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Abstract
Dietary folates have a key role to play in health as deficiencies in the intake of

these B vitamins have been implicated in a wide variety of clinical conditions.

The reason for this is folates function as single carbon donors in the synthesis of

methionine and nucleotides. Moreover, folates have a vital role to play in the

epigenetics of mammalian cells by supplying methyl groups for DNA methylation

reactions. Intriguingly, a growing body of experimental evidence suggests DNA

methylation status could be a central modulator of the ageing process. This has

important  health  implications  because  the  methylation  status  of  the  human

genome could be used to infer age-related disease risk. Thus, it is imperative we

further our understanding of the processes which underpin DNA methylation and

how these intersect with folate metabolism and ageing.  The biochemical  and

molecular mechanisms which underpin these processes are complex. However,

computational modelling offers an ideal framework for handling this complexity.

A number of computational models have been assembled over the years, but to

date no model has represented the full  scope of the interaction between the

folate cycle and the reactions which govern the DNA methylation cycle. In this

review we will  discuss  several  of  the models  which  have  been developed to

represent these systems. In addition we will present a rationale for developing a

combined model of folate metabolism and the DNA methylation cycle. 

Keywords:  folate metabolism, computational model, DNA methylation, ageing, 

stochastic model



Introduction 
The term ‘folate’ (vitamin B9) is used to denote a group of compounds which

possess the same vitamin activity and includes natural folates as well  as the

pharmacological  compounds  folic  acid  and  folinic  acid  [1].  The  dietary

importance of folate cannot be overstated. This is emphasized by the wide range

of  clinical  disorders  which  correlate  with  low  folate  status  [2-4].  In  addition,

polymorphisms  in  genes  coding  for  folate  dependent  enzymes  [5,  6]  are

associated with several  cancers (cervical,  bronchial,  colon and breast)  [7-10],

Alzheimer’s  disease  [11],  Down  syndrome  [12],  unexplained  recurrent  early

pregnancy loss and pre-eclampsia [13].These associations are unsurprising when

one  considers  that  folates  are  involved  in  a  ubiquitous  array  of  cellular

processes. For instance, folates are involved in the synthesis of nucleotides from

purine  precursors,  participate  indirectly  in  the  synthesis  of  transfer  RNA and

function  as  single  carbon  donors  during  the  re-methylation  of  homocysteine

(Hcy) to methionine [14] (Figure 1). Folate-derived one-carbon units also play a

central role in DNA methylation [15, 16]. This epigenetic process involves methyl

groups  covalently  bonding  to  CpG  dinucleotides  to  establish  tissue  specific

methylation patterns. A CpG dinucleotide consists of a deoxycytidine followed by

a deoxyguanidine, with the “p” indicating the phosphate group between these

nucleotides. Covalent bonding of methyl groups occurs at the carbon-5 position

of a deoxycytidines to create a methylated CpG dyad [11, 12]. Dynamic changes

to  methylation  patterns  are  an  important  gestational  phenomenon,  which



regulate gene expression during embryonic development [17]. However, during

adult  life  alterations  to  DNA  methylation  patterns  can  have  significant

implications for the onset of disease [18, 19]. Specifically, advancing age is often

accompanied by global hypomethylation [20-23] in conjunction with site specific

hypermethylation  at  the  promoter  region  of  a  variety  of  genes  [24-27].

Hypermethylation,  involves  CpG  islands  (~500-2000  base  pairs)  within  the

promoter  becoming  excessively  methylated  [28,  29],  and  often  occurs  with

concomitant transcriptional silencing [30, 31]. Gene promoter hypermethylation

is a feature of certain diseases, the most notable being cancer [25]. For instance,

Wang  et al. (2016) [32] recently found that  DNA methylation changes during

ageing were closely correlated to the occurrence of cancer. In addition to cancer

aberrant DNA methylation has an emerging role to play in many age related

diseases including, cardiovascular disease (CVD) [33], Alzheimer’s disease [34]

and osteoporosis/osteoarthritis [35]. Such findings consolidate the growing view

that DNA methylation status and health-span are inexorably entwined. Moreover

it has also been revealed that investigating changes to the methylation profile of

the genome could help develop our understanding of ageing.  This  assertion is

supported by the recent bioinformatics work of Horvath (2013) [36] who utilized

publicly  available  methylation  data  sets  to  identify  an  “epigenetic  clock  “

underpinned  by  methylation  changes  in  353  CpGs.  Intriguingly,  Horvarth

postulates that “DNA methylation age” measures the cumulative effect of  an

epigenetic maintenance system. This finding indicates that a deeper mechanistic

understanding of DNA methylation preservation could be pivotal to improving our

overall understanding of ageing and health-span.  

To extend our understanding of DNA methylation and its bidirectional relationship

with ageing it  is  imperative we consider how subtle alterations to folate one



carbon metabolism (FOCM) impact the regulatory  processes which govern DNA

methylation. Specifically, it is necessary to explore how such perturbations affect

gene promoters which are susceptible to hypermethylation. In addition, it is vital

we consider how other factors associated with ageing impact this relationship.

However,  this  is  not  a  straightforward  task  as  both  FOCM  and  the  DNA

methylation  cycle  are  complex  processes  which  are  underpinned  by  a  large

number  of  biochemical  and  molecular  reactions  (Figure  1).  Many  of  these

reactions are non-linear in nature and are influenced by a variety of  other B

vitamins/nutrients and enzymatic cofactors [37]. Ageing adds a further degree of

complexity  by  altering  the  dynamics  of  the  reactions.  For  example,  age-

dependent  decreases  in  the  expression  levels/activity  of  human  methionine

synthase  (MS) and  methylenetetrahydrofolate  reductase  (MTHFR)  have  been

observed [38, 39]. Both enzymes are recognised as key regulators of FOCM and

expression/activity  changes potentially  affect  their  reaction kinetics.  Similarly,

the activity of human DNA methyltransferase 1 (Dnmt 1), a key enzyme involved

in the addition of methyl groups to cytosine residues, has also been observed to

decrease with age [40]. Moreover, ageing also affects the availability of cofactors

such as vitamin B12 [41], which is central to FOCM, while oxidative stress, which

is generally regarded as a key contributor to ageing, has been observed to effect

both DNA methylation and FOCM [42, 43]. Furthermore, it is not uncommon that

older people have diminished folate status as a result of a low dietary intake of

the  vitamin  [44].  Thus,  it  is  necessary  to  consider  an  array  of  factors  when

investigating  the  maintenance  of  DNA  methylation.  Fortunately,  there  is  a

growing appreciation that complex biological process can be studied in a holistic

manner by adopting a systems biology approach [45]. Computational modelling

resides  at  the  centre  of  this  paradigm  shift  as  it  provides  a  framework  for

representing and exploring the dynamics of  complex systems [46-50].  In  this



review we discuss the role computational modelling has played in developing our

understanding of FOCM and DNA methylation. In addition we propose coupling

FOCM and the DNA methylation cycle into one computational model, which could

be used to further explore the dynamics of their relationship. 

Folate metabolism and the DNA methylation Cycle
FOCM is fundamentally important to DNA methylation. Various folates are the

cofactors for the  de novo synthesis of methyl groups from more oxidized one

carbon units and 2) the methyl groups on 5-methyltetrahydrofolate are used to

re-methylate  hcy  to  methionine  and  to  regenerate  tetrahydrofolate,  the

metabolically  active  form  of  folate.  Methionine  is  a  precursor  of  S-

adenosylmethionine (SAM), which has a predominant role to play in the majority

of biochemical methyl donation events, including that of DNA methylation. Post

replication, Dnmt1 uses SAM as a substrate to transfers methyl groups to the

DNA molecule [51] this produces S-adenosylhomocysteine (SAH). SAH is then

converted to Hcy permitting the continuation of the methylation cycle [52, 53]

(Figure 1). In conjunction with Dnmt1 DNA methylation patterns are dynamically

regulated by several other enzymes (Figure 1). As, Dnmt1 preferentially acts on

hemimethylated  DNA and  is  potentially  unable  to  methylate  neo-synthesized

DNA strands, this enzyme is generally regarded as solely a maintenance enzyme

[54].Thus,  other  enzymes  are  needed  to  perform  de  novo DNA methylation.

Dnmt3a and Dnmt3b are widely regarded as the main enzymes responsible for

this role [55, 56]. These methylation reactions are offset by active and passive

demethylation.  Passive  demethylation  occurs  during  replication,  while  active

methylation  can  involve  ten  eleven  translocation  (TET) dioxygenases,  which

oxidize  the  methyl  groups  of  cytosine  [57].  TET are  thought  to  function  by

oxidizing the methyl groups of cytosine. This process eventually culminates with

the reintroduction of unmethylated cytosine in the DNA molecule [57]. Thus, it



would appear that the steady state levels of both site specific and global DNA

methylation patterns are maintained by an antagonistic balancing act between

those  activities  responsible  for  maintenance/de  novo  methylation  and  those

reactions  responsible  for  passive/active  demethylation.  Moreover,  methylation

fidelity studies suggest these processes are subject to inherent stochasticity. For

example, Landan et al. (2012) [58] tracked the in vitro evolution of immortalized

fibroblasts for >300 generations and found that changes in population-averaged

methylation occur through a stochastic process. In addition, Shipony et al. (2014)

[59] suggest  the persistence  nature  of  the somatic  methylome is  one factor

which makes it increasingly vulnerable to noise with time. This is intriguing from

the perspective of ageing  as it would appear that in young somatic cells, site

specific methylation density is characterised by low level noise, which maintains

average methylation density. Therefore, the persistent nature of the methylome

and  increased  stochasticity  with  time  could  contribute  to  the  formation  of

aberrant DNA methylation patterns which are a hallmark of the ageing process in

humans. 

Computational Models of Folate Metabolism 
The models described in the next two sections are summarised in Table 1 and 2

respectively. Models  of  FOCM  have  traditionally  adopted  a  continuous

deterministic approach, with the dynamics of the system being represented by

ordinary  differential  equations  (ODEs),  which  are  underpinned  by  kinetic

reactions  [60].  In the main reaction velocities are assumed to depend on the

concentrations of the reaction substrates (the law of mass action [61]). Rate laws

for more complex reactions laws are in general described by Michaelis–Menten

kinetics  [62]  for  one,  two,  or three  substrates  assuming  a  random-order

mechanism.  The following  mathematical  expressions  taken  from  the  recent

model  by  Salcedo-Sora  and  Mc  Auley  (2016)  [63] encapsulate  the  different



Michaelis–Menten  based  functional  forms  as  used  for  one ,  two,  and  three

substrates  in  these  types  of  kinetic  models,  where  V  is  the  velocity  of  the

reaction, Vmax, is the theoretical maximum velocity of the reaction, S1 to S3 are

substrates and km1 to km3 are the substrate concentrations at which the reaction

is half maximum velocity. 

The  first  mathematical  model  to  adopt  this  kinetic  approach  to  represent

intracellular folate metabolism was developed in the 1970s and had a strong

pharmacological theme [64]. It was used to simulate the actions of methotrexate

on DNA synthesis. The next significant computational model of the folate cycle,

was developed by  Nijhout  et al. (2004) [65]. This model is underpinned by the

enzyme  kinetic  data  that  characterises  the  reactions  in  Figure  1,  and  was

assembled using the type of mathematical equations outlined above. As well as

being  the  first  detailed  mathematical  description  of  the  folate  cycle,  model

simulations were able to quantitatively reproduce the intracellular levels of the

various  folate  metabolites  and  the  model  was  able  to  predict  the  effect  of

vitamin B12 deficiency. Building on this work,  Reed et al. (2006) [66] used this

model combined with models of methionine metabolism [67, 68] to investigate

genetic polymorphisms in the folate pathway. Polymorphisms in MTHFR predicted

a reduction in MTHFR activity reduces concentrations of SAM and 5-MTHR, and
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DNA  methylation,  while  slightly  increasing  SAH  and  hcy  concentrations  and

thymidine  or  purine  synthesis.  Decreased  folate  together  with  a  simulated

vitamin B12 deficiency resulted in decreased DNA methylation and purine and

thymidine synthesis. This model was also used as a template to study the effect

of  intracellular  folate  deficiency  and  excess.  The  model  suggested  that  the

enzyme  thymidylate  synthesis  is  very  sensitive  to  changes  in  epithelial

intracellular  folate  and  increased  significantly  under  conditions  of  high

intracellular folate [69]. This framework was further extended by Duncan et al.

(2013) [70] to hepatic and plasma folate turnover. It was applied to a population

of  virtual  individuals  and  showed  that  tissue  and  plasma  folate  is  highly

correlated,  but  liver  and  plasma  folate  much  less  so.  Moreover,  this  model

showed  that  oxidative  stress  increases  the  plasma  S-adenosylmethionine/S-

SAM/SAH ratio. The most recent ODE model of folate metabolism was developed

by Salcedo-Sora and Mc Auley (2016) [63]. Our model is the first computational

model of microbial folate biosynthesis and utilisation. Using the model we were

able to identify specific targets within folate metabolism which synergise with

current antifolates. In addition the results from our model support experimental

findings  which  suggest  the  folinic  acid  substrate  cycle  is  an  important

biochemical mechanism deployed during active cell growth. A key finding which

emphasizes  the  utility  of  computational  models  for  shedding  light  on  this

complex system. 

Computational Models of the DNA Methylation Cycle
A  variety  of  approaches  have  been  used  to  model  various  aspects  of  DNA

methylation  [71-79].  Our  focus  is  the  precise  representation  of  the  DNA

methylation cycle.  To this end the DNA methylation cycle has been modelled

explicitly by McGovern et al. (2012) [80]. The model centred on the activity of

DNMTs  and  partial  differential  equations  was used  to  represent  methylation



reactions. It was used as a predictive tool for haematological malignancies. The

model  was  able  to  predict  the  relative  abundances  of  unmethylated,

hemimethylated,  fully  methylated,  and  hydroxymethylated  CpG  dyads  in  the

DNA of cells with fully functional methylation and TET enzymes. In addition to

this deterministic framework stochastic models of the methylation cycle have

also been used to study the methylation cycle.  The goal  has been to derive

models  which  account  for  the  noise  associated  with  maintaining  DNA

methylation  levels.  For  example,  a  reduced  probabilistic  mathematical

representation of methylation dynamics (known as the standard/classical model)

has been proposed by Pfeifer et al. (1990) [81], and further utilised by Riggs and

Xiong (2004) [82]. This model is presented in equations 4-7. 

To briefly explain ODEs 4 and 5, and equations 6 and 7, M is a CpG site, U is its

unmethylated  state,  Ed is  the  efficiency  of  de  novo methylation,  Em is  the

efficiency of maintenance methylation, M is the number of methylated sites, M∧

is  the  fraction  of  methylation,  while  equation  7  represents  the  steady  state

solution to ODEs 4 and 5 when dM∧/dt=0. This model is underpinned by the idea

that  site specific methylation levels  are  underscored by a stochastic  process,

where  de novo and  maintenance  methylation  activity  are  central.  Recently

Jeltsch and Jurkowska (2014) [83] provided an intriguing theoretical extension to

this  concept.  Jeltsch  and  Jurkowska  propose  a  stochastic  model  which  also

includes the rate of cell division together with passive and active demethylation
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(equation 8). 
i
m , is the change in the fraction of methylation at any CpG site (i).

This  is  determined  by  the  difference  between  the  rate  of  de  novo DNA

methylation  (
i
metr )  and  rates  of  loss  of  methylation  by  replication  and  active

demethylation  (
i
demethr )  at  this  site.  D,  is  the  rate  of  cell  division,  

i
mainf  is  the

efficiency of maintenance methylation at site i.  

According  to  the  authors,  equation  8  has  the  significant  advantage  over  its

predecessor as it includes the possibility of proofreading/repair mechanisms due

to the incorporation of  negative feedback.  This level  of  regulation is  attained

because  an  increase  in  methylation  causes  a  reduction  in  the  first  term  of

equation 8 with a subsequent increase in the second term. Consequently the

methylation rate drops and demethylation increases, resulting in a stable steady-

state methylation level at each site. To our knowledge this theoretical framework

has yet to be applied to experimental data or simulated dynamically. A stochastic

mathematical  framework  also  inspired  Haerter  et  al.  (2014)  [84] to  create  a

computational  model  of  this  system.  Their  model  differs  from  the

classical/standard  model  as  it  included  dynamic  collaboration  between  CpGs.

More recently Olariu et al. (2016) [85] built on the work of Haerter et al. (2014)

to model the regulation of transcription and DNA methylation.

Rationale  for Computationally  Integrating  FOCM  and  the  DNA
Methylation Cycle
Computational models of FOCM are not fully integrated with the DNA methylation

cycle.  Rather,  as  outlined they have been restricted to the cycle  itself  or  its

1
*(1- ) (1 )+ *   [8]

2
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i
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met m main demeth m

d
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involvement  with  DNA  synthesis  and  have  tended  not  to  include  the  DNA

methylation cycle. Some have attempted to account for DNA methylation but no

model to our knowledge has explicitly integrated both systems in a meaningful

way. We propose computationally integrating FOCM and the methylation cycle.

Our biological rationale is unpinned by the knowledge that perturbations in the

folate  cycle  are  strongly  coupled  with  aberrant  DNA  methylation.  This  is

evidenced  by  the  association  between  low  folate  status,  global  DNA

hypomethylation  and  increased  cancer  risk  [86].  In  addition,  genetic

polymorphisms most notably in the MTHFR gene, which codes for  MTHFR, an

enzyme which catalyses the conversion of 5, 10-methylenetetrahydrofolate to 5-

methyltetrahydrofolate (5-MTFHF) (Figure 1) is associated with gene promoter

hypermethylation [87]. Moreover, methionine synthase A2756G (MTR A2756G) is

a common polymorphism in the gene encoding  MS. This enzyme catalyses the

regeneration of methionine from hcy and disruptions to its enzymatic capabilities

also emphasise the close link between folate metabolism and disruptions to DNA

methylation.  For  instance,  Weiner  and  colleagues  (2014)  [87] found  that

individuals homozygous for this mutant allele showed higher leukocyte genomic

DNA methylation levels than individuals possessing the wild-type genotype (MTR

2756AA). It makes mechanistic sense that perturbations of this nature to FOCM

have  an  impact  on  DNA  methylation,  as  5-methyltetrahydrofolate,  is  a

cosubstrate  for  hcy  remethylation  to  methionine,  while  MS  modulates  the

dynamics of this reaction and perturbations to this enzyme result in a rise in

plasma hcy [88], which is associated with CVD [89]. Intriguingly, a rise in plasma

hcy has also been associated with gene promoter hypermethylation [90-93] and

global hypomethylation [94-96] of human DNA. 



In addition to perturbations due to genetic mutations it is important to recognise

that FOCM compartmentalisation could have implications for DNA methylation

status as compartmentalisation of  FOCM has a role  to  play in regulating the

distribution of one-carbon units within the cell.  The partitioning of one-carbon

units between nucleotide synthesis and hcy remethylation is the focal point of

this  process,  where  methylenetetrahydrofolate  (MTHF)  is  at  the  centre  of  a

metabolic competition [97, 98].  On the one hand MTHF is used as a cofactor

during  nucleotide  synthesis  to  facilitate  the  conversion  of  dUMP to  dTMP by

thymidylate synthase (TYMS). However, MTHF can also be reduced and is then

fully committed to the remethylation of hcy. The separation of FOCM into distinct

cellular compartments is the determining factor which regulates the competition

between  TYMS  and  MTHFR  for  MTHF  [99].  This  regulation  requires  the

trifunctional,  enzyme  methylenetetrahydrofolate  dehydrogenase  (MTHFD1),

whose activity depends on its cellular location [99]. The interdependence of this

enzymes activity to its location and its involvement in regulating the competition

between  MTHFR  and  TYMS  is  evident,  when  intracellular  folate  levels  are

deficient, as insufficient levels of folate cause an accumulation of MTHFD1 in the

nucleus, when compared to its cytosolic counterpart [100]. The nuclear build-up

of  MTHFD1  emphasises  FOCM  will  sacrifice  hcy  remethylation  in  favour  of

nucleotide synthesis and underscores the regulatory role compartmentalisation

plays in one-carbon metabolism.  Intriguingly  this  aspect  of  FOCM could  have

wider implications as recently it has been shown that changes to MTHFD1 can

affect the regulation of DNA methylation. Groth  et al. (2016) [101] identified a

mutant  (mthfd1-1)  in  Arabidopsis  thaliana, which  carried  a  mutation  in

cytoplasmic MTHFD1. This mutant suffered from accumulation of hcy and SAM,

coupled  with  extensive  genome-wide  hypomethylation.  Compartmental

regulation  of  FOCM is  also  highlighted  by  cyserine  hydroxymethyltransferase



(SHMT).  SHMT1  catalyses  the  conversion  of  tetrahydrofolate  (THF)  to  5,  10-

methylenetetrahydrofolate and also converts serine to glycine. It has been found

that cytosine serine hydroxymethyltransferase (cSHMT1) preferentially supplies

one-carbon units for thymidylate synthesis [98, 102]. Mechanistically, it is has

been found this preference is mediated by small ubiquitin-like modifier (SUMO)

modification. This alteration enables the  translocation of  SHMT to the nucleus

and  also  modifies  its  catalytic  capabilities  [103].  Sumoylation  could  also  be

crucial to both DNA methylation and demethylation as SUMO-1 modification of

DNMT1 had been shown to significantly enhance DNMT1 activity [104]. It is also

possible  sumoylation  is  capable  of  modulating  the  activity  of  Dnmt3a  and

Dnmt3b  [105].  This  level  of  crossover  between  FOCM and  DNA  methylation

consolidates the view that  disruptions to FOCM impact  the dynamics of  DNA

methylation/demethylation events. However, the full extent of this relationship

remains  to  be  elucidated,  hence  the  growing  need  for  an  integrated

computational model to explore the complex interactions of these systems. 

Theoretical Frameworks and Obstacles to Creating a Combined Model 
To develop a combined model several theoretical approaches could be adopted.

FOCM could be retained as a set of kinetic based ODEs, as is the case in the

majority of models of this nature. It would then be straightforward to add the

methylation cycle as ODEs also and to define the combined system as a coupled

set of ODEs. Despite the obvious computational advantages of this simplification,

these benefits are offset by several factors. Firstly, to assemble this deterministic

model the ODEs need to be informed by kinetic data, which accounts for the

behaviour  of  the  methylation  enzymes.  This  is  not  a  straightforward  task  as

parameter uncertainty is a significant issue in the field of computational systems



biology. As outlined, kinetic based models of folate metabolism tend to have rate

laws where the velocity of a reaction assumes mass action kinetics or is based on

an  enzyme kinetic  law (e.g.  Michaelis–Menten  kinetics). Unfortunately  kinetic

parameters can vary significantly depending on the circumstances in which their

kinetics were quantified and the biological source, with the possibility of model

parameters varying by several orders of magnitude depending on the particular

source [106]. Therefore, it is extremely unlikely that a mathematical model can

be assembled from one biological source. This is highlighted by our recent model

of  microbial  folate  metabolism,  where  the  parameters  were  derived  from  a

number of sources [63].  It  is also a feature of the mammalian computational

models which have previously relied on data from rat, mice and human studies

[65]. Despite such pitfalls, there is no alternative to this approach of determining

model parameters. To this end, a number of databases now exist which archive

kinetic data for the purpose of assembling computational models [107, 108]. We

used these databases to identify a series of indicative kinetic parameters for the

model outlined diagrammatically in Figure 1 and are summarised in Table 3. The

identification  of  these  parameters  serve  to  emphasize  that  it  is  possible  to

assemble  a  combined  kinetic  model  of  folate  metabolism  and  the  DNA

methylation cycle based on human data, however the data is limited. Moreover,

we were able to identify kinetic parameters for Dnmt1 and Dnmt3A [109, 110],

however kinetic information for the TET demethylation enzymes could not be

identified. 

Although  as  outlined  above  it  is  clearly  possible  to  assemble  a  combined

deterministic  kinetic  model,  given  experimental  evidence  indicates  DNA

methylation  events  are  underscored  by  stochasticity  a  kinetic  based

deterministic approach is not the correct way to model this aspect of the system.



A more accurate way is to incorporate noise into the model. The standard way of

representing noise within biological cells is to describe it mathematically by a

master  equation  or  to  simulate  molecule  fluctuations  by  using  a  stochastic

simulation  algorithm  (SSA),  such  as  the  Gillespie  algorithm  or  one  of  its

derivatives [111, 112]. Routinely embedded within the idea of intracellular noise

is the concept of intrinsic versus extrinsic noise, as developed experimentally by

Elowitz and colleagues (2002) [113]. Within this context intrinsic noise refers to

the variability inherent to the system under consideration, while fluctuations in

those factors classified as external to the system of interest are responsible for

extrinsic  noise  (Figure  2).  Specifically,  this  mathematical  approach  has  been

ubiquitously applied to the study of  cell  to cell  variability in  gene expression

levels within isogenic cell populations [114-117]. 

Applying the above logic to our indicative model it can be argued the reactions of

the  methylation  cycle  are  responsible  for  generating  intrinsic  noise  e.g.  the

inherent statistical mechanical fluctuations in the binding and diffusion dynamics

of  the  molecules  involved  in  maintaining  methylation  levels  within  a  CpG

island/gene body. Conversely, DNA methylation/the epigenetic state of the cell is

considered  to  be  a  component  of  extrinsic  noise  when  variations  in  gene

expression are modelled in this way. We suggest extrinsic noise in our integrated

model arises due to biochemical  fluctuations originating from the folate cycle

and  other  cell  parameters  particularly  those  related  to  ageing  (Figure  2).

Including  biochemical  noise  arising  from  FOCM  is  crucial  especially  if  one

considers that site specific (e.g. gene promoter) DNA methylation events interact

with  FOCM  within  a  microscopic  rather  than  macroscopic  environment.  This

microenvironment is characterised by low molecular populations, which react at

discrete  time-points,  via  random collisions  between individual  molecules.  The



advantage of this framework is its simplicity as a complex biological network is

reduced to a much simpler abstraction. A drawback of this approach is that it

reduces  the  methylation  cycle  and  FOCM  to  two  variables  within  a

phenomenological  model,  which lumps all  sources of  extrinsic  noise together.

Moreover, as we are concerned with the complexities of the reactions of folate

metabolism and how changes to these impact  DNA methylation events,  it  is

challenging to separate this source of noise from other extrinsic events e.g. the

impact of the cell cycle. A further challenge associated with this proposal is that

in order to characterise the intrinsic noise for a given gene promoter it would be

necessary  to  experimentally  characterise  promoter  specific  cell  to  cell

methylation variability in young disease free cells and how this relates to protein

expression levels. For instance, microscopy or flow cytometry are routinely used

to  quantify  protein  expression  variability  in  reporter  genes  embedded  in

homogenous cell populations [118, 119]. Protein count distributions then provide

an overview of cell to cell fluctuations in gene expression. The stochastic profile

can  then  be  characterised  as  the  squared  coefficient  of  variation  of  the

fluorescence levels [120], the coefficient of variation [113] or the Fano Factor

[121]. Therefore, it would be necessary to develop experimental methods which

are  capable  of  determining the  exact  nature of  the  stochasticity  of  the  DNA

methylation process. However, given that DNA methylation levels are quantified

in a totally different manner to protein fluctuations it is could be challenging to

define/characterise its stochastic signature in a precise way experimentally. Next

generation sequencing techniques could help to alleviate this problem. These

techniques enable the determination of the methylation status at each cytosine

for a specific segment of the genome. An eloquent example of this approach is

the work of Hansen et al. (2011) [122], who showed stochastic methylation of

cancer-specific DNA-methylated regions. This was able to distinguish cancer from



normal tissue. More recently Cheow et al. (2016) [123] developed a method to

genotype individual cells while concurrently probing gene expression and DNA

methylation  levels  at  multiple  loci.  Such  methods  could  help  identify  an

individual stochastic signature for a particular gene promoter/gene body, which

would help inform the mathematics underpinning future computational models.

An alternative to the reduced stochastic model approach would be to explicitly

represent  each  deterministic  kinetic  reaction  within  FOCM  and  the  DNA

methylation  cycle  as  stochastic  propensity  functions  and  to  simulate  the

integrated  model  with  a  SSA  [99],  as  has  been  done  with  other  complex

biochemical systems [124]. In Figure 2 part b we have created a list of reactions

which could be represented as propensity functions, where C1-  C7 are indicative

of stochastic rate constants. This is not unrealistic as mathematical approaches

have been developed previously  for  converting deterministic  systems biology

models into stochastic models [125-127]. However, regardless of the approach it

is  our  opinion  that  future  computational  models  should  combine  these  two

systems together. Moreover, it is imperative that any combined model accounts

for the biochemical and molecular variability which is inherent to both systems.

This will improve our overall understanding of how those gene promoters which

appear  to  be  susceptible  to  hypermethylation  interact  with  both  folate

metabolism and the ageing process. 

Conclusions

Folate metabolism and the DNA methylation cycle are inexorably entwined as the

folate  cycle  provides  the  methyl  groups  used  in  DNA  methylation  reactions.

Experimental evidence suggests the dynamics of the folate cycle and the DNA

methylation  cycle  are  subject  to  inherent  stochasticity.  Investigating  this

behaviour  is  challenging,  however  computational  modelling  offers  and  ideal

framework for  exploring  the  interactions  between these  two systems.  In  this



review  we  proposed  building  a  computational  model  of  folate  metabolism

coupled with the reactions of the methylation cycle. This model would help to

further explore the dynamics of this relationship and could be used to investigate

how disruptions to these processes result in aberrant DNA methylation status,

specifically gene promoter hypermethylation.

Key Points 

 Folate metabolism has a vital role to play in health and possibly intrinsic

ageing

 Folates  supply  methyl  groups  for  DNA methylation reactions  which  are

central to gene regulation. 

 Dynamic computational models have been successfully used to study the

complexities  of  folate  metabolism  and  the  DNA  methylation  cycle

respectively, but no model has fully coupled both systems.  

 To combine both systems computationally it is important to account for

the inherent stochasticity which influences the dynamics of both systems. 

 Incorporating inherent biochemical and molecular variability will  provide

an improved understanding of how perturbations to these systems impact

the onset of disease and will  help to further elucidate the bidirectional

relationship between ageing and DNA methylation.

Glossary
Deterministic model A  model  which  assumes  variability  does  not  impact  the

system of interest. The model will produce the same output
given the same initial conditions and parameters. 

Extrinsic noise Fluctuations in the factors external to the biological system
of  interest  e.g.  biochemical  fluctuations  in  the  folate
pathway and its impact on gene expression. 



Gillespie algorithm An algorithm used to generate stochastic models of reaction 
networks.

Intrinsic noise Noise associated with a biological system of interest e.g. in 
the case of this review, site specific DNA methylation.

Stochastic model A  model  grounded  in  probability  theory  which  is  used  to
represent the variability inherent in biological processes. In
this  review  we  suggest  FOCM is  combined  with  the  DNA
methylation cycle into a single stochastic model, to capture
the inherent variability in body systems.

Figure1. Folate metabolism and its intersection with DNA Methylation: Ingested
folates, are the cofactors for the de novo synthesis of methyl groups. Methyl groups on 5-
methyltetrahydrofolate are used to re-methylate homocysteine (Hcy) to methionine, with
the  aid  of  vitamin  B12  and  methionine  synthase.  This  reaction  regenerates
tetrahydrofolate, the metabolically active form of folate. Methionine is a precursor of S-
adenosylmethionine  (SAM),  which  has  a  predominant  role  to  play  in  the  majority  of
biochemical  methyl  donation  events,  including  that  of  DNA  methylation.  DNA
methyltransferase 1 is central to maintaining genomic methylation patterns, while DNA
methyltransferase 3a and 3b are both involved in  de novo methylation reactions. Ten
eleven translocation (TET) dioxygenases are actively involved in demethylating cytosine,
while CH3 groups are also lost passively. Pink circles indicate methylated CpG’s. 

Figure 2. Stochastic contributions to CpG island methylation: Methylation density
is  affected by intrinsic  and extrinsic  noise.  On the one hand noise is  necessary and
evolution has finely tuned this system so that stochasticity helps to maintain average
methylation  density  in  young  cells.  However,  the  ageing  process  results  in  gradual
increase in stochasticity which eventually culminates with promoter hypermethylation.
During aging gene promoter methylation has been identified within a wide variety of
genes involved in health-span/ageing (Refer to table 4 for full function and description).
Included also are  the  equations which  define intrinsic  and extrinsic  noise,  which are
discussed in the main text (Mathematical equations based on framework introduced by
Elowitz colleagues (2002) [113]).  Part  B presents a summary of  the combined model
represented by a set of indicative reactions which could be modelled using propensity
functions.  Abbreviations:  F,  folate;  THF,  tetrahydrofolate;  5MTHF,  5-
methyltetrahyrofolate; 510MTHF, 5,10 methylenetetrahydrofolate; Met, methionine; SAM,
S-adenosylmethionine;  SAH,  S-adenosylhomocysteine;  Hcy,  homocysteine;  DHF,
dihydrofolate; 10Form, 10,formyl THF.

Tables 1 to 4. 
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Table 1 A summary of the models of folate metabolism cited in the text. 
Authors Title Model Overview/Predictions Computational Methods

Used
Jackson
and
Harrap
(1973)
[64]

Studies  with  a
mathematical
model  of  folate
metabolism

Included  the  main  reactions
involved  in  cellular  folate
metabolism  in  mouse  leukaemia
cells.  Used to  predict  time  course
changes in purine and thymidylate
biosynthesis rates.  

A deterministic framework
consisting  of  a  system of
integrated  equations.
Kinetic  parameters  were
determined  from  pre-
existing  experimental
data.

Nijhout  et
al.  (2004)
[65]

A  mathematical
model  of  the
folate cycle: new
insights  into
folate
homeostasis

Folate  cycle  underpinned  by
enzyme  kinetics.  Used  to  explore
the  ‘methyl  trap  hypothesis’  ,  the
effects  of  methotrexate  and
sensitivities  to  variation  in
enzymatic parameters 

A deterministic ODE based
kinetic  model  constructed
using the assumption that
most  reactions  in  the
folate  cycle  are
bimolecular.  

Reed et al.
(2006)
[66]

A  mathematical
model  gives
insights  into
nutritional  and
genetic  aspects
of  folate-
mediated  one-
carbon
metabolism

Model  of  FOCM.  Predictions
included  the  inverse  association
between  hcy  and  very  low  folate
levels,  DNA  methylation  reaction
rate  is  relatively  insensitive  to
changes in  folate  pool  size,  folate
concentrations  become  very  high,
enzyme  velocities  diminish,
mutations  in MTHFR reduces SAM

Deterministic  ODE  model
created by combining the
model  by   Nijhout  et  al.
(2004)  and  models  of
methionine  metabolism
[67, 68]

Neuhouser
et  al.
(2011)
[69] 

Mathematical
modeling
predicts  the
effect  of  folate
deficiency  and
excess  on
cancer-related
biomarkers

FOCM model used by this group. 
Used  to  predict:  the  effect  of  a
broad  range  of  intracellular  folate
concentrations simulating variation
in  folate  status  on  mechanisms
relevant to carcinogenesis.

Deterministic model based
on [66]. 

Duncan  et
al.  (2013)
[70] 

A  Population
Model  of  Folate-
Mediated  One-
Carbon
Metabolism[70]

Compartmental  body  model  folate
metabolism.
Showed tissue and plasma folate is
highly  correlated,  but  liver  and
plasma  folate  much  less  so.
Oxidative  stress  increases  the
plasma SAM/SAH ratio. 

Models from [65, 66] were
incorporated into liver and
plasma compartment.
Coupled set of ODEs
Random  number  used  to
generate  a  virtual
population  of  10000
individual  each  with
different folate metabolism
Model  constructed  using
Matlab

Salcedo-
Sora and
Mc  Auley
(2016)
[63]

A  mathematical
model  of
microbial folate
biosynthesis and
utilisation:
implications for
antifolate
development

First  model  to  be  assembled  of
folate biosynthesis and utilisation. 
The  model  suggested  a  particular
small  set  of  folate  intermediates
are  specific  targets  which  could
complement  current  antifolates,
and  the  model  substantiates  the
case  for  a  substrate  cycle  in  the
folinic acid biosynthesis reaction.

Deterministic ODE model
Folate  pathway  informed
by the KEGG database 
http://www.genome.jp/keg
g/) and kinetic parameters
were  compile  from  the
enzyme database BRENDA
http://www.brenda-
enzymes.org/  

http://www.brenda-enzymes.org/
http://www.brenda-enzymes.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/


Table 2 A summary of DNA methylation models cited in the text.
Authors Title Model Features /Predictions Computational Methods 

Used
Capra et 
al. 
(2014) [7
1]

Modeling DNA
methylation 
dynamics with
approaches 
from 
phylogenetics

The model was capable of inferring 
unobserved CpG methylation states 
from observations at the same sites 
in related cell types (90% correct).

Continuous-time Markov chain
approach. 
R source code: 
www.kostkalab.net/software.

Genereux 
et al. 
(2005)
[72]

A population-
epigenetic 
model to infer
site-specific 
methylation 
rates from 
double-
stranded DNA 
methylation 
patterns.

Population-model of DNA 
methylation dynamics. Can infer 
site-specific rates of both 
maintenance and de novo 
methylation values. 

Probabilistic model designed 
to track the frequencies of 
methylated, hemimethylated, 
and unmethylated CpG/CpG 
dyads at a given CpG site 
across a population of cells 
from a single tissue of a single
individual.

Flottmann
et al. 
(2012)
[73] 

A stochastic 
model of 
epigenetic 
dynamics in 
somatic cell 
reprogrammin
g

Describes the interplay between 
gene expression, chromatin 
modifications, and DNA methylation. 
Infers cytosine methylation rates at 
several sites within the promoter of 
the human gene FMR1.

Probabilistic Boolean networks
to represent two kinds of 
stochasticity.

Zheng et 
al. (2013)
[74] 

CpGIMethPred
: 
computational
model for 
predicting 
methylation 
status of CpG 
islands in 
human 
genome

Machine-based models used to 
predict the methylation status of the 
CpG islands in the human genome 
under normal conditions. 

Three part model systems to 
obtain CpG island map. This 
involved database extraction 
of methylation data, feature 
extraction and statistical 
predictive modelling. 

Feinberg 
et al.
(2010)
[75]

Evolution in 
health and 
medicine 
Sackler 
colloquium: 
Stochastic 
epigenetic 
variation as a 
driving force 
of 
development, 
evolutionary 
adaptation, 
and disease

Epigenetic evolutionary model. 
Provided evidence for stochastic 
epigenetic variation, a heritable 
genetic mechanism for variable 
methylation, and genetically 
inherited stochastic variation in 
evolution, in changing environments 
mediated epigenetically. 

Expanded the Fisher-Wright 
neutral selection model.

Przybilla 
et al. 
(2014)
[76]

Understandin
g epigenetic 
changes in 
aging stem 
cells--a 
computational
model 

Used a model to explore age-related 
changes in DNA methylation within 
stem cells and simulations 
suggested homing at stem cell 
niches retarded epigenetic ageing.

Utilised  the model of DNA by 
Sontag et al. (2006) [79] 

http://www.kostkalab.net/software


approach
Yatabe et 
al. (2001)
[77]

Methylation 
patterns and 
mathematical 
models reveal
dynamics of 
stem cell 
turnover in 
the human 
colon

Experimental work and simulations 
suggest human crypts are long-lived,
accumulate random methylation 
errors, and contain multiple stem 
cells that go through “bottlenecks” 
during life.

Stochastic model. 
Crypts were simulated with a 
methylation error rate of 2 × 
10−5 per CpG site per division,
and one division per day. 

Otto et al.
(1990)
[78]

DNA 
methylation in
eukaryotes: 
kinetics of 
demethylation
and de novo 
methylation 
during the life
cycle. 

Steady state/equilibrium achieved 
such that the proportion  of sites 
which are newly 
methylated equals the proportion 
of sites which become demethylated
in a cell generation. 

Kinetic model that represents 
methylation and 
demethylation.  It 
incorporates values for de 
novo methylation and the 
error rate equation based 
model that ignores 
randomness. 

Sontag et
al. (2006)
[79]

Dynamics, 
stability and 
inheritance of 
somatic DNA 
methylation 
imprints.

Describes the evolution of hypo- to 
hypermethylated equilibria as a 
result of methylation noise in a finite 
system of CpG sites.

Markov-chain model, CpGs 
can change methylation 
states during cell division only
based on probabilities for 
conservation/ 
maintenance/loss and de 
novo methylation.

McGovern
et al. 
(2012)
[80]

A dynamic 
multi-
compartment
al model of 
DNA 
methylation 
with 
demonstrable 
predictive 
value in 
hematological
malignancies.

Was able to fully represent the full 
suite of DNA 
methylation/demethylation reactions
and was used as a tool for predicting
haematological malignancies

Constructed with partial 
differential equations.

Riggs and
Xiong 
(2004)
[82]

Methylation 
and 
epigenetic 
fidelity

Methylation at most sites in cell 
lines, and in tissue cell types is 
stochastically variable to a certain 
extent, with each site depending on 
site-specific probabilities. 

The stochastic methylation 
model assumes that for each 
CpG dyad in each DNA 
molecule there is a certain 
efficiency (probability) of 
methylation maintenance 
failure or de novo 
methylation. 

Jeltsch 
and 
Jurkowska
(2014)
[83]

New concepts 
in DNA 
methylation

Added to the Riggs model [82] by 
including the rate of cell division as 
well as active and passive 
demethylation.

Stochastic equation model 
with rates of cell division and 
rates of active and passive 
demethylation.

Haerter 
et al. 
(2014)
[84]

Collaboration 
between CpG 
sites is 
needed for 
stable somatic
inheritance of 
DNA 
methylation 

Compared the standard/classical 
model to a collaborative model and 
showed that the standard model is 
inconsistent with many experimental
observations. 

Stochastic model 
implemented using the 
Gillespie algorithm [112].



states 
Olariu et 
al. (2016)
[85]

Nanog, Oct4 
and Tet1 
interplay in 
establishing 
pluripotency.

Assembled a regulatory network 
model of Oct4, Nanog and Tet1 
which included positive feedback 
loops involving DNA-demethylation 
around the promoters of Oct4 and 
Tet1. Provides a template for novel 
framework combining transcription 
regulation with DNA methylation 
modifications

To model methylation the 
stochastic model by Haerter 
et al. (2014) [84] was used. 



Table 3. Examples of kinetic parameters available for assembly of a deterministic model
Authors Reaction Parameters 

identified 
Cell line Monoglutama

ted or 
polyglutamat
ed

Study Details

McEntee et 
al. (2011)
[128].

Dihydrofolate-> 
Tetrahydrofolate

Vmax =0.0132 
µm/min/mL
Km=20.1 µM

Human cell line 
cell line BT474.

Polyglutamated
*

The kinetics of the dihydrofolate 
reductase enzyme were compared to
a similar enzyme in order to 
determine its parameters.

Christensen 
et al. (2005)
[129].

Tetrahydrofolate-> 5,10-
Methylenetetrahydrofolate

Vmax 
=22.5µm/min/mL
Km=412 µM

Human homology 
model.

Polyglutamated The kinetics of this reaction were 
determined using a human 
homology model of NAD-dependent 
methylenetetrahydrofolate 
dehydrogenase-cyclohydrolae.

Burda et al. 
(2015) [130]
Smith et al 
(1990) [131].

5,10-
Methylenetetrahydrofolate->5-
methyltetrahydrofolate

Km =29.95 µM
Specific activity 
=0.005µmol/min/
mg

Human skin 
fibroblasts [130] 
and human liver 
cells for specific 
activity [131]

Polyglutamated Mean km value taken from [130]. 
Specific activity taken from analysis 
of human liver [131].

Wolthers and
Scrutton 
(2009) [132].

5-methyltetrahydrofolate+  
Homocysteine ->Methionine 
+Tetrahydrofolate

Km =29.95 µM
Specific activity 
=1.54 
µmol/min/mg

Human MS derived
from Pichia
pastoris.

Polyglutamated The kinetics of human methionine 
synthase were identified by its 
expression and purification from 
Pichia pastoris.

Kotb and 
Kredich 
(1985) [133].

Methionine-> s-adenosyl 
methionine

Km =3.3µM
Specific activity 
=12.2 
µmol/min/mg

Human 
lymphocytes

Polyglutamated Adenosylmethionine synthetase was 
purified from human lymphocytes. 

Bacolla et al 
(2001) [134] 
Pfeife et al. 
(1983) [135].

DNA+s-adenosyl methionine->
s-adenosyl homocysteine + 
CpGCH3 

(maintenance reaction)

Km
Aldomet =11µM

Km
DNA =23µM

Specific activity 
=0.000016 
µmol/min/mg

Human 
constructs[134]
And human 
placenta 
[135].

Polyglutamated Steady-state kinetic analyses of 
human DNMT1 [134] 
Isolation and characterization of DNA
cytosine 5-methyltransferase from 
human placenta [135].

Roy and 
Weissbach 
(1975) [136].

CpGCH3-> CpG (de novo 
reaction)

Km
Aldomet 

=0.00325µM
Km

DNA =0.086µM
Specific activity 
= 0.000013 
µmol/min/mg

HeLa cells Polyglutamated Enzymes were purified from HeLa 
cell nuclei by chromatography on 
diethylaminoethyl cellulose.

CpG-> CpGCH3 (Active 
Demethylation)

Unidentified 



*Although the studies do not state explicitly the chemical form of the folates, as they were cell line assays it can be assumed 
the chemical administered to the cells was monoglutamated. However, it is likely to have become polyglutamated by the time 
the enzymatic assay took place. 



Table 4. Examples of Genes associated ageing/health-span which have been found to be
hypermethylated with age
Gene Full name Function Study and Conclusions* Source

BRAC1 Breast 
cancer 1

DNA repair Cancer study: Both controls 
and cancer patients displayed
methylation of BRAC1  

Bosviel et al. (2012) 
[137]

IGF2 Insulin like 
growth 
factor II

Promotes cell 
growth and division.

Cancer study: methylation 
change in IGF2 promoter 
during aging and 
carcinogenesis.

Issa et al. (1996) [24]

GSTM1 Glutathione
S-
transferase
isoform 
mu1 
(GSTM1)

Codes for an 
enzyme that has a 
role to play in the 
prevention of 
oxidative damage 

GSTM1 promoter methylation
was confirmed by CpG island 
methylation in age related 
macular degeneration 
subjects. 

Hunter et al. (2012) 
[138]

GSTP1 Glutathione
S-
transferase
P

Codes for an 
enzyme that has an
important role to 
play in the 
prevention of 
oxidative damage.

Cancer study: Changes in 
Normal Human Prostate 
Tissues.
Increase in promoter 
methylation with age for CpG 
islands in normal prostate 
tissue samples in several 
genes.

Kwabi-Addo et al. 
(2007) [139]

MLH1 MutL 
homolog 1

Codes for a protein 
involved in DNA 
mismatch repair

Cancer study: found partially 
methylated alleles in 44% of 
patients <60yrs and in 83% 
≥ 80 yrs. Fully methylated 
alleles in 55% of patients with
Microsatellite instability + 
tumours. 

Nakagawa et al. 
(2001) [140]

Cancer study: found 
hypermethylation in the 
normal colonic mucosa of 
patients with colorectal 
cancer. Methylation of CpG 
islands is seen in the normal 
colonic mucosa and increased
with age. 

Kawakami et al. 
(2006) [141]

SOD2 Codes for an 
enzyme that helps 
prevent oxidative 
damage 

Osteoarthritis (OA) study: 
used human and guinea pig 
tissue samples. SOD2 
promoter had significant DNA
methylation alterations in OA 
cartilage. 

Scott et al. (2010) 
[142]

WRN Werner 

syndrome

Codes for a DNA 
helicase that 
participates in 
genome 
maintenance

Immunosenescence study: 
Analysis of the 361 bp WRN 
promoter CpG island showed 
a slight increase in 
methylation with age of its 
methylation status. Authors 
report that it was biologically 
negligible. 

Polosak et al. (2011) 
[143]

ER Estrogen 
receptor 

Estrogen receptor Cancer study: CpG island 
methylation, of ER gene in a 
subpopulation of cells 
increased as a direct function
of age in human colonic 
mucosa.

Issa et al. (1994)[27]



DR3 The death 
receptor 3 
(DR3) gene

Member of the 
apoptosis-inducing 
fas receptor gene 
family

Rheumatoid Arthritis (RA) 
study: Hypermethylated 
promoter region of DR3, the 
death receptor 3 gene, in 
rheumatoid arthritis synovial 
cells.

Takami et al. (2006)
[144]

(OP-1, 
BMP-7)

Oestrogeni
c protein 1

Bone maintenance Osteoporosis study: 
Methylation of the OP-1 
promoter was found in 
chondrocytes from tissue 
obtained from older adults 
(study age range 19-86yrs). 

Loeser et al. (2009)
[145]


