent variables (η) are fixed to 0 (not reported in figure).  

G1 = intervention group; G2 = control group; ξ1 = intercept of prosociality; ξ2 = slope of 

prosociality; η1 = prosociality at T1; η2 = prosociality at T2; Y = observed indicator of 

prosociality; ε = residual variance of observed indicator. 
n.s. p > .05; *p < .05; **p < .01; ***p < .001.
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Figure 3. Trajectories of prosocial behavior for intervention group (G1) and control group (G2) 

in the best fitting model (Model 2 in Table 2). 
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Appendix A 

Literature search strategies 

1a) Enter the following Boolean/Phrase in PsycINFO database: 

AB intervention AND AB pretest AND AB posttest AND AB follow-up 

1b) Set the following limiter -> Publication Year: 2006-2016 

 

2a) Enter the following Boolean/Phrase in PsycINFO database: 

AB intervention AND AB pretest AND AB posttest NOT AB follow-up 

2b) Set the following limiter -> Publication Year: 2006-2016 

 

Appendix B1 

Mplus syntax for Model 1 in Table 2. 
Title: Article on two time points; 
Model 1 (G1 = no-change G2 = no-change); 
 
Data: file is Frontiers.dat; 
Analysis: type is general; 
Estimator=ML; 
 
Variable: names are 
nord school cond class gender age 
PR1_T1 PR2_T1 PR1_T2 PR2_T2; 
 
usevariables are PR1_T1 PR2_T1 
PR1_T2 PR2_T2; 
 
missing are all (99); 
 
grouping is cond(1, 2); !(1 = intervention; 2 = control) 
 
Model: 
PROS1 by PR1_T1@1 PR2_T1@1; 
[PR1_T1@0]; [PR2_T1@0]; 
PR1_T1;     PR2_T1; 
 
PROS2 by PR1_T2@1 PR2_T2@1; 
[PR1_T2@0]; [PR2_T2@0]; 
PR1_T2;     PR2_T2; 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
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PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
                                      model 1: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0];  [PR2_T1@0]; 
PR1_T1 (a);  PR2_T1 (a); 
  
PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0];  [PR2_T2@0]; 
PR1_T2 (b);  PR2_T2 (b); 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
                                      model 2: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0];  [PR2_T1@0]; 
PR1_T1 (a1); PR2_T1 (a1); 
  
PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0];   [PR2_T2@0]; 
PR1_T2 (b1);  PR2_T2 (b1); 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
  
Output: standardized sampstat tech1 mod(3.84); 

 

 

Appendix B2 

Mplus syntax for Model 2 in Table 2 (the best fitting model). 
Title: Article on two time points; 
Model 2 (G1 = latent change G2 = no-change); 
 
Data: file is Frontiers.dat; 
Analysis: type is general; 
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Estimator=ML; 
 
Variable: names are 
nord school cond class gender age 
PR1_T1 PR2_T1 PR1_T2 PR2_T2; 
 
usevariables are PR1_T1 PR2_T1 
PR1_T2 PR2_T2; 
 
missing are all (99); 
 
grouping is cond(1, 2); !(1 = intervention; 2 = control) 
 
Model: 
PROS1 by PR1_T1@1 PR2_T1@1; !PROS1 = ETA AT T1 
[PR1_T1@0]; [PR2_T1@0]; 
PR1_T1; PR2_T1; 
 
PROS2 by PR1_T2@1 PR2_T2@1; !PROS2 = ETA AT T2 
[PR1_T2@0]; [PR2_T2@0]; 
PR1_T2; PR2_T2; 
 
I by PROS1@1 PROS2@1; !I = INTERCEPT 
[I]; I; 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
s by PROS1 @0; s by PROS2@1; !S = SLOPE 
s; [s]; 
i with s; 
 
                                      model 1: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0]; [PR2_T1@0]; 
PR1_T1 (a); PR2_T1 (a); !PARALLEL INDICATORS FOR ETA AT T1 (IN G1) 
  
PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0]; [PR2_T2@0]; 
PR1_T2 (b); PR2_T2 (b); !PARALLEL INDICATORS FOR ETA AT T2 (IN G1) 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1@0; !CONSTRAINED TO ZERO 
PROS2@0; !CONSTRAINED TO ZERO 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
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!!SYNTAX FOR SLOPE  
s by PROS1@0; s by PROS2@1; 
s; [s]; 
!!UNCONDITIONAL MODEL (THE ONE REPORTED IN FIGURE 2) 
i with s; 
!!CONDITIONAL MODEL (CONTROLLING FOR THE INFLUENCE OF INITIAL STATUS+ 
!!s on i; 
 
                                      model 2: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0];  [PR2_T1@0]; 
PR1_T1 (a1); PR2_T1 (a1); !PARALLEL INDICATORS FOR ETA AT T1 (IN G2) 
  
PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0];  [PR2_T2@0]; 
PR1_T2 (b1); PR2_T2 (b1); !PARALLEL INDICATORS FOR ETA AT T2 (IN G2) 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
!!SYNTAX FOR SLOPE (NOTE THAT ALL PARAMETERS ARE CONSTRAINED TO BE ZERO IN THIS 
GROUP) 
s by PROS1@0; s by PROS2@0; 
s@0; [s@0]; 
i with s @0; 
  
Output: standardized sampstat tech1 mod(3.84); 

 

Appendix B3 

Mplus syntax for Model 3 in Table 2. 

Title: Article on two time points; 
Model 3 (G1 = latent change G2 = latent change); 
 
Data: file is Frontiers.dat; 
Analysis: type is general; 
Estimator=ML; 
 
Variable: names are 
nord school cond class gender age 
PR1_T1 PR2_T1 PR1_T2 PR2_T2; 
 
usevariables are PR1_T1 PR2_T1 
PR1_T2 PR2_T2; 
 
missing are all (99); 
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grouping is cond(1, 2); !(1 = intervention; 2 = control) 
 
Model: 
PROS1 by PR1_T1@1 PR2_T1@1; 
[PR1_T1@0]; [PR2_T1@0]; 
PR1_T1;     PR2_T1; 
 
PROS2 by PR1_T2@1 PR2_T2@1; 
[PR1_T2@0]; [PR2_T2@0]; 
PR1_T2;     PR2_T2; 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
!!ADD SLOPE SYNTAX 
s by PROS1 @0; s by PROS2@1; 
s; [s]; 
i with s; 
 
                                      model 1: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0];  [PR2_T1@0]; 
PR1_T1 (a);  PR2_T1 (a); 
  
PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0];  [PR2_T2@0]; 
PR1_T2 (b);  PR2_T2 (b); 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1@0; !CONSTRAINED TO ZERO 
PROS2@0; !CONSTRAINED TO ZERO 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
!!ADD SLOPE SYNTAX 
s by PROS1 @0; s by PROS2@1; 
s; [s]; 
i with s; 
                                      model 2: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0];  [PR2_T1@0]; 
PR1_T1 (a1); PR2_T1 (a1); 
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PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0];   [PR2_T2@0]; 
PR1_T2 (b1);  PR2_T2 (b1); 
 
I by PROS1@1 PROS2@1; 
[I]; I; 
PROS1@0; !CONSTRAINED TO ZERO 
PROS2@0; !CONSTRAINED TO ZERO 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
!!ADD SLOPE SYNTAX 
s by PROS1 @0; s by PROS2@1; 
s; [s]; 
i with s; 
  
Output: standardized sampstat tech1 mod(3.84); 
 

Appendix B4 

Mplus syntax for Model 4 in Table 2. 
Title: Article on two time points; 
Model 4 (G1 = latent change G2 = no-change); !like model 2 
intercepts are constrained to be equal across groups; 
 
Data: file is Frontiers.dat; 
Analysis: type is general; 
Estimator=ML; 
 
Variable: names are 
nord school cond class gender age 
PR1_T1 PR2_T1 PR1_T2 PR2_T2; 
 
usevariables are PR1_T1 PR2_T1 
PR1_T2 PR2_T2; 
 
missing are all (99); 
 
grouping is cond(1, 2); !(1 = intervention; 2 = control) 
 
Model: 
PROS1 by PR1_T1@1 PR2_T1@1; 
[PR1_T1@0]; [PR2_T1@0]; 
PR1_T1;     PR2_T1; 
 
PROS2 by PR1_T2@1 PR2_T2@1; 
[PR1_T2@0]; [PR2_T2@0]; 
PR1_T2;     PR2_T2; 
 
I by PROS1@1 PROS2@1; 
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[I]; I; 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
!!ADD SLOPE SYNTAX 
s by PROS1 @0; s by PROS2@1; 
s; [s]; 
i with s; 
 
                                      model 1: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0];  [PR2_T1@0]; 
PR1_T1 (a);  PR2_T1 (a); 
  
PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0];  [PR2_T2@0]; 
PR1_T2 (b);  PR2_T2 (b); 
 
I by PROS1@1 PROS2@1; 
[I] (i_mean); I (i_var); 
PROS1@0; !CONSTRAINED TO ZERO 
PROS2@0; !CONSTRAINED TO ZERO 
[PROS1@0]; 
[PROS2@0]; 
 
PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
!!ADD SLOPE SYNTAX 
s by PROS1 @0; s by PROS2@1; 
s; [s]; 
i with s; 
 
                                      model 2: 
 
PROS1 by PR1_T1@1; PROS1 by PR2_T1@1; 
[PR1_T1@0];  [PR2_T1@0]; 
PR1_T1 (a1); PR2_T1 (a1); 
  
PROS2 by PR1_T2@1; pros2 by PR2_T2@1; 
[PR1_T2@0];   [PR2_T2@0]; 
PR1_T2 (b1);  PR2_T2 (b1); 
 
I by PROS1@1 PROS2@1; 
[I] (i_mean); I (i_var); 
PROS1; 
PROS2; 
[PROS1@0]; 
[PROS2@0]; 
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PR1_T1 with PR1_T2; 
PR2_T1 with PR2_T2; 
 
!!ADD SLOPE SYNTAX (CONSTRAINED TO ZERO) 
s by PROS1 @0; s by PROS2@0; 
s@0; [s@0]; 
i with s @0; 
  
Output: standardized sampstat tech1 mod(3.84); 
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