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Abstract- Hybrid Wireless Mesh Networks (HWMNs) were proposed to address the challenges in wireless 

communications to support mobile applications across different domains. Due to the multi-hop and decentralized 

network architecture, HWMNs are naturally susceptible to various security threats, especially internal attacks. 

Therefore, HWMNs must be able to detect anomalies, provide secure routing and protect user privacy through the 

cooperation among nodes. However, the existing routing protocols for HWMNs cannot ensure the security to protect 

the users privacy effectively. Moreover, traditional HWMNs are vertically integrated where the control and data 

planes of mesh routers are bundled together, which makes it complex and difficult to configure the network 

according to predefined security policies, and to adaptively respond to various dynamic security threats. 

Software-Defined Wireless Mesh Networks decouple the control plane and data plane of routers and thus enable a 

more flexible and efficient configuration of security policies. Taking up this opportunity to address the 

aforementioned challenges, this paper proposes a privacy-aware, secure and energy-aware green routing (PSGR) 

protocol that can defend against internal attacks, achieve stronger privacy protection and reduce energy consumption 

in Software-Defined HWMNs. The elaborate theoretical analysis verify that the PSGR protocol can implement the 

security and privacy protection against internal attacks effectively and efficiently. Simulation results demonstrate a 

superior performance of PSGR in terms of packet delivery ratio, network throughput and energy efficiency 

compared to the existing PA-SHWMP, PASER, and HWMP protocols in the presence of Blackhole/Grayhole 

attacks and wormhole attacks. 
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1. INTRODUCTION 

The hybrid wireless mesh networks (HWMNs) integrate both ad hoc and backbone WMNs [1, 2]. Due to the 

multi-hop decentralized architecture and special characteristics of the communication mode, HWMNs are exposed 

to various attacks, especially internal attacks launched by the internal legitimate nodes [2, 3]. As a result, HWMNs 

face multiple threats that could launch various internal attacks to obtain private data. Moreover, as the 

popularization and application scope of HWMNs expand unceasingly, more and more private information is stored 

in HWMNs. The leakage of such private information could bring disaster to individuals and the society. 

Consequently, internal attacks have become one of the most notable security problems in HWMNs [3].  

As a fundamental and critical security aspect of HWMNs, the routing protocol has always been the main target 

of internal attacks. Various routing attacks launched from inside can damage the integrity, confidentiality and 

usability of private information [4]. Therefore, in order to achieve the protection of privacy and offer support for 

real-time applications and smooth delivery of broadband services, HWMNs must be equipped with a secure, 

privacy-aware and efficient routing protocol. Traditional HWMNs are vertically integrated where the control and 

data planes are bundled together, which makes the development and deployment of new routing algorithms very 

hard since it would imply a modification of the control plane of all network devices – through the installation of new 

firmware and, in some cases, hardware upgrades. However, Software-Defined Mesh Networks [5, 6] decouple the 

control plane and data plane of mesh routers, thus enable a more flexible and efficient configuration of security 

policies in the secure routing protocols. 

The implementation of a privacy aware secure routing protocol in Software Defined HWMNs is very 

challenging because of the following reasons：(1) The existing HWMP routing protocols introduced in HWMNs [7, 
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8] are dependent on the cooperation of nodes and based on the assumption that the participating nodes are honest 

and well-behaved with no malicious or dishonest intentions. However, in practice nodes in a HWMN may be 

compromised by malicious users and are subject to various attacks from inside due to the intrinsically open and 

distributed nature of HWMNs [7]. (2) The mesh clients in the HWMNs could be mobile and thus are normally 

power constrained [8]. Therefore it is natural and imperative to consider the energy consumption of the mesh clients 

in routing so as to improve energy efficiency and thus prolong the battery life of the mesh clients. 

To address the aforementioned issues, we propose a privacy-aware, secure and green routing protocol (PSGR) 

in HWMNs. In addition to achieving strong security and privacy protection, the PSGR can also maintain a good 

balance between security and performance. The major contributions of this work include: 

(1) The proposed PSGR protocol integrates a novel dynamic reputation mechanism, a security level (SL) 

classified scheme and a hierarchical key management protocol in order to dynamically identify and manage the 

malicious nodes as well as defend against internal attacks in the routing process for HWMNs.  

(2)  The PSGR can further enhance privacy and security by preventing malicious nodes from modifying and 

interpreting packets. The energy consumption in PSGR is taken into account in the process of routing through the 

presented energy consumption analysis model which makes the PSGR satisfy the requirements of both security and 

energy-efficiency. 

(3)  Verified by the elaborate theoretical analyses, the PSGR protocol can implement the security and privacy 

protection against internal attacks effectively and efficiently. Extensive OPNET simulation experiments demonstrate 

that the PSGR protocol outperforms the existing routing protocols in terms of packet delivery ratio, network 

throughput and energy efficiency in the presence of Blackhole/Grayhole attacks and wormhole attacks. 

The rest of the paper is organized as follows Section 2 presents a brief review of the related work; Section 3 

describes the security, adversary and energy models; Section 4 and 5 respectively present the dynamic reputation 
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mechanism and the hierarchical key management protocol; Section 6 details the implementation of PSGR; Section 7 

discusses the security and the analysis performance of PSGR. Finally in Section 8 concluding remarks are drawn. 

2. RELATED WORK 

The multi-hop decentralized architecture of HWMNs makes it difficult to design a privacy aware secure routing 

protocol. The early studies were devoted to applying ad hoc routing protocols for WMNs. However, due to the 

significant differences in the characteristics between ad hoc networks and WMNs such efforts were not fruitful [9]. 

Afterwards, tremendous research has focused on specific secure routing protocols in the backbone WMNs with 

the aim of applying them in HWMNs later on. Several cross-layer secure routing protocols with the combination of 

routing performance and security were proposed in [7, 10] for the backbone WMNs. These protocols combine in a 

cross-layered approach the different parameters from various layers across the protocol suite.  For example 

routing-layer observations of forwarding behaviour and MAC layer to measure the quality of the wireless link in 

order to select the most reliable path with the highest performance. However, these routing protocols are not suitable 

for HWMNs due to the ad hoc nature of nodes and their ineffective privacy protection in HWMNs. Khan et al. [7] 

proposed the Secure Routing Protocol SRPM which is an improved AODV protocol for a backbone WMN. 

However, SRPM is vulnerable to the attacks launched by legitimate internal mesh nodes and thus cannot provide 

privacy protection effectively. Islam et al. [11] proposed a secure hybrid wireless mesh protocol (SHWMP) which is 

a secure extension of HWMP. However, SHWMP is also vulnerable to the attacks launched by legitimate internal 

mesh routers; an active attacker can compromise and control mesh routers to obtain private user information.  

The infrastructure of HWMNs is highly adaptable as opposed to other networks such as the Internet, Wi-Fi, 

WiMAX, cellular networks or sensor networks. HWMNs are thus considered to be the most applicable architecture 

for future wireless communications. To make HWMNs function successfully it is imperative to design a routing 

protocol with security and privacy protection specifically for HWMNs. However, the secure routing protocols for 
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backbone WMNs are not well suited for HWMNs, thus a variety of approaches have been recently proposed for 

designing secure routing protocols for HWMNs. For instance, Ren et al. [12] proposed PEACE, a novel 

privacy-enhanced yet accountable security framework for HWMNs. However, PEACE only secures the network 

from external attacks and takes for granted that every internal node is cooperative and trustworthy. In [13], Khan et 

al. presented a cross-layer secure and resource-aware on demand routing protocol (CSROR). Because the security 

mechanism of CSROR is taken from the SRPM [7], it is vulnerable to the attacks launched by legitimate internal 

mesh nodes and cannot provide efficient privacy protection. 

The existing routing protocols for HWMNs cannot ensure security or protect user privacy effectively because 

they are vulnerable to internal attacks. Moreover, few of the existing works have taken the energy consumption into 

account when making a routing decision. To bridge this gap we propose a privacy-aware, secure and green routing 

protocol (PSGR) in this paper. The PSGR can defend against the internal attacks effectively and achieve stronger 

security, privacy protection and also maintains a good balance between security and performance. Furthermore, as 

the energy consumption is also taken into account in the process of routing, PSGR can satisfy the requirements of 

both security and energy-efficiency. 

Lin et al. [14] proposed a Privacy-Aware Secure Hybrid Wireless Mesh Protocol (PA-SHWMP) to defend against 

inside attacks in WMNs, and later [15] proposed a role based secure routing protocol. Compared with these previous 

work [14, 15], this paper offers original and important contributions by 1) taking into account energy consumption 

in the routing process; 2) considering HWMNs that is more practical and exposed to attacks than WMNs; 3) optimal 

route selection and route maintenance; 4) malicious node classification and management.  

3. BACKGROUND 

3.1. Security Model  
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In this paper, we employ the holistic approach to implement the security and privacy preserving in HWMNs, 

where two types of security mechanisms work together in a coordinated and adaptive way. One is the preventive 

security mechanism that attempts to prevent attacks, e.g., cryptography techniques. The other is the reactive security 

mechanism trying to detect and react against intrusions such as reputation mechanisms.   

Every mesh node pre-loads an identity table which provides the information of peering mesh nodes in the 

network. Each entry of the table describes the identity of a specific mesh node through binding the following 

information together with the mesh node: MAC address, SL, and valid time period. The trusted identity manager in 

HWMNs has to reflect the current bindings of mesh nodes in HWMNs and mesh nodes need to contact the identity 

manager when the service is available to keep the freshness and correctness of the identity table. Every mesh node 

also pre-loads a local reputation table storing the direct opinion on others and a certain SL based on its hierarchic 

ranking or the role it plays in HWMNs. A hierarchical key distribution center is pre-loaded in HWMNs where each 

mesh node pre-loads a key pool and an initial key according to its SL through using the proposed novel hierarchical 

key management protocol. Each of these keys are hashed using a secure hash function dependent on the key size.  

3.2. Adversary Model 

HWMNs are vulnerable to both external and internal attacks. External attacks in HWMNs have been well 

investigated. However, there is not much exploration on the internal attacks in HWMNs, particularly on the security 

and privacy protection based routing protocol for HWMNs. We focus on two most common internal attacks that are 

launched by an adversary appearing to be a legitimate participant in the network [16]: 

1. Blackhole/Grayhole attack: Blackhole attack and its variant Grayhole attack are the attacks that lead to 

Denial-of-Service (DoS) in HWMNs. In a Blackhole attack, the malicious node drops all the traffic that is 

supposed to be forwarded; while in a Grayhole attack, the adversary avoids detection by dropping the 

packets selectively.  
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2. Wormhole attack: A wormhole attack aims to prevent discovering route between two legitimate nodes or 

divert traffic to malicious nodes by establishing a tunnel within two or more malicious collusion nodes. As a 

result, the malicious nodes are added in the path and then they either drop all the packets resulting in a 

complete DoS attack, or drop the packets selectively to avoid detection. 

The adversary may compromise certain nodes and gain full control of them. Once nodes are captured the 

attacker can gain access to all stored information, including public keys, private keys.  The adversary could also 

reprogram the captured nodes to behave in a malicious manner. The purposes of the adversary include: 1) DoS 

attacks (launched via dropping packets) against service availability, 2) illegal and unaccountable network access and 

3) the privacy of legitimate network users [12].  

3.3. Energy Model 

With the aim of improving energy efficiency and prolonging battery life of the mesh client nodes energy 

consumption is taken into account as an important factor when choosing the best path based on Eq. (5) in the routing 

protocol design detailed in Section 6. 

A multitude of research efforts have been devoted to modelling the energy consumption of wireless networks 

[17]. Moreover, IEEE 802.11 Distributed Coordination Function (DCF) [18] based Medium Access Control (MAC) 

protocols have been widely used in wireless ad hoc networks where the energy consumption is a critical issue. In 

this section, we analyze the energy consumption per successful packet transmission of a client in a WMN using a 

cost-efficient analytical model [17]. Without loss of generality we consider a scenario of N client nodes. The 

transmission queue at each client node is modelled as an M/M/1/K queuing system where the traffic follows a 

Poisson arrival process with rate λ (packets/second), where K represents the buffer size at the client node.  

Let ,  ,  tx rx ove e e and ide denote the power required for transmitting, receiving, overhearing and being idle, 

respectively. The overall energy consumed by a client node to successfully transmit a packet, ,E can be 

decomposed into four components and is given by 
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su co bf emE E E E E= + + +                           (1) 

where suE is the energy consumption for a successful packet transmission from the client node, coE is the energy 

wasted in collisions before the successful transmission, bfE is the energy spent in the backoff stages, and emE  is 

the energy consumed when the client node has no pending packet between any two consecutive transmissions. 

These components of the energy consumption model can be obtained from [17]. 

3.4. Subjective Logic 

Subjective logic [19] represents a specific belief calculus that uses a belief metric called opinion to express 

subjective reputation. Since it is necessary to develop mechanisms to detect and manage malicious nodes in WMNs 

subjective logic with the ability to explicitly represent and manage a nodes uncertainty has emerged as an attractive 

tool for handling trust relationships in WMNs. 

In subjective logic each opinion is denoted by a 4-tuple : : : : :( , , , )x y x y x y x y x yb d u aω = , where 

:x yb , :x yd , :x yu designate node x’s belief, disbelief and uncertainty towards y respectively. The base rate 

:x ya designates x’s willingness to believe y which determines how uncertainty is viewed as belief when the 

reputation is used. The uncertainty reflects the confidence in node x’s knowledge of y; an uncertainty of 1.0 

represents that a node has no basis for any conclusion. They satisfy the following conditions. 

           
: : :

: : : :

1.0

, , , [0.0,1.0]
x y x y x y

x y x y x y x y

b d u
b d u a

+ + =⎧⎪
⎨

∈⎪⎩
                          (2) 

When an opinion is used in a decision, it is projected onto the belief/disbelief axis through its expectation, 

( ):x yE ω , which is used to identify malicious nodes and can be computed as 

( ): : : :x y x y x y x yE b a uω = +                                 (3) 
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4. A SUBJECTIVE LOGIC BASED DYNAMIC REPUTATION MECHANISM  

In this section, a subject logic based dynamic reputation mechanism (DRM) is presented to defend against the 

internal attacks, to preserve the privacy of information and to promote a secure and reliable collaboration 

relationship among participants. 

4.1. Dynamic Reputation Mechanism (DRM) 

Suppose x and y are two neighbouring nodes, the final opinion of x towards y at time t0, 
0 , :
final
t x yω , includes two 

components. One is the direct opinion 
0 , :
dir
t x yω ;; the other is the recommendation opinions 

0 , :
rec
t x yω . 

4.1.1. Direct Opinion 

The direct opinion
0 , :
dir
t x yω , is stored in node x’s local reputation table and can be computed as 

0 0
0

0

0 0
0

0

:
, :

1
: ( : )

:
, :

1
: ( : )

((1 ) )

((1 ) )

s
x ydir

t x y t
t s

x y l x y t
t

f
x ydir

t x y t
t s

x y l x y t
t

N
b

TN Q
T

N
d

TN Q
T

α α

α α

−

−

⎧
=⎪

⎪ × − × + ×
⎪⎪
⎨
⎪ =⎪
⎪ × − × + ×
⎪⎩

                          (4) 

where :x yN  is the total number of packets that have been transmitted by node x to node y for forwarding， :
s
x yN  

denotes the number of packets that have been successfully forwarded by node y, :
f
x yN is the number of packets that 

node y has not forwarded. 0 1
( : )
t
l x yQ −  is the evaluation value of the link quality between x and y during the 

measurement period of the (t0-1)-th cycle [20]. α  is the smoothed constant ( 0 1α< < ). 0t
sT  and t

tT are the 

number of successful transmissions and the total number of transmissions during the measurement period of the t0-th 

cycle, respectively. 

For an entirely unknown node or a new node in DRM there is no basis for any conclusion about belief b and 

disbelief d (which means full uncertainty), the default opinion assigned by its neighbours is (0.0,0.0 1.0,0.5), where 

the willingness to believe a is set to be the mean between 0 and 1. 

 4.1.2. Recommendation and Final Opinion 
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When there is not enough records of interaction history for node x to evaluate the direct opinion towards y or 

the direct opinion is not enough for x to make a decision towards y, x will start a recommendation opinion query by 

broadcasting a Reputation Query message to the neighbours and waits for a time interval T. Whenever one of node 

x’s neighbours receives the Query message it checks its local reputation table to see whether there is a direct opinion 

towards y with the uncertainty value of less than 1.0. If there exists a direct opinion, the neighbour sends a Reply 

message to x containing its id, SL and subjective opinion on y, otherwise it simply ignores the query. 

After receiving the replies x will execute the recommendation opinion evaluation phase. Let R represent the set 

of recommenders ( , 1R n n= > ), then the recommendation opinion at time t0  can be calculated by Eqs. (5)-(7) in 

[15]. After getting the direct opinion and the recommendation opinion, the final opinion at time t0, 
0 , :
final
t x yω , can be 

calculated by Eqs. (8)-(10) in [15]. 

The multi-level security technology [20] is used to classify the malicious nodes and to decide whether and how 

to punish or isolate the nodes in order to make the malicious nodes management more flexible and to improve the 

fault-tolerant capability of DRM. Link security aims to authenticate a peer and to establish session keys between two 

Mesh nodes (MDs) during the transmission process. A hierarchical key management protocol HKMP [15] is used to 

improve the transmission security for the proposed routing protocol. 

5. THE PRIVACY-AWARE, SECURE AND GREEN ROUTING PROTOCOL: PSGR 

Fig. 1 illustrates an overview of the SDN-based HWMN. The logically centralized controller implements 

routing control of the software-defined HWMN with three main modules. The controller interacts with various 

applications in the upper layer through Northbound APIs, while communicating with data plane (i.e., mesh routers) 

via Southbound API, e.g., OpenFlow. The main goal of the SDN control plane is to improve the utilization of shared 

bandwidth, privacy, and energy-efficiency by directing traffic through the HWMN, based on the sharing routing 

protocol. Therefore, the control plane exposes an interface to the mesh routers for the exchange of routing control 
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information. We briefly discuss the main control plane modules related to the PSGR routing protocol, which include 

Reputation Computation, Energy Consumption Modelling, and Hierarchical Key Management, where Reputation 

Computation module is responsible for computing the reputation of mesh routers; Energy Consumption Modelling 

module calculates the energy consumption of selected routing path; and Hierarchical Key Management module is to 

ensure the fine-grained and effective link security.  
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Fig.1. An overview of the SDN-based HWMN 

Based on the ideas and methods presented in the previous sections, the privacy-aware, secure and green routing 

protocol PSGR is detailed in this section as shown in Algorithm 1, which can defend against the internal attacks to 

achieve stronger privacy protection and also to reduce the energy consumption for HWMNs.  

_____________________________________________________________________________________ 
Algorithm 1: Privacy-Aware, Secure and Green Routing Protocol (PSGR) 
_____________________________________________________________________________________ 

Input: Source address, destination address, secure and energy requirements,  
Output: A meeting all requirements and the most reliable path finalL , route maintenance message 
1. Begin 
2.   All nodes authenticate their neighbours to generate and distribute keys by using the HKMP protocol; 
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3. Route discovery phase: 
4.   The source node y broadcasts a PREQ message to its neighbours to trigger the route discovery phase 

described as follows:  
5.    If node x receives the PREQ successfully then 
6.       x retrieves its direct opinion :

dir
x yω from its local reputation table and calculates the expectation :( )dir

x yE ω ; 

7.      If ( : 1( )dir
x yE ω γ< ) then  

8.         x considers that y is a malicious node; 
9.      Else if ( : 2( )dir

x yE ω γ> ) then 
10.         x considers that y is a trustworthy node; 
11.      Else  
12.         x broadcasts a reputation Query message to the common neighbours asking for their    

recommendation opinions on node y;  
13.         Do  
14.           If ( :

dir
k yu <1.0 (k is any node who receives the Query message)) then 

15.             k sends its direct opinion towards y, :
dir
k yω , to x; 

16.           End if 
17.          While (time interval <T); 
18.          x weights each received recommendation opinions and integrates them into a recommendation 

opinion :
rec
x yω ; 

19.         x computes the final opinion towards y :
final
x yω ; 

20.          If ( : 2( )final
x yE ω γ> ) then 

21.            x considers that y is a trustworthy node; 
22.          Else 
23.           x considers that y is a malicious node; 
24.          End if 
25.      End if 
26.    End if 
27.    If y is considered trustworthy then 
28.       x sends an Accept message including its ID to y and records a positive interaction with y; 
29.    Else  
30.        x sends a Refuse message to y and records a negative interaction with y; 
31.    End if 
32.    x executes the malicious node classification and the management process to make the decision of whether 

and how to punish or isolate malicious node y. 
33.    If y receives the Accept message successfully then  
34.       y compares the security levels of x and y; 
35.       If (g>h) (Suppose that y is deployed at level g and node x is deployed at level h) then  
36.          y will reject x to be the next forwarding node; 
37.       Else  
38.          y will make a decision whether x is the malicious node;  
39.         If ((x is not the malicious node) && (g=h)) then  
40.           y computes their pair-wise keys and send a response message back to x; 
41.         Else if (1 ≤ g < h) then  
42.           y sends a response message back to x that computes their pair-wise keys; 
43.         End if 
44.       End if 
45.    End if 
46.    If there are many paths meeting the requirements then 
47.      The most reliable path denoted as finalL  is chosen by Eq. (5); 
48.    End if 
49.   End Routing discovery 
50.   Routing reply phase: 
51.     The destination node sends a PREP message back to the node from which it received the PREQ to triggers 

the route reply phase; 
52.     The node then forwards the PREP packet along the selected path until it reaches the source node; 
53.   End Routing reply 
54. End 
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___________________________________________________________________________ 
 

In PSGR, before starting a route setup process all the mesh nodes authenticate their neighbours to generate and 

distribute keys. Afterwards, the source node triggers the route discovery phase by constructing a route discovery 

message PREQ labelled with SL indicating the security requirements on the requested route and then broadcast 

PREQ to its neighbours. Let 1 2andγ γ  ( 1 2 1 2, , [0.0,1.0]γ γ γ γ< ∈ ) be the minimum and maximum thresholds 

respectively. The details of the route discovery process are described as follows.  

1. The source node y broadcasts a PREQ message to its neighbours. 

2. When one of its neighbours x receives the PREQ successfully, x carries out the DRM to decide whether 

node y is trustworthy by performing the following steps: 

1) Node x retrieves its direct opinion :
dir
x yω  from its local reputation table and calculates the expectation 

:( )dir
x yE ω . 

2) If : 1( )dir
x yE ω γ< , node y is perceived as malicious. If 

: 2( )dir
x yE ω γ≥ , y is perceived as trustworthy. If :

dir
x yω  

does not exist or 1 : 2( )dir
x yEγ ω γ< < , node x invokes the following reputation query procedure: 

i) Node x broadcasts a reputation Query to the common neighbour nodes asking for their 

recommendation opinions on node y and waits for a specified time interval T. 

ii) Any node k whose uncertainty, :
dir
k yu , of its direct opinion towards node y is less than 1.0 sends its 

direct opinion towards y, :
dir
k yω , to node x.  

iii) After the time interval T node x weights each received recommendation opinions and integrates them 

into a recommendation opinion :
rec
x yω , node x also combines the direct opinion :

dir
x yω with the 

recommendation opinion :
rec
x yω .  Finally node x obtains the final opinion :

final
x yϖ .  

iv) After obtaining the final opinion :
final
x yϖ  node x calculates its expectation :( )final

x yE ϖ . If 

: 2( )final
x yE ϖ γ≥  node y is perceived as trustworthy, otherwise y is perceived as malicious.  

3. If node y is trustworthy then node x sends an Accept message including its ID to y and y(x) records a positive 
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interaction with x(y). Otherwise, if node y is malicious then x sends a Refuse message to y and records a 

negative interaction with y. Furthermore, x executes the malicious node classification and the management 

process is described in Section 4 to make the decision of whether and how to punish or isolate malicious 

node y. 

4. After node y receives the Accept message successfully, it compares the security levels of two nodes. 

Suppose that y is deployed at level g and node x is deployed at level h. If g>h, y will reject x to be the next 

forwarding node; otherwise y will execute Steps 2 and 3 to make a decision whether x is the malicious node. 

If x is not the malicious node and g=h, y will compute their pair-wise keys and send a response message 

back to x, if 1 ≤ g < h then y sends a response message back to x that will compute their pair-wise keys. 

5. Repeated Steps 2, 3, and 4 until the satisfying terms of path are found.   

6. If there are many paths meeting the requirements, the most reliable path denoted as finalL  is chosen based 

on the rules below.  

( )1 ( ) 2 ( )

1 2

1 ( ) 2

, 1

. .
1

final i L i i L i

i i

L i

L Max SL i n

s t

Th E Th

ϕ ϖ ϕ

ϕ ϕ

= ∗ + ∗ =

+ =

< <

                (4) 

where ( ) , ( 1 )sL s n= , is the set of the paths meeting the minimum security needs. 1iϕ  and 2iϕ  are the 

weight factors corresponding to the opinion and security level of path ( )iL , respectively. 1Th  and 2Th  are 

the thresholds of ( )L iE . ( )L iϖ  and ( )L iSL  are the opinion and security level of path ( )iL , respectively. 

( )L iE  is the energy consumption of path ( )iL . ( )L iϖ , ( )L iSL  and ( )L iE  can be given by 

( )

( )
1

( )

( ) 1

, min( )

( ,max( ))

m
i i

L i j j
j

i
L i j

i
m ij

L i jj

Min m

SL Min SL

EE m Max Em

ϖ ϖ ϖ
=

=

⎧ ⎛ ⎞
=⎪ ⎜ ⎟

⎝ ⎠⎪
⎪

=⎨
⎪
⎪ = ∗⎪
⎩

∑

∑

                   (5) 

where i
jN  ( ( ) , 1i

j iN L j m∈ = ) is the j-th node in the i-th path ( )iL . i
jϖ  and i

jSL  are the opinion and security 
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level of node i
jN , respectively. i

jE  is the energy consumption of node i
jN . 

When the destination node receives the route discovery message it triggers the route reply phase by sending a 

PREP message back to the node from which it received the PREQ. The node then forwards the PREP packet along 

the selected path until it reaches the source node.  

6.  SECURITY ANALYSIS AND EXPERIMENTAL EVALUATION 

6.1. Security Analysis 

In this paper the security and privacy protection are implemented through the dynamic reputation mechanism, a 

reputation based node security rating scheme and a multi-level hierarchical key management protocol.  

Firstly, the dynamic reputation mechanism is able to achieve efficient identification and management of 

malicious nodes and to defend against internal attacks in the process of route selection by dynamically evaluating 

the node’s reputation. The reputation is derived from the historical interactions as well as the neighbours' 

recommendations. 

Secondly, the privacy information and the nodes are divided into different levels according to the security 

requirements and the node’s reputation. Then, with the reputation based node security rating scheme and the 

multi-level hierarchical key management protocol, each node is assigned with a security level and a session key 

accordingly. The node with the assigned security level and session key is only allowed to participate in the network 

and access the privacy information according to its security level, which can further improve the capability of 

internal attacks defence, especially those launched by the unidentified malicious nodes. Moreover, the data will be 

delivered to the correct receiver without revealing any privacy information. 

Thirdly, the multi-level hierarchical key management scheme is used to protect the non-mutable fields and 

mutable fields in the routing messages respectively, which further improve the privacy by strictly restricting user 
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access to the resources. In what follows, we discuss the security features of PSGR considering Blackhole/Grayhole 

attacks and wormhole attacks.  

In the route selection process, the dynamic reputation mechanism coupled with the node security rating scheme 

and the node’s security level can effectively identify and manage the malicious node, making sure that only those 

nodes meeting the security requirement embedded in the packets can participate in the route discovery phase. Also, 

by encrypting and authenticating certain fields, the malicious nodes with the lower security level can be prevented 

from modifying and interpreting the packets without the higher-level key.  

During the packet transmission process we consider that in the given routing path there are some unidentified 

malicious nodes included or some normal nodes compromised. According to the features of the Blackhole/Grayhole 

and wormhole attacks they will launch the attacks by dropping packets. Once they start dropping packets they will 

be detected by the route maintenance phase through dynamically monitoring the relaying node forwarding behaviour 

and the upstream/downstream traffic. Therefore the malicious nodes will be forced to cooperate or be isolated by the 

proposed malicious node classification and management scheme.  

Equipped with the aforementioned protection features the Blackhole/Grayhole and wormhole attacks can be 

effectively prevented in both the route selection and the packet transmission process. The packets as well as the 

privacy information are protected from insiders and can only be recognized by legitimate mesh nodes and opened by 

the expected destination mesh node. Furthermore, PSGR can also improve route robustness and fault tolerance by 

providing more route choices through multi-level route discovery and maintenance. For instance if a route at a 

certain security level is broken the source node can still communicate with the destination node using another route 

at other security levels. 

6.2. Experimental Evaluation 

OPNET [21] simulation experiments were conducted to demonstrate the performance and energy efficiency of 

the PSGR protocol. The simulation area is 1000 m * 1000 m with 50 nodes in total. There are 4 nodes contending 
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for transmission within each hop. The physical layer uses a fixed transmission range model where two nodes can 

directly communicate with each other only if they are within a certain transmission range, i.e., within a hop. The 

MAC layer protocol uses the IEEE 802.11 Distributed Coordination Function (DCF) [18]. The arrival traffic at each 

MN has a Constant Bit Rate (CBR) with rate 1 Mbps and a packet size 1024 bytes. The channel data rate is 10 Mbps 

and each MN has a buffer size of 25 packets. The other MAC and Physical layer parameters follow the existing 

study [15]. The security parameters α , β , 1 2,γ γ , 1η , 2η  are 0.5,0.5,0.3,0.6,0.3,0.7, which are empirical values 

obtained from multiple experiments. The experimental network topology graph is shown in Fig. 2. Each data point 

depicted in Figs. 3-7 is the average of the results obtained from 20 runs of simulation experiments with a simulation 

time of 100 s.  

R11 R12 R13 R14 R15

R1 R2 R3 R4 R5

R6 R7 R8 R9 R10

R41 R42 R43 R44 R45

R46 R47 R48 R49 R50

噯
噯
噯
噯
噯

噯
噯
噯
噯
噯

 
 

Mesh Client: iMAC

Mesh Client: PDA

Mesh Client : Laptop

AP

 
 

Mesh Client: iMAC

Mesh Client: PDA

Mesh Client : Laptop

AP

Source Client
Destination Client

 

Fig. 2. The experimental network topology graph 

6.2.1. Performance of the PSGR Routing Protocol 

The performance of the PSGR is compared to the PA-SHWMP [14], PASER [22] and HWMP in terms of the 

following performance metrics when Blackhole/Grayhole attacks and wormhole attacks are present [23]. 

l Average throughput: the ratio of the number of packets that successfully reach destinations to the number of 

packets generated at sources.  

l Packet delivery ratio (PDR): the ratio of the number of packets that are successfully received and accepted 

at destinations to the number of packets generated at sources.  
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l End-to-end delay (ED): the average time duration experienced by a packet transmitted from a source to a 

destination.  
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Fig. 3. Average Throughput: (a) Blackhole/Grayhole Attacks (b) Wormhole Attacks 
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Fig. 4. Average PDR: (a) Blackhole/Grayhole Attacks (b) Wormhole Attacks 
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Fig. 5. Average ED: (a) Blackhole/Grayhole Attacks (b) Wormhole Attacks 

(1) Average Throughput  
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As shown in Fig. 3 the average throughputs of all the three protocols are affected by the presence of malicious 

nodes in both Blackhole/Grayhole and wormhole attacks. Since HWMP does not take into account the internal 

attacks and internal malicious nodes its performance is degraded most. For PA-SHWMP, PSGR and PASER, since 

they establish the route based on the reputation mechanism and hybrid cryptosystem, which can identify and avoid 

the malicious nodes participating in the routing, their performance reductions are less than that of the HWMP. In 

PASER, the routing communication security relies on the origin, neighbor authentication and dynamic key 

management scheme. When the percentage of malicious nodes is less than 30 percent, most of the authenticated 

nodes are normal and they actively engage in the routing and data forwarding, which makes the throughput of the 

PASER better than that of the PA-SHWMP. For PSGR, the proposed dynamic reputation mechanism updates the 

node status effectively and rapidly, which enables PSGR to identify and isolate more malicious nodes than the 

PASER and thus achieves a better throughput. When the percentage of malicious nodes is greater than 30 percent, 

more internal nodes have been captured. Because of the lack of the rapid identification of internal malicious nodes, 

the management and node status update schemes, the PASER cannot exclude the malicious nodes from the routing 

and data forwarding, so the throughput of the PASER is less than that of the PA-SHWMP and PSGR. Moreover, 

since the dynamic reputation mechanism proposed in PSGR is more flexible and accurate than the static reputation 

mechanism used in PA-SHWMP, the performance of PSGR in better than that of PA-SHWMP. 

 (2) Average Packet Delivery Ratio (PDR)  

The results in Fig. 4 reveal that the PDR of the network decreases as the number of malicious nodes increases. 

However, the PDR under PSGR is better than those under PA-SHWMP, PASER and HWMP. HWMP does not take 

into account internal attacks and malicious nodes and therefore cannot avoid malicious nodes participating in the 

routing, thus its PDR is the worst. In PA-SHWMP and PASER, the malicious nodes are excluded from the network 

soon after they have been detected, which results in less nodes that can participate in the routing and thus the PDR 

of PA-SHWMP and PASER decreases rapidly as the number of malicious nodes increases. However, in PSGR, the 
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dynamic reputation mechanism identifies the malicious nodes more accurately than the PA-SHWMP and PASER. 

Furthermore, when the malicious nodes have been detected the flexible malicious node classification and 

management scheme is adopted to make the decision on whether and how to punish or isolate the node. This ensures 

that only those malicious nodes with low security levels will be excluded from the network and others will be forced 

to cooperate. Therefore, the more accurate identification of malicious nodes and the larger number of cooperating 

nodes lead to the better PDR performance of PSGR than that of PA-SHWMP and PASER.  

(3) Average End-to-End Delay (ED) 

The simulation experiment was conducted using 5 to 10 source-destination pairs to compare the average ED of 

the four protocols. As shown in Fig. 5, with light or medium traffic loads and less hops the delay is less than 200ms, 

whereas under heavy traffic loads and more hops the delay reaches nearly 250ms. The average ED is slightly higher 

in PSGR than those in PA-SHWMP, PASER and HWMP, because in addition to the routing operation of HWMP, 

the PSGR, PASER and PA-SHWMP also require to execute the routing security mechanism to detect and isolate the 

malicious nodes, which results in a higher delay. Moreover, the PSGR performs another two effective schemes to 

provide privacy preservation and to reduce energy consumption, respectively. As a result, the average ED in PSGR 

is slightly higher than those of PA-SHWMP, PASER and HWMP as a trade-off for the better throughput, PDR and 

energy efficiency. 

6.2.2. Energy Consumption 

In this subsection, we evaluate and compare the energy consumption of the PSGR to those of PA-SHWMP, 

PASER and HWMP.  

(1) Average Energy Consumption 

The results shown in Fig. 6 are obtained from simulation experiments with 2 to 15 source-destination pairs to 

compare the average energy consumption of PSGR, PA-SHWMP, PASER and HWMP.  Fig. 6 shows that the 

average energy consumption is dramatically affected by the number of hops. As the number of hop increases the 
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average energy consumption of all the four protocols increases. However, since the energy consumption is taken 

into account in the process of routing, the PSGR is more energy-efficient than the PA-SHWMP, PASER and 

HWMP. 
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Fig. 6. Average Energy Consumption 

 

Fig. 7. Average SER 

 (2) Average SER 

Let R, SL and E denote the set of the routes, the security level and the energy consumption level of the routes in 

R, respectively. Then we classify SL and E into 5 levels to separately denote the corresponding security levels (SL) 

and the energy consumption levels (E). Therefore, each route in set R can be denoted by a 

2-tuple ( ) ( ) ( ) ( )( ) ( , ), ( , 1 5)R i R i R i R iR i SL E SL E= = , where ( )R iSL  and ( )R iE  denote the security level and the 

energy consumption level of the route ( )R i , respectively. Based on the above definition, a new metric, SER, is 

proposed to evaluate the energy consumption of the PSGR, 

( )
( )

( )

R i
R i

R i

SL
SER

E
=                                    (6) 

In Fig. 7, we depict the average SER against the number of routes, n, which satisfies the requirements of both 

security and energy consumption. As shown in Fig. 7, the SER of the selected route in all cases is near 85% of the 

highest SER. The results indicate that the proposed route discovery scheme can satisfy the requirements of both 

security and energy consumption. 



 22 

7. CONCLUSIONS 

In this paper, we have investigated the pressing problems such as privacy preserving, route security and energy 

consumption in Software defined HWMNs and have proposed a privacy-aware, secure and green routing protocol, 

PSGR. Based on the combination of the proposed dynamic reputation mechanism and a multi-level hierarchical key 

management protocol, the PSGR protocol can effectively defend against the internal attacks to provide privacy 

protection in HWMNs. Moreover, by taking the energy consumption into the process of routing, the PSGR protocol 

can achieve good energy efficiency. The elaborated theoretical analyses have verified that the PSGR is secure, 

privacy preserving and efficient. Furthermore, simulation experiments have demonstrated that in the presence of the 

Blackhole/Grayhole attacks and wormhole attacks, the packet delivery ratio, network throughput and energy 

consumption of the proposed PSGR are much better than those of the PA-SHWMP, PASER and HWMP routing 

protocols. 
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