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Salient feature of haptic based guidance of people
in low visibility environments using hard reins
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Abstract—This paper presents salient features of human-
human interaction where one person with limited auditory and
visual perception of the environment (a follower) is guided by
an agent with full perceptual capabilities (a guider) via a hard
rein along a given path. We investigate several salient features
of the interaction between the guider and the follower such
as a) the order of an autoregressive control policy that maps
states of the follower to actions of the guider, b) how the guider
may modulate the pulling force in response to the confidence
level of the follower, and c) how learning may successively
apportion the responsibility of control across different muscles
of the guider. Based on experimental systems identification on
human demonstrations from ten pairs of naive subjects, we show
that guiders tend to adopt a 3rd order auto-regressive predictive
control policy and followers tend to adopt 2nd order reactive
control policy. Moreover, the extracted guider’s control policy
was implemented and validated by human-robot interaction
experiments. By modeling the follower’s dynamics with a time
varying virtual damped inertial system, we found that it is the
coefficient of virtual damping which is most sensitive to the
confidence level of the follower. We used these experimental
insights to derive a novel controller that integrates an optimal
order control policy with a push/pull force modulator in response
to the confidence level of the follower monitored using a time
varying virtual damped inertial model.

Index Terms—Human robot interaction, hard rein, haptic
communication, predictive and reactive control policies.

I. INTRODUCTION

HAPTIC perception is a natural solution for humans when
vision is impaired. This paper presents identification of

abstracted dynamics of human control policies to guide/follow
using a hard rein in low visibility conditions. These results
allow to identify control policies for the structure of motor
controllers used by human participants to guide a blindfolded
counterpart. The extracted haptic-based guidance policies can
be implemented on a robot to guide a human in low visibility
conditions like in indoor fire-fighting, disaster response, and
search and rescue operations [1], [2].

Several attempts have been made on guiding people with vi-
sual and auditory impairments using intelligent agents in cases
such as fire-fighting [3] and guiding blind people using guide
dogs [4]. However, our intention is to derive guiding/following
control policies based on human-human demonstrations to be
used in a robot to guide people with good vision working in
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low visibility environments. Fire-fighters have to work in low
visibility conditions due to smoke or dust and high auditory
distractions due to their oxygen masks and other sounds in
a typical fire-fighting environment. Nowadays, they depend
on touch sensation (haptic) of walls for localizing and ropes
for finding the direction [3]. This paper explores how to
model control policies for guiding/following by a simple Auto
Regressive model (AR) when vision is limited.

There have been some studies on guiding humans to provide
navigation aids when the vision was impaired [4], [5]. A
robotic guide dog with environment perception capabilities
called Rovi has been developed [6] to guide a human with
limited environment perceptions. Rovi could avoid obstacles
and reach a target on a smooth indoor floor, however difficul-
ties arise in uncertain environments. An auditory navigation
support system for the blind is discussed in [5], where, visually
impaired human participants (blind folded participants) were
given verbal commands by a speech synthesizer. However,
speech synthesis is not a good choice to command a person in
a stressful situation like a real fire. Ulrich et al [7] developed
a guide cane without acoustic feedback in 2001 [7]. The guide
cane has an ability to analyze the situation and determines ap-
propriate direction to avoid the obstacle, and steers the wheels
without requiring any conscious effort [7]. A robotic guide
called MELDOG was designed by Tachi et al [8] to introduce
effective mobility aids for the blind people. Moreover, Loomis
et al [9] developed a personal navigation system to guide blind
people in familiar and unfamiliar environments.

However, all of these studies in [3] - [9] were designed
to provide navigation aids in structured environments in low
visibility conditions. We show how to extract control policies
of the guider and the follower when the follower’s vision is
impaired. Although extensive research has been carried out
on navigation and path finding for a human with limited
perception, to the best of our knowledge no work has been
done to cover state dependent bi-directional control action for
guiding them.

So far, there has been little discussion about human confi-
dence on robots in unstructured environments. Confidence is
one of the most critical factors in urban search and rescue
missions because it can impact the decisions human make in
uncertain conditions [10]. We argue that any robotic assistant
to a person with limited perception of the environment should
monitor the level of confidence of the person to be relevant
to the psychological context of the person being assisted. Few
attempts have been made to study confidence of a human with
limited perception [11], [12] in different environments. In a
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simulated game of fire-fighting, Stormont et al [11] showed
that the fire-fighters become increasingly dependent upon
robotic agents when the fire starts to spread along randomly
changing in wind directions. Freedy [12] has discussed how
self confidence correlates with trust of automation in human
robot collaboration. Moreover, [13], [10] studied how human
trust can be explained quantitatively. However, our attempt is
not only to quantify the human confidence but also to model
it in real time. Therefore, in this paper we discuss a novel
optimal state-dependent controller that accounts for the level
of confidence of the follower as part of the state.

The paper is organized as follows. Section II elaborates the
experimental methodology to collect data of human-human
interactions via a hard rein while tracking an arbitrary path.
Section III describes the mathematical model of the guider’s
and the follower’s state dependent control policy. Section IV
gives the experimental results of human participants along
with numerical simulation results to show the stability of the
control policy identified through experiments. It also discusses
the virtual time varying damped initial model to estimate the
confidence of the human follower. Moreover, it discusses the
validation of the guider’s control policy extracted from human
demonstration experiments. Finally, Section V concludes with
the discussion.

II. EXPERIMENTAL METHODOLOGY

We conducted three separate experiments to understand: 1)
The state dependent control policy of human subjects when
one human is guiding another human with limited visual and
auditory environmental perceptions in an arbitrary complex
path, 2) To model the confidence level of the follower using
a time varying damped initial system, and 3) To validate the
guider’s control policy.

A. Experimental protocol

1) Experiment 1: Extraction of control policies.: The first
experiment was conducted to extract control policies in guid-
ing/following with ten pairs of subjects after giving informed
consent. They were healthy and in the age group of 23 - 43
years. Fig. 1(A) shows how the guider and the follower held
both ends of hard rein to track the wiggly path. Fig. 1(A)
shows the follower was blindfolded and cutoff from using
auditory feedback. Fig. 1(B) shows the relative orientation
difference between the guider and the follower (referred to
as state hereafter), and angle of the 0.7m long, 500g weight
rein relative to the agent (referred to as action hereafter).

For clarity, the detailed wiggly path is shown in Fig. 1(C).
The path of total length 9m was divided into nine milestones
as shown in Fig. 1(C). In any given trial, the guider was
asked to take the follower from one milestone to another at
six milestones up or down (ex. 1-7, 2-8, 3-9, 9-3, 8-2, and 7-
1). The starting milestone was pseudo-randomly changed from
trial to trial in order to eliminate the effect of any memory of
the path. Moreover, the guider was disoriented before starting
every trial. The guider was instructed to move the handle of
the hard rein only on the horizontal plane to generate left and
right turn commands. Furthermore, the guider was instructed

to use push and pull commands for forwards and backwards
movements to track the follower in the defined path as shown
in Fig. 1(C). The follower was instructed to pay attention to the
commands via the hard rein to follow the guider. The follower
started to follow the guider once a gentle tug was given by
the guider via the rein. The subjects were asked to maintain a
natural speed of walking during the trial.

2) Experiment 2: Model the confidence of the follower.: A
second experiment was conducted to study how to model the
confidence of the follower in different path tracking context.
There were 10 trials each for three different paths as shown
in Fig. 1(D). ATI Mini40 6-axis force torque transducer was
attached to the hard rein to measure tug force sampled at
1000Hz along the horizontal plane to guide the follower. The
acceleration of the follower was measured by MTx sensors as
shown in Fig. 1(C).

To study the confidence from the human follower, a con-
fidence scale 1 to 10 ranging from lowest to highest was
introduced before starting the experiments and subjects were
asked to rate their confidence to follow the guider after the
each trial.

3) Experiment 3: Implementation and validation of the
guider’s control policy.: The aim of the third experiment is
to validate the guider’s control policy when it was imple-
mented on a planar 1-DoF freedom robotic arm. We show
how the guider’s control policy would bring the follower
into the desired position when we replicated human-human
demonstration set up in Fig. 1(B) by human-robot interaction
experiments as shown in Fig. 1 (E). The guiders arm was
replaced by planar 1-DoF robotic arm to generate the swing
arm action in horizontal plane as shown in Fig. 1 (F). The
hard rein held by the human follower connected to the robotic
arm across a passive joint. The guiders control policy in Eq. 2
was imported to generate a tug force in horizontal plane. The
planar 1-DoF robotic arm was actuated by a motor.

Here the cord was attached to the waist belt of the blind-
folded subjects and the encoder on the shaft platform as
shown in Fig. 1 (F). The subjects were instructed to move
proportionally to the force they felt and to the direction of the
tug force. Once the trial was started, the encoder mounted on
the motor shaft read instantaneous error φ of the blindfolded
subject’s position relative to the desired angle. We defined
−65◦, −45◦, −25◦, +25◦, +45◦ and +65◦ as desired angles.
Then the robotic arm computed the commands to perturb
the arm to minimize the following error between the human
subject and the robotic arm. We conducted experiments with
8 subjects. Each subject participated in three trials.

B. Sensing

MTx motion capture sensors (3-axis acceleration, 3-axis
magnetic field strengths, 4-quaternions, 3-axis Gyroscope
readings (Xsens,USA)) were used to measure the states φ

and actions θ of the duo. Two MTx sensors were attached
on the chest of the guider and the follower to measure the
rate of change of the orientation difference between them
(state). Another two motion trackers attached on the hard
rein to measure the angle of the rein relative to the sensor
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Fig. 1. The experimental setup: Experiment 1: (A) Pushing/pulling in horizontal plane to guide the follower, (B) Tracking the path by the duo, (C)The detailed
diagram of labeled wiggly path on a floor, the hard rein with wireless MTx motion sensors attached to measure the state φ and the action θ . Experiment 2:
(D) The three different paths for confidence stuies to measure pushing/pulling force in paths, P1: Ninety degree turn, P2: Sixty degree turn, and P3: Straight
path. Experiment 3: (E) Schematic diagram: Human-human experimental setup in Fig. 1(B) was replicated by human-robot experimental setup. The guiders
arm was replaced by planner 1-DoF robotic arm to generate the swing arm action in the horizontal plane. The hard rein held by the human follower connected
to the robotic arm across a passive joint. Here, φ the is relative orientation difference between the motor shaft and the guider and θ is the swing action in
horizontal plane., (F) The experimental setup: The cord was attached to the waist belt of the blindfolded subjects and the encoder on the shaft platform to
measure the relative error.

on the chest of the guider (action from the guider). Four
Electromyography (EMG) electrodes at 1500Hz were fixed on
the guider’s Anterior Deltoid, Biceps, Posterior Deltoid and
Lateral Triceps along the upper arm as shown in Fig. 1(A).
Before attaching EMG electrodes, the skin was cleaned with
alcohol. An extra motion tracker with a switch was worn by
the guider. To synchronize MTx motion sensors with muscle
EMG sensors, we achieved this synchronization by serially
connecting a channel of the EMG recorder with the magnetic
sensor of the MTx sensor via a switch. the guider switched
on the circuit, it induced a magnetic pulse in the MTx motion
sensor while recording a voltage pulse in one of the channels
of the EMG records. Since we used five MTx sensors, we
sampled data at 25Hz to stay within hardware design limits.

C. Data Analysis

All data were analyzed using MATLAB R2012a (The Math
Works Inc). We used Daubechies wave family (db10) of
the MATLAB Wavelet Toolbox to extract the action of the
guider and the state of the follower. Symlet wave family
(sym8) of MATLAB was used for EMG analysis. All statistical
significances were computed using the Mann-Whitney U test.

The experimental protocol was approved by the King’s
College London Biomedical Sciences, Medicine, Dentistry and
Natural and Mathematical Sciences research ethics committee.

III. MODELING

A. The guider’s closed loop control policy

We model the guider’s control policy as a N-th order state
dependent discrete linear controller. The order N depends on
the number of past states used to calculate the current action.

Let the state be the relative orientation between the guider
and the follower given by φ , and the action be the angle of
the rein relative to the sensor on the chest of the guider given
by θ as shown in Fig. 1(B). Then the linear discrete control
policy of the guider is given by

θg(k) =
N−1

∑
r=0

agRe
r φg(k− r)+ cgRe (1)

if it is a reactive controller, and

θg(k) =
N−1

∑
r=0

agPre
r φg(k+ r)+ cgPre (2)

if it is a predictive controller, where, k denotes the sam-
pling step, N is the order of the polynomial, agRe

r ,agPre
r ,r =

1,2, · · · ,N is the polynomial coefficient corresponding to the
r-th state in the reactive and predictive model respectively, and
cgRe,cgRe are corresponding scalars.
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B. The follower’s state transition policy

While the guider’s control policy is represented by Eqs.
(1) and (2), we again model the follower’s control policy as
an N-th order action dependent discrete linear controller to
understand behavior of the follower. The order N depends on
the number of past actions used to calculate the current state.
Then the linear discrete control policy of the follower is given
by

φ f (k) =
N−1

∑
r=0

a f Re
r θ f (k− r)+ c f Re (3)

if it is a reactive controller, and

φ f (k) =
N−1

∑
r=0

a f Pre
r θ f (k+ r)+ c f Pre (4)

if it is a predictive controller, where, k denotes the sam-
pling step, N is the order of the polynomial, a f Re

r ,a f Pre
r ,r =

1,2, · · · ,N is the polynomial coefficient corresponding to the
r-th state in the reactive and predictive model respectively, and
c f Re,c f Pre are corresponding scalars. These linear controllers
in Eqs. (1), (2), (3), and (4) can be regressed with the
experimental data obtained in the guider-follower experiments
above to obtain the behavior of the polynomial coefficients
across trials. The behavior of these coefficients for all human
participants across the learning trials will give us useful
insights as to the predictive/reactive nature, variability, and
stability of the control policy learned by human guiders.
Furthermore, a linear control policy given in Eqs. (1), (2),
(3), and (4) would make it easy to transfer the fully learned
control policy to a robotic guider in a low visibility condition.

C. Modeling the follower as a virtual time varying damped
initial system

In order to study how the above control policy would
interact with the follower in an arbitrary path tracking task, we
model the voluntary following behaviour of the blindfolded
human participant (follower) as a damped inertial system,
where a force F(k) applied along the follower’s heading
direction at sampling step k would result in a transition of
position given by F(k) = MP̈f (k)+ ζ Ṗf (k), where M is the
virtual mass, Pf is the position vector in the horizontal plane,
and ζ is the virtual damping coefficient. It should be noted
that the virtual mass and damping coefficients are not those
real coefficients of the follower’s stationary body, but the
mass and damping coefficients felt by the guider while the
duo is in voluntary movement. This dynamic equation can be
approximated by a discrete state-space equation given by

x(k+1) = Ax(k)+Bu(k) (5)

where, k is the sampling step, x(k+1) =
[

Pf (k+1)
Pf (k)

]
,

A =

[
(2M+T ζ )/(M+T ζ ) −M/(M+T ζ )

0 0

]
,

B =

[
T 2/(M+T ζ )

0

]
,

and T is the sampling time.

Given the updated position of the follower Pf (k), the
new position of the guider Pg(k) can be easily calculated
by imposing the constraint

∥∥Pf (k)−Pg(k)
∥∥ = L, where L

is the length of the hard rein. Once the parameters of the
Eq. 2 are known, the damped inertial model of the volun-
tary movement of the follower can be combined to form
a complete state dependent controller that accounts for the

confidence level of the follower as given by
[

F(k+1)
θ(k+1))

]
=[

1 0
0 1

][
F(k))
θ(k)

]
+

[
(M−M0)P̈f (k)− (ζ −ζ0)Ṗf (k))

∑
N−1
r=0 aPre

r φ(k+ r)+CPre

]
Where

M0 and ζ0 are desired mass and desired damping coefficients
respectively. This complete state dependent controller can be
readily implemented in a potential human-robot interaction
scenario.

IV. EXPERIMENTAL RESULTS

We conducted experiments with human participants to un-
derstand how the coefficients of the control policy relating
states φ and actions θ given in Eqs. (1), (2), (3), and (4)
settle down across learning trials. In order to have a deeper
insight into how the coefficients in the discrete linear controller
in Eqs. (1), (2), (3), and (4) change across learning trials,
we ask 1) whether the guider and the follower tend to learn
a predictive/reactive controllers across trials, 2) whether the
order of the control policy of the guider in Eqs. (1) and (2)
and the order of the control policy of the follower in Eqs. (3)
and (4) change over trials, and if so, what its steady state order
would be.

A. Adoption of Wave families for action and state vector
profiles

To find regression coefficients, since the raw motion data
were contaminated with noise, we used Wavelet Toolbox (The
Math Works Inc) to extract the action and the state from raw
data. The guiders action in horizontal plane is likely swing.
It was suggested to adopt the Daubechies wave family (for
sinusoidal waves) [14]. Moreover, according to the previous
studies [15], [16], human arm movements are continuous and
smooth. Therefore, a continuous mother wavelet (db10) is
taken to represent the swing actions in wavelet analysis as
shown in Fig. 2(A). For clarity, we compared the percentage
of db10 and harr wave families for the same vector as shown
in Fig.2(A). Considering previous studies and wave families
comparison as shown in Fig. 2(A), we select db10 (Daubehies)
for our swing type action analysis.

Different decompression levels were tested for db10. The
percentage of energy corresponding to approximation for
different decomposition levels were found to be 99.66%,
93.47%, and 86.73% for decompression levels 4, 8, and 15
respectively. The highest percentage of energy was gained
when the decompression levels are 4. Therefore we decided
to use decompression level 4 for our analysis.

To find the decomposition level from 4th decompression
level, we show that the vector contains the percentages of
energy corresponding to the level 4 as shown in Fig. 2(B).
Considering the percentage values of 1st to 4th decomposition
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Fig. 2. Selection of wavelet family for guiding agent action and state
vectors:(A) Two wavelet families ( db10, harr) energy percentage represen-
tation of action vector of all subjects in all trials. (B) Vector containing the
percentages of energy corresponding to the details of energy percentage of
db10.

values in Fig 2(B), the highest percentage, 88% ( 4th decom-
position level) was chosen for action and state vector analysis.

TABLE I
GUIDER PREDICTIVE 4R2% OF 2nd TO 4th ORDER POLYNOMIALS W.R.T 1st

ORDER. STATISTICAL SIGNIFICANCE WAS COMPUTED USING THE
MANN-WHITNEY U TEST.

Trial No: 2nd order 3rd order 4th order p values
4 8.94 11.37 11.97
8 8.26 10.98 11.62

12 7.81 10.36 10.74 p
(
2nd ↔ 3rd)< 0.008∗,

16 9.38 11.68 12.25 p
(
3rd ↔ 4th)> 0.5

20 9.74 14.00 14.70

TABLE II
FOLLOWER REACTIVE 4R2% OF 2nd TO 4th ORDER POLYNOMIALS W.R.T

1st ORDER. STATISTICAL SIGNIFICANCE WAS COMPUTED USING THE
MANN-WHITNEY U TEST.

Trial No: 2nd order 3rd order 4th order p values
4 8.58 9.57 9.91
8 8.31 10.33 10.77

12 7.41 8.46 8.70 p(2nd ↔ 3rd)> 0.1,
16 9.45 10.21 10.51 p(3rd ↔ 4th)> 0.5
20 9.96 11.82 12.29

B. Determination of the salient features of the guider’s control
policy

Hereafter, the 4th decomposition level of db10 of action θ

and state φ vectors were used for regression in Eqs. (1) and
(2). Once the coefficients of the polynomial in Eqs. (1) and
(2) are estimated, the best control policy (Eqs. (1) or (2)), and
the corresponding best order of the polynomial should give
the best R2 value for a given trial across all subjects. Here,
twenty experimental trials were binned to five for clarity.

1) Determination of predictive \ reactive nature of the
guider’s control policy: To select best fit policies, coeffi-
cients of (Eqs. (1) are (2)) were estimated from 1st order
to 4th order polynomials shown in Fig. 3(A). Dashed line
and solid line were used to denote reactive and predictive
models respectively. From Fig. 3(A), we can notice that the
R2 values corresponding to the 1st order model in both Eqs.
(1) and (2) are the lowest. The relatively high R2 values of

the higher order models suggest that the control policy is of
order > 1. Therefore, we take the percentage (%) differences
of R2 values of higher order polynomials relative to the 1st

order polynomial for both Eqs. (1) and (2) to assess the fitness
of the predictive control policy given in Eq. (2) relative to
the reactive policy given in Eq. (1). Fig. 3(B) shows that the
marginal percentage (%) gain in R2 value (%∆R2) of 2nd, 3rd,
and 4th order polynomials in Eq. (2) predictive control policy,
(solid line) grows compared to those of the reactive control
(dashed line) policy in Eq. (1). Therefore, we conclude that the
guider gradually gives more emphasis on a predictive control
policy than a reactive one.

2) Determination of the model order of the guider’s control
policy: The percentage (%) gain of of 3rd order polynomial is
highest compared to 2nd and 4th order polynomials as shown
in Table I by numerical values and the Fig. 3(B). There is
a statistically significant improvement from 2nd to 3rd order
models (p < 0.008), while there is not significant information
gain from 3rd to 4th order models (p > 0.5). It means that
the guider predictive control policy is more explained when
the order is N = 3. Therefore, hereafter, we consider 3rd order
predictive control policy to explain the guider’s control policy.
Moreover, individual guider’s predictive/reactive nature and
the model order selection are shown in the tree diagram in
Fig. 3(E).

C. Determination of the salient features of the follower’s
policy

Next we try to understand the salient features of the fol-
lower’s state transition policy in response to guider’s actions,
hereafter referred to as follower’s policy.

1) Determination of predictive/reactive nature of the fol-
lower’s control policy: We used experimental data for state
θ and action φ in Eqs. (3) and (4) to extract features of the
follower’s policy from 1st to 4th order polynomials over trials
as shown in Fig. 3(C). Here, we used same mathematical
and statistical method as guider’s model. Interestingly, Fig.
3(C) shows that the marginal percentage (%) gain in R2

value (%∆R2) of 2nd, 3rd, and 4th order polynomials in Eq.
(3) reactive control policy, (dashed line) grows compared to
those of the predictive control policy (solid line) in Eq. (4).
Therefore, we conclude that the follower gradually gives more
emphasis on a reactive policy than a predictive one.

2) Determination of the model order of the follower’s
control policy: We tried to find the best fit order to explain
the follower’s policy. The percentage (%) gain of of 2nd order
polynomial is highest compared to 3rd and 4th order polynomi-
als as shown in Table II by numerical values and the Fig. 3(D).
Interestingly, There is no statistically significant improvement
from 2nd to 3rd order models (p > 0.1) nor from 3rd to 4th

order models (p > 0.5). Therefore, we can say the follower
reactive policy is more explained when the order is N = 2.
Therefore, hereafter, we consider 2nd order reactive policy to
explain the follower’s policy. For clarity, individual followers
predictive/reactive nature and the model order selection are
shown in the tree diagram in Fig. 3(F). Our interpretations as
to why the follower’s autoregressive reactive policy is a 2nd
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Fig. 3. R2 values from 1st order to 4th order polynomials for the guider and the follower: reactive models (dashed line) and predictive models (solid line):
(A) and (C) are the R2 value variation of the reactive and predictive from 1st to 4th order polynomials over trials for the guider and the follower respectively.
(B) and (D) are the percentage (%) differences of R2 values of 2nd to 4th order polynomials with respect to 1st order polynomial for the guider’s and the
follower’s control policies respectively: 2nd order, 3rd order , 4th order, (E) Individual guider’s model orders and the predictive/reactive nature distribution by
a tree diagram. The guider is most likely on 3rd order predictive and (F) Individual follower’s model orders and the predictive/reactive nature distribution by
a tree diagram. The follower is most likely on 2rd order reactive models.

one, whereas the guider’s autoregressive predictive policy in
a 3rd or higher order is that a reactive behavior does not need
as many past states as in a predictive behavior to take action.

D. Polynomial parameters of autoregressive state dependent
behavioral policies of the duo

Then we move onto understand how the polynomial param-
eters of the guider’s 3rd order predictive and the follower’s 2nd

order reactive policies would evolve across learning trials in
Eqs. (2) and (3) for the guider and the follower respectively.
We notice in Figs. 4 and 5 that the history of the polynomial
coefficients fluctuates within bounds for both the guider pre-
dictive and the follower reactive (The average and standard
deviation (denoted by avg: and std: respectively) values of
the coefficients are labeled in Figs. 4 and 5). This could
come from the variability across participants and variability of
the parameters across trials itself. Therefore, we estimate the
above control policy as a bounded stochastic decision making
process.

E. Modeling the follower’s confidence level in different paths

Here our intention is to incorporate the instantaneous
confidence level of the follower in the state-space of the
closed loop controller. We show the results of variability of
voluntary movements of a blindfolded follower in a haptic
based guidance scenario, in a virtual damped inertial dynamic
system. Our attempt is to address the question of how the

Fig. 4. The evolution of coefficients of the 3rd order auto regressive predictive
controller of the guider.

follower’s confidence towards the guider should be accounted
for in designing a closed loop controller. Here, we argue that
the confidence of the follower in any given context should be
reflected in the compliance of his/her voluntary movements
to follow the instructions of the guider. By modeling the
impedance of the voluntary movement of the follower using
a time varying virtual damped inertial system, we observe the
variability of the impedance parameters - virtual mass and
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Fig. 6. Regression coefficients in Eq. (6) of different paths: (A) Virtual damping coefficient for paths: 90◦ turn, 60◦ turn, and straight path.The average values
are 3.055, 1.605, and -0.586 for 90◦ turn, 60◦ turn. and straight path respectively. (B) Virtual mass coefficient for paths: 90◦ turn, 60◦ turn, and straight
path. The average values are 2.066, -0.083, and 0.002 for 90◦ turn, 60◦ turn, and straight path respectively, (C) The follower’s confidence: The confidence
scale varies from 1 to 10 from the lowest to the highest. The average response value across straight, 60◦, turn and 90◦ turn are shown with variability. The
significance was computed by Mann-Whitney U test.

damping coefficients - in paths with different complexities
(contexts). The three paths are shown in Fig. 1(D).

The experimental results of eight pairs of subjects in three
types of paths - 90◦ turn, 60◦ turn, and a straight - are shown
in Fig. 6. Here we extracted motion data within a window of
10 seconds around the 90◦ and 60◦ turns, and for fairness
of comparison, we took the same window for the straight
path for our regression analysis to observe the virtual damping
coefficient and the virtual mass in three different paths. Fig.
6(A) shows the variability of the virtual damping coefficient,
and Fig. 6(B) shows that of the virtual mass for the above three
contexts. We can notice from Fig. 6(A) that the variability of
the virtual damping coefficient is highest in the path with a
90◦ turn, with relatively less variability in that with a 60◦ turn,
and least variability in the straight path. However, we do not
notice a significant variability in the virtual mass across the
three contexts.

In Fig. 6 the average values of the virtual mass distribution
and the virtual damping coefficient in straight path are lowest.
This shows that the confidence level of the follower is greater
in the straight path. Furthermore, Table III and Table IV show
the results of Mann Whitney U test for different paths ( 90◦

turn, 60◦ turn, straight path ) of coefficients in Eq.6. Results in
Table III show that the virtual damping coefficient in 90◦ turn
was significantly different from that in straight path (p< 0.01).
Moreover, virtual damping coefficient in 60◦ turn was also
significantly different from that in straight path (p < 0.02).
There was no statistically significant difference between the

Fig. 5. The evolution of coefficients of the 2nd order auto regressive reactive
controller of the follower.

virtual damping coefficient in path 90◦ turn and 60◦ turn
(p > 0.60). Furthermore, the virtual mass distribution in Eq.
(6) is shown in Fig. 6(B). Interestingly, only straight path was
statistically significantly different from 90◦ turn (p < 0.01).
However, the Mann Whitney U test in between 60◦ turn and
straight path is not significantly different (p > 0.70). This may
come from the fact that the follower has more confidence
to follow the guider in a straight path than other two paths.
Therefore these results confirm that the follower’s confidence
level is reflected in the time varying parameter of the virtual
damped inertial system. We also note that the virtual damping
coefficient is a more sensitive to predict the level of confidence
than is virtual mass.

Human participants consistently confirmed that their con-
fidence level to follow the guider dropped from the straight
path to that with a 60◦ turn, to that with a 90◦ turn. Here, we
show the average ranking value across the 8 pairs of follower
for following the guider above three paths as shown in Fig.
6(C). The average ranking value is higher for straight path
than 90◦ or 60◦ turns. However, average ranking value for
60◦ turn greater than 90◦ turn as shown in Fig. 6(C). The
results confirm that the follower is more confident to follow the
guider in straight path than 90◦ turn and 60◦ turn. This results
agree with the virtual mass and virtual damping coefficient
representation in Fig. 6(A) and Fig. 6(B)

TABLE III
VIRTUAL DAMPING COEFFICIENTS. STATISTICAL SIGNIFICANCE WAS

COMPUTED USING THE MANN-WHITNEY U TEST.

Paths Mean
90◦ turn 3.055 p(900turn↔ 600turn)> 0.6,
60◦ turn 1.605 p(600turn↔ Straight path)< 0.02∗,

Straight path -0.586 p(900turn↔ Straight path)< 0.01∗

Therefore, we conclude that the virtual damping coefficient
can be a good indicator to control the push/pull behavior of
an intelligent guider using a feedback controller of the form
given in Eq. (6), where F(k) is the pushing/pulling tug force
along the rein from the human guider at kth sampling step, M
is the time varying virtual mass, M0 is its desired value, ζ is



8

TABLE IV
VIRTUAL MASS. STATISTICAL SIGNIFICANCE WAS COMPUTED USING THE

MANN-WHITNEY U TEST.

Paths Mean
90◦ turn 2.066 p(900turn↔ 600turn)> 0.8,
60◦ turn -0.083 p(600turn↔ Straight path)> 0.7,

Straight path 0.002 p(900turn↔ Straight path)< 0.01∗

Fig. 7. Validation of the guider’s control policy: (A). completion of the
reaching task. The desired angles are −65◦, −45◦, −25◦, +25◦, +45◦, and
+65◦, (D) The average best fit model order selection across the subjects by
using AIC for the above desired angles.

the time varying virtual damping coefficient, k is the sampling
step, and ζ0 is its desired value.

F(k+1) = F(k)− (M−M0)P̈f (k)− (ζ −ζ0)Ṗf (k) (6)

Fig. 8. Simulation results: The tug force and position variation of the follower
in order to sudden change of the virtual mass M = 15[kg] from t = 2s to t = 3s
and the virtual damping coefficient ζ = 6[Nsec/m] from t = 6s to t = 7s.

F. Validating the guider’s control policy

G. Optimality of muscle recruitment

We show results of the validating the guider’s control policy
when it is implemented on the planar 1-DoF robotic arm.
Here we show how the following error φ reduced over time
across the trials across all subjects for 6 desired angles as
shown in Fig. 7(A). Results show that guiding controller can
bring human subjects into the desired angular positions and
settle down in a reasonable time as shown in Fig. 7(A). Here
Akaike Information Criterion (AIC) is used to find the best
fit order of the polynomials [17] of the reaching curves in
Fig. 7(A). To understand the optimal order of the polynomial,
we show the average model order across the subjects for
6 desired angles in Fig. 7(B). The results show that the
follower’s behavior fits into 2nd order polynomial when the
desired angles are −45◦, −25◦, +25◦, and +45◦. The test
results again confirm that when the extracted guider’s 3rd order
control policy implemented on the robotic arm, it could bring
the follower into the desired position and follower’s behavior
fits into 2nd order as we noticed followers model order from
human demonstration experiments. However, for the higher
desired angles (−65◦ and +65◦), the average model order is
4.

H. Developing a closed loop path tracking controller incor-
porating the follower’s confidence level

Now we combine the guider’s 3rd order predictive policy
to control the swing movement of the hard rein, with the tug
force modulation rule in Eq. 6 to form a complete controller
that accounts for the state of the follower that indicates his/her
confidence level.

We use the last 10 trials coefficients values as marked on
Fig. 4 and 5 by red dashed line to calculate the statistical
features of the regression coefficients in order to make sure
the model reflects the behavior of the human participants at a
mature learning stage. The model parameters were then found
to be: a0 = N(−1.9216,0.25902), a1 = N(2.0125,0.47352),
a2 = N(2.0125,0.47352) and c = N(−0.7429,0.24162).

We conducted numerical simulation studies forming a
closed loop dynamic control system of the guider and the
follower using the control policy given in Eq. (2) together
with virtual damped inertial model equation of the follower
given in Eq. (6) to understand the variability of the virtual
model parameters based on the model. We set the virtual mass
M = 15[kg] from t = 2s to t = 3s and the virtual damping
coefficient ζ = 6[Nsec/m] from t = 6s to t = 7s to observe tug
force variation in Eq. (6) as shown in Fig. 8(C). The tug force
variation Fig. 8(C) shows that, the virtual damping coefficient
more influenced to vary the tug force than the virtual mass.
The results again suggest that virtual model parameter would
be used to indicate the confidence of the follower.

To understand the optimality of muscles, we first study the
responsibility assignment of muscles from EMG recordings,
since the raw EMG data were contaminated with noise, we
again used Wavelet Toolbox (The Math Works Inc) to extract
the signal without noise. The raw EMG signal is a symmetrical
envelope as shown in Fig. 9(A). It was suggested to adopt
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Fig. 9. Selection of wavelet family for EMG vector:(A) A representative raw
EMG signal from Anterior Deltoid muscle of the guider, (B) Two wavelet
families ( harr, sym8 ) energy percentage representation of action vector
of all subjects in all trials, (C) Vector containing the percentages of energy
corresponding to the details of percentage energy of sym8.

the Symlets wave family (symmetrical sinusoidal wave) [14]
for EMG analyzing. For clarity, we tested two types of wave
families (harr and sym8) in Wavelet Toolbox as shown in Fig.
9(B) for all subjects over all trials. The percentage of energy
corresponding to the approximation of sym8 (Symlets) and
harr (Harr) values are 72.91% and 68.46% respectively as
shown in 9 (B) by a bar chart. Therefore, we select sym8
(Symlets) for our symmetrical EMG wave analysis.

The percentage of energy corresponding to approximation
for different decompression levels were found to be 99.52%,
95.97%, 92.05%, 85.41%, and 20.36% for decompression
levels 3, 4, 5, 6 and 7 respectively. The highest percentage of
energy was gained when the decompression level is 3. Next our
attempt is to understand the percentages of energy correspond-
ing to the 1 to 3 decomposition levels. Fig. 9(C) shows the
percentage energy corresponding to the 1 to 3 decomposition
levels of the EMG signal. Since the 3rd decomposition level
has highest percentage energy level (76%), hereafter we use
the 3rd decomposition level to analyze raw EMG data.

I. Behavior of individual muscles

In order to ascertain whether the low internal impedance
control strategy converges to a minimum energy control solu-
tion, how does the individual muscle EMG vary over trials?.
We plotted average normalized individual muscle over trials
as shown in Fig. 10(A). We notice that the proportion of
responsibility taken by the posterior Deltoid monotonically
increases relative to the anterior Deltoid. Moreover, proportion
of responsibility taken by the Biceps increases relative to the
Triceps. This indicates that the above muscle pairs try to
reduce co-activation in order to learn a low internal impedance
control strategy. Therefore, this is in agreement with other
studies that show a similar pattern of reduction in muscle co-
contraction when motor learning progresses [18].

J. Behavior of pairs of antogonist muscles

We further analyzed the behavior of the averaged normal-
ized EMG ratio between frontal and dorsal muscles over trials
as shown if Fig. 10(B). The ratios of anterior and posterior
muscles are decreased over trials in Fig. 10(B): M1 while ratio
of Biceps and Triceps is increased in Fig. 10(B): M2. This
suggests that, the priority muscle activation is taken by frontal
and dorsal muscle of Deltoid than Biceps Triceps pair while
the guiding agent produces movements in horizontal plane
swing, anterior and posterior Deltoid pair is more activated
to generate the tug forces along the hard rein.

K. Behavior of total EMG over trials

To compute the average EMG for all four muscles of all ten
participants that reflects the average energy consumed in a trial
given by J =

√
∑

4
i=1 ∑

SN
j=1 EMG2

i j, where SN is the number of
subjects, EMGi j is the average rectified EMG of the ith muscle
of the jth participant. The behavior of this cost indicator J is
shown in Fig. 10(C). We can clearly observe from the 2nd

order best fit curve that J starting from lower- mid way of
the training trials increase to a maximum - decreases in last
10 trials - reaches to minimum values at the last trial. This
suggests that optimization is a non-monotonic process. During
the first trials, it may have given priority to order selection than
optimization in the actuation space, which is also reflected in
the behavior of R2 values in Fig. 3. Once the optimal order
is selected, subjects exhibit monotonic optimization in the
actuation space as seen in the last 10 trials of Fig. 10(C),
with a corresponding increase of R2 values in Fig. 3.

V. DISCUSSION

In this paper we present the characteristics of an optimal
state dependent control policy found in human participants to
guide a person with limited visual and auditory perception
(follower) in an uncalibrated environment. If an intelligent
agent (man/machine) is given the task to guide such a follower
using only a hard rein, the guiding agent should learn a control
policy that can effectively manage the variability of follower’s
behavior [19]. In this study, we conducted experiments to
understand how two human participants interact with each
other using haptic signals through a hard rein to achieve a path
tracking goal when one partner was cut off from auditory and
visual feedback from the environment (the follower), while
the other (the person with environmental perception) gets full
state feedback of the follower to find variability of movement
and uncertainty of the behavior. The predictive and reactive
policies of the guider and the follower in Fig. 3(A) and
(C), showed that the R2 values of the guider’s predictive and
follower’s reactive behavioral policies increased over trials.
The Mann Whitney U test results among different orders
of autoregressive policies confirm that the guider’s policy is
best approximated by a 3rd order model while the follower’s
state transition policy is best approximated by a 2nd order
model. Returning to the questions posed at the beginning of
this study, it is now possible to state that the guider and the
follower give more emphasis on predictive and reactive models
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Fig. 10. The behavior of the average normalized muscle EMGs: (A) Average normalized muscle EMG anterior Deltoid, posterior Deltoids, Biceps, and
Triceps. The gradient and intercept of individual muscles are (-0.005, 0.315), (0.004,0.426), (0.001, 0.133), and (-0.013, 0.995) for Anterior Deltoid, Posterior
Deltoid, Biceps, and Triceps respectively. (B) Frontal and dorsal muscle ratio: M1- Biceps triceps muscle ratio, M2- anterior Deltoid posterior Deltoid muscle
ratio. (C) The behavior of this cost indicator J of the 2nd order best fit curve for average EMGs of all four muscles of the ten subjects across trials.

respectively. This also accords with previous findings which
showed that subjects learn both predictive and reactive models
during different movements [20]. The different orders of the
guider’s predictive (N = 3) and the follower reactive (N = 2)
policies suggest that in general, the guider depends on more
historical information to generate an action, while the follower
depends on less.

Variability is an indispensable feature in human behavior
[21]. Therefore we moved on to understand the specific proper-
ties of variability of human guiding behavior in this particular
task by observing the variation of polynomial coefficients in
Eqs. (2) and (3) across trials. By modeling the control policy
learned by the guiding agent as a discrete state dependent
auto-regressive function, we found that guiding agent learns
a stochastic stable control policy across 20 trials as shown
in Figs. 4 and 5. These results are consistent with those of
previous studies on stochastic human behavior [22], [23], [21]
in similar contexts.

When the extracted guider’s 3rd order control policy imple-
mented on the robotic arm, it was able to bring the follower
into the desired position as shown in Fig. 7(A) and follower’s
behavior fits into 2nd order as shown in Fig. 7(B) as we
noticed followers model order from human demonstration
experiments. However, we notice that followers model order
fits for the model order 4 for higher desired angles like −65◦

and +65◦. This might come from the follower would not able
to interpret the higher angles of turning.

Previous studies on human confidence on a helping agent
have shown that humans tend to depend entirely on the helping
agent when they are in hazardous environments [11] until
sudden a change occurs [24]. This implies that the degree
of compliance in a follower should drop if the follower loses
confidence in the helping agent. By modeling the impedance
of a follower as a virtual damped inertial system, we then con-
sidered the variability of the follower’s impedance parameters
(the virtual mass and damping coefficients) at different turn
angles. From the three types of paths discussed in section
IV (E), the blindfolded participants who played the role of
the follower confirmed that their confidence in following the
guider was highest in the straight path and it dropped in
the other paths so that the confidence was medium in the
path with a 60◦ turn, and least in that with a 90◦ turn.
The results of virtual impedance parameters in Eq. (6) are
shown in Fig. 6(A) and Fig. 6(B). Our experimental results of
human participants also show that the variability of the virtual
damping coefficients correlates more with the complexity of
the path in Fig. 6 - reflecting the confidence level of the
follower - than that of the virtual mass coefficient. Fig. 6
shows that the higher confidence of the follower in the straight
path results in a lower average value of the virtual damping
coefficient. When the follower drops his confidence in 90◦

turn and 60◦ turn, the guider has to exert a higher tug force
to take following agent into desired trajectory that leads to
higher average values for the virtual mass and virtual damping
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coefficient.
Therefore, our results from human-human demonstrations

provides useful design guidelines to human-robot interaction
that should account for the real-time confidence and trust
level of the human counterpart. In a human-robot interac-
tion scenario such as a fire-fighter being guided by a robot
through thick smoke, the estimate of the followers’ confidence
using the above method could be used to change accelera-
tion/deceleration of the intelligent agent.

While learning the control policy, we next considered grad-
ual change in muscle activation of the guider across the trials
to see optimality of total effort to generate actions in the
actuation space by the guider. Previous work [25] has proved
that the total muscle activation for a single task decreased
over their learning trials [25]. From the 2nd order best fit
curve for the quadratic sum of EMG J for all muscles as
shown in Fig. 10(C), we can observe that J increase to a
maximum around the 10th trial and then decreases in last
10 trials. This suggests that effort optimization is a non-
monotonic process. During the first 10 trials, participants may
have given priority to order selection than optimization in the
actuation space, which is also reflected in the behavior of R2

values in Fig. 3. Once the optimal order is selected, subjects
exhibit monotonic optimization in the actuation space as seen
in the last 10 trials of Fig. 10(C), with a corresponding increase
of R2 values in Fig. 3. However, our observation on the
guider’s muscle activation gradually progresses from an initial
muscle co-contraction based command generation strategy to
a low energy policy with minimum muscle co-contraction.
Therefore, this is in agreement with other studies that show
a similar pattern of reduction in muscle co contraction when
motor learning progresses [18]. This phenomenon can come
from the fact that the guiding agent builds internal models [26]
of hand and task dynamics to guide the blindfolded follower.

In the future, by combining the proposed control policy and
the confidence studies, we will implement a full controller for
guiding a human with limited auditory and visual perception
from the environment. It will be interesting to numerically
test whether construction of internal models of the follower’s
behavioral dynamics will lead to smoother and efficient model
based controllers. This will also help us to implement a
model based predictive controller in a robot to guide a human
follower in a low visibility environment. The strength of this
approach is that the robotic controller will be able to adjust to
the changes of the behavioral dynamics of the human follower
in varying distraction and stress conditions in a fire-fighting
context.

In addition to applications in robotic guidance of a person
in a low visibility environment, our preliminary findings shed
light on the optimality criteria that the motor system would
be using to apportion control responsibility across different
muscles of a surgeon interacting with a robot to perform
minimally invasive surgery. In that case, the robot could share
a part of the responsibility of constructing internal models of
interaction dynamics between the robot and tissues in various
surgical tasks in order to accelerate the surgeon’s reduction
of muscle co-contraction [27]. Therefore, we will continue
to discover a generic robotic learning strategy that can be

generalized across robotic assisted surgery as well as robotic
assisted guidance in low visibility environments.
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